
MaC: A Probabilistic Framework for Query Answering with
Machine-Crowd Collaboration

Chen Jason Zhang, Lei Chen, Yongxin Tong
Hong Kong University of Science and Technology

Hong Kong, China
czhangad@cse.ust.hk, leichen@cse.ust.hk, yxtong@cse.ust.hk

ABSTRACT
The popularity of crowdsourcing has recently brought about brand-
new opportunities for engaging human intelligence in the process
of data analysis. Most existing works on crowdsourcing have de-
veloped sophisticated methods to utilize the crowd as a new kind
of processor, a.k.a. Human Processor Units (HPU). In this paper,
we propose a framework, called MaC, to combine the powers of
both CPUs and HPUs. In order to build MaC, we need to tackle
the following two challenges: (1) HIT Selection: Selecting the
“right” HITs (Human Intelligent Tasks) can help reducing the un-
certainty significantly and the results can converge quickly. Thus,
we propose an entropy-based model to evaluate the informative-
ness of HITs. Furthermore, we find that selecting HITs has fac-
torial complexity and the optimization function is non-linear, thus,
we propose an efficient approximation algorithm with a bounded
error. (2) Uncertainty Management: Crowdsourced answers can be
inaccurate. To address this issue, we provide effective solutions in
three common scenarios of crowdsourcing: (a) the answer and the
confidence of each worker are available; (b) the confidence of each
worker and the voting score for each HIT are available; (c) only the
answer of each worker is available. To verify the effectiveness of
the MaC framework, we built a hybrid Machine-Crowd system and
tested it on three real-world applications - data fusion, information
extraction and pattern recognition. The experimental results veri-
fied the effectiveness and the applicability of our framework.

1. INTRODUCTION
The recent success of crowdsourcing on various human-intrinsic

tasks drives people to apply crowdsourcing to wider application ar-
eas. Existing works treat the crowd as a new kind of processors,
a.k.a. Human Processing Units (HPU). As a consequence, a query
executed on an HPU is called an HPU-based task. With respect
to cost-efficiency, the optimization of an HPU-based task focuses
on how to decompose the task into a small number of micro-tasks,
namely Human Intelligent Tasks (HITs), that are easy for crowd-
sourcing workers.

Most existing works treat the crowd as the sole information source
for the queries. In other words, machines (i.e. CPUs) manage only

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2661880 .

the construction and publication of HITs, but do not informatively
contribute to the answer. However, in many real-world applica-
tions, such as information extraction, data fusion and pattern recog-
nition, the same queries handled by HPUs can also be answered
by machine-alone systems, usually associated with learning-based
techniques. This indicates that the requested information can at
least be partially provided by machines. In general, the latency
of an HPU is much higher than that of a CPU, and an HPU may
lead to high monetary cost (e.g. Amazon Mechanical Turk, Crowd-
Flower). Thus, it is essential to combine the power of both methods
to accomplish the tasks effectively. Motivated by this, in this paper,
we propose a framework, namely MaC, to combine the power from
both the crowd and the machines.

For each HIT, both machines and crowds can be seen as infor-
mation sources. Whether using HPUs or CPUs, the major prob-
lem associated with the results is the data uncertainty. For results
obtained from machines, the inherent uncertainty is due to the in-
capabilities of the current solutions in recognizing human-intuitive
semantics via given data representation (e.g. images, nature lan-
guage). For results obtained from the crowd, any uncertainty is due
to sloppy workers, spammers, or the incapability of workers for
domain-specific tasks. Since uncertainty is inherited from both the
machine and the crowd, it is desirable to maintain the uncertainty in
order to avoid information loss. Now we show an example of how
to combine the machine and the crowd to improve the accuracy of
the answer.

Running Example: suppose we have textual data ‘51A Hayward
East New York’, and the query is to extract information for three at-
tributes - ‘House no’, ‘Area’ and ‘City’. With a machine-only tool
of information extraction, we have the results as shown in Table 1.
Due to a lack of capability to fully understand human semantics,
four possible results are generated , each of which is associated
with a probability of being the correct answer. As a result, the best
answer is o1, but with a confidence of only 0.6. On the other hand,
assume we have a crowd C with accuracy 0.75, then if we use the
crowd alone to answer this query, say with a HIT ‘what are House
no, Area and City of the given textual data’, the crowdsourced an-
swer would have a confidence of only 0.75.

In the above example, we can observe that using the machine or
crowd alone, would generate query answers with a confidence of
0.6 and 0.75, receptively. As pointed out in paper [11], even with
simple tasks such as labelling, the quality of normal workers (not
sloppy workers or spammers) is around 75%. For complex tasks
such as information extraction, the accuracy of the crowd may be
worse. In other words, 75% is already an optimistic estimation of
the crowd accuracy for complex tasks.

Now we demonstrate how the collaboration between the machine
and crowd is going to lead to a better result than just using either

11

Location address of T1: 51A Hayward East New York
Xid House no Area City Pr(ti)
o1 51A Hayward East New York 0.6
o2 51 Hayward New York 0.3
o3 51A Hayward East York 0.05
o4 51 East York 0.05

Table 1: running example - uncertain data generated by an informa-
tion extraction tool

ID HIT content
HIT1 Is the House no 51?
HIT2 Is the House no 51A?
HIT3 Is the Area Hayward?
HIT4 Is the Area Hayward East?
HIT5 Is the Area East?
HIT6 Is the City New York?
HIT7 Is the City York?

Table 2: candidate HITs
machine or crowd alone. For a given human-intrinsic query, we
first apply machine-based systems to generate possible outcomes
(answers) as well as probability distribution; then we selectively
pose simple ‘yes-no’ questions to the crowd in order to reduce the
answer uncertainty, hence improving the data quality. Continued
on the running example, we ask the crowd a much easier HIT -
“Is the House No 51A ?”. Assuming the HIT is answered yes by
crowd C with accuracy 0.75, then we have

Pr(o1|e : House No = 51A) =
Pr(o1)Pr(e|o1)

Pr(e)

=
Pr(o1)Pr(C is correct)

Pr(o1)Pr(C is correct) + (1− Pr(o1))Pr(C is incorrect)

=
0.75 ∗ 0.6

0.75 ∗ 0.6 + 0.25 ∗ 0.4
= 0.82 > 0.75

(1)From the above results, we can see that, the collaboration be-
tween the machine and the crowd generates a result with a confi-
dence 0.82, which is higher than using machine or crowd alone. In
general, if we can combine the results from machines and crowds
wisely, the combined results could be better than the results from
a single source. In our framework, we do not have explicit con-
straints for the uncertainties of the crowd, and how to manage the
uncertainties are thoroughly studied in Section 4.

However, it is not trivial to propose a general framework for this
collaboration, which requires the following challenges to be ad-
dressed:

(1) HIT Selection: Since information from humans (or the crowd)
is very expensive, it is valuable to maximize the utility of the ques-
tions in order to improve the overall cost-efficiency. Therefore,
we would like to investigate the following question: which HITs
should be published next based on current knowledge. Clearly,
it is non-trivial to design algorithmic approaches to select and con-
struct such HITs.

(2) Uncertainty Management: The crowdsourced answers can
be inaccurate. How should the accuracy of crowdsourced answers
be estimated? Explicitly, for a given answer, we investigate how to
compute the probability of its correctness.

In this paper, we proposed solutions to address the above two
challenges and made the following contributions.

• In Section 2, we propose the novel framework, namely MaC,
to help the machine collaborate with the crowd. In Section 3,
we formally define the HIT Selection problem. Specifically,
we propose an entropy-based model to evaluate the informa-
tiveness of HITs, and provide an efficient (1 + ε) approxima-
tion algorithm. In Section 4, we consider the uncertainty of
crowdsourced answers in three common scenarios. In each

Figure 1: MaC Framework Overview
of them, we provide efficient and effective algorithms to es-
timate the posterior probability of HITs. Our solutions in
particular assume that each worker from the crowd is an in-
dependent information source with a confidence. Thus, each
answer from a worker of confidence pi is a random variable
following the Bernoulli distribution, with probability pi to be
correct.

• In Section 5, we conduct extensive experiments with three
real-world applications. The experimental results demon-
strate significant improvements compared to machine-only
approaches.

In addition, we discuss the related work in Section 6. The overall
conclusion and possible future works are presented in Section 7.

2. MAC FRAMEWORK AND BASIC DEFI-
NITIONS

In this section, we illustrate the MaC framework that collabo-
rates machines with crowds, and provide formal definitions of some
core concepts. The MaC framework is depicted in Figure 1. In gen-
eral, MaC processes a set of analytic queries (query objects) with
the following steps: (1) through some machine-only system, a set
of possible outcomes and their distributions are provided for each
query object, namely the “probabilistic object”. (2) a number of
HITs are constructed based on the machine-generated results (i.e.
HIT selection problem). (3) HITs are batched as small groups and
published to the crowd. (4) Based on crowdsourced answers (with
uncertainty), the distributions are adjusted, and steps (2) to (4) are
repeated if the budget is not exceeded. To be clear, we explain the
MaC framework from top to bottom in the rest of this section.

2.1 Query Objects and Probabilistic Objects
As shown in Figure 1, the original input of the MaC framework

is a set of query objects, which are human-intuitive queries to be
processed on the machines or the crowd. Formally, we give the
formal definition of query object, which captures a wide range of
real-world tasks.

DEFINITION 2.1 (QUERY OBJECT). A Query Object q is an
analytical task with the following two characteristics:

(1) The possible outcomes of q and its probability distribution
can be provided by some machine-only systems.

(2) q is an easy and intuitive task for crowdsouring workers.

In the MaC framework, the query objects are first processed by a
machine-only system. In the running example, the given image of

12

poker card is a typical query object, and the recognition system is
corresponding to the machine-only system in the MaC framework.

For each query object, a set of possible outcomes are obtained.
We call such a set of possible outcomes a probabilistic object.
Since it is a fundamental concept for the later sections, we formally
define this term as follows.

DEFINITION 2.2 (PROBABILISTIC OBJECT). A Probabilistic
Object O is a set of possible outcomes of a query object, described
by a collection of attributes O = {A1, ..., An}, with Ai taking
value from a finite space Ω(Ai) = {ai1, .., ai|Ω(Ai)|} with prob-
abilities {Pri(ai1), ..., P ri(ai|Ω(Ai)|)} respectively. For each at-
tribute Ai, we have

∑|Ω(Ai)|
j=1 Pri(aij) = 1.

A probabilistic object depicts the partial information derived from
computer-alone systems. In the running example, for the given
textual data, we have probabilistic object containing three vari-
ables, i.e. House no (A1) ,Area (A2) and City (A3). Their sample
spaces are also well defined according to Table 1. For instance,
Ω(A1) = {a11 = 51A, a12 = 51} and Pr(A1 = a12) =
Pr1(a12) = 0.3 + 0.05 = 0.35.

2.2 HIT Selection and Batching
After probabilistic objects are obtained, we aim to further reduce

the data uncertainty via publishing HITs. Then the question is:
which kind of HITs should be asked?

It is well-known that crowdsourcing works best when tasks can
be broken down into very simple pieces. An entire machine-generated
outcome may be too large a grain for a crowd - each crowd worker
may have small quibbles with a given outcome, so that asking the
crowd to directly support or reject each outcome may get mostly
negative answers, with each worker declaring it less than perfect.
In other words, determining the correctness of an entire machine-
generated outcome is too difficult for crowdsourcing workers. On
the other hand, asking open-ended questions is not recommended
for a crowd, because it may be difficult to integrate multiple sug-
gestions of heterogeneous semantics. As a result, we propose to
have the question broken down into per-attribute tasks, which is
formally defined in Definition 2.3. This kind of much simpler ques-
tions, in most applications, can be answered with a simple yes or
no. As shown in Section 5, Yes/No questions are in fact useful in a
wide range of applications.

DEFINITION 2.3 (HIT AND HIT SPACE). For a given prob-
abilistic object O = {A1, ..., An}, a HIT is defined as an YES/NO
question, in the form of “Does Ai = aij?". So, the HIT space
of O includes totally

∑n
i=1 |Ω(Ai)| HITs. We denote HIT “Does

Ai = aij?" by hij . Hence hij follows Bernoulli distribution with
Pr(hij) = Pri(aij) to have “yes" as ground truth, and 1 −
Pr(hij) to have “no".

In the running example, Table 1 lists all the HITs in the HIT space
of the probabilistic object.

For each probabilistic object, an important optimization problem
is to find the best k HITs. This is known as the “HIT selection
problem”, which will be thoroughly discussed in Section 3.

As a result of HIT selection, we have k HITs extracted from each
probabilistic object. Clearly, the HITs from the same probabilistic
object are generally correlated. In other words, one worker may
provide correlated answers for HITS of the same probabilistic ob-
ject. Since each HIT generates a unit of cost, asking correlated
HITs to the same worker would be cost-inefficient.

In the running example, if the answer of HIT1 is answered (‘yes’
or ‘no’) by a worker, then we can infer that what he/she would an-
swer for HIT2, since HIT1 and HIT2 are exclusive. So asking both

HIT1 and HIT2 to the same worker does not make any difference
than only asking one of them, but would lead to two units of cost.

The above intuition indicates that, the most economical way of
task publishing is to ask each user a set of independent HITs. In
MaC framework, we create and publish batches of HITs with the
following definition.

DEFINITION 2.4 (HIT BATCH). A HIT batch includes multi-
ple HITs, each of which is generated from an distinct probabilistic
object. So the HITs within the same batch are independent. In ad-
dition, when the batches are published, each worker is only allowed
to answer HITs within one batch.

2.3 Uncertainty Management and Utilization
After the crowdsourced answers are available, we need to man-

age their uncertainty, as discussed in Section 1. Since there are
different paradigms of crowdsourcing, in Section 4, we develop dif-
ferent methods of uncertainty management based on the accessible
information. For a HIT hij , the output of uncertainty management
is the posterior probability after obtaining some answers Ans, i.e.
Pr(hij |Ans).

In the following, we apply the updated valuePr(hij |Ans) to ad-
just the probability distribution of O. Recall that hij is the yes/no
question “Does Ai = aij?”, which means aij is the ground truth
value of Ai with prior probability Pr(hij). Hence, for each pos-
sible outcome o of the probabilistic object O, with original proba-
bility Pr(O = o), if O = o entails Ai = aij , i.e. o is consistent
with the answer, then we have Pr(hij |O = o) = 1. In the running
example, given o1 being the correct outcome, then the probability
of “House no = 51A" becomes 1. As a result, we have

Pr(O = o|Ans) = Pr(O = o)Pr(hij |O = o)/Pr(hij |Ans)

= Pr(O = o)/Pr(hij |Ans)
On the other hand, if O = o entails Ai 6= aij , we similarly have

Pr(O = o|Ans) = Pr(O = o)/{1− Pr(hij |Ans)}

Please note that, the above computation is independent of the se-
quence of HITs. Therefore, the HIT answers of a probabilistic
object would be collected from different batches, and utilized for
probability adjustment, one after another.

As a result, the probability distributions are adjusted by the crowd-
sourced answers. If the budget is not exceeded, and the qual-
ity of the objects are unsatisfactory, the work-flow can be itera-
tively executed. Therefore, the computation of Pr(hij |Ans) is
conducted with at each iteration. Please note that, at each iteration,
Pr(hij |Ans) is computed based on all the answers received from
previous iterations, rather than the current iteration only. This is
because the essence of uncertainty management is statistical esti-
mation, in which large sample size is preferred.

3. HIT SELECTION
We now formally define the first problem considered in this pa-

per, namely the Multiple HIT Selection Problem. The input to our
problem is a probabilistic object, and we need to model the impor-
tance of HITs and find the most important ones efficiently.

3.1 Problem Formulation
In this subsection, we give the definition of Multiple HIT Selec-

tion (MHS) problem in the context of probabilistic objects.
From the perceptive of uncertainty, we are trying to reduce the

uncertainty of the given probabilistic objectO, by requesting infor-
mation from the crowd via HITs. Therefore, we model the impor-
tance of a HIT by its expected reduction of the uncertainty of O.

13

In order to construct this model, we first define the uncertainty of
probabilistic object with Shannon Entropy.

DEFINITION 3.1 (OBJECT UNCERTAINTY). Given a proba-
bilistic object O = {A1, ..., An}, let all the possible deterministic
outcomes of O be Ω(O) = {o1, ..., o|Ω(O)|}, with probabilities
{Pr(o1), ..., P r(o|Ω(O)|)} respectively. Then we measure the un-
certainty of O with Shannon Entropy -

H(O) = −
|Ω(O)|∑
l=1

Pr(ol) logPr(ol)

The uncertainty of a probabilistic object is determined by the its
marginal distribution. It reflects the information provided by the
machine. In the running example, from the information extraction
tool, the four possible labeling results (instances) are enumerated
for the textual data (probabilistic object O), then we have the its
uncertainty computed as: H(O) = −(0.6 log 0.6 + 0.3 log 0.3 +
0.05 log 0.05 + 0.05 log 0.05) = 0.42.

Since we aim to reduce the uncertainty of a given probabilistic
object, we define the utility of a set of HITs based its expected
uncertainty reduction.

DEFINITION 3.2 (UTILITY FUNCTION). Given a probabilis-
tic object O and a set of selected HITs Sh = {h1, h2, ..., h|Sh|},
we define the utility of Sh by the expected uncertainty reduction of
O, i.e.

U(Sh) = H(O)−H(O|Sh)

=
∑
s∈Dh

Pr(s){H(O)−H(O|Sh = s)}

where Dh is all the possible outcomes of Sh. Formally, we have
Dh = {s|s ∈ 2Sh s.t. ∀h ∈ Sh, h has ground truth yes
if and only if h ∈ s}.

Continued on the running example, we demonstrate the compu-
tation of utility of Sh = {HIT1, HIT4} from Table 2. Based
on the given data, we have Pr(HIT1 = yes,HIT4 = yes) =
0, H(O|HIT1 = yes,HIT4 = yes) = 0; Pr(HIT1 = yes,HIT4 =
no) = 0.35, H(O|HIT1 = yes,HIT4 = no) = 0.85; Pr(HIT1 =
no,HIT4 = yes) = 0.65, H(O|HIT1 = no,HIT4 = yes) =
0.12; Pr(HIT1 = no,HIT4 = no) = 0, H(O|HIT1 =
no,HIT4 = no) = 0. Since H(O) = 1.3, we have the util-
ity of Sh: U(Sh) = 0 ∗ (1.3− 0) + 0.35 ∗ (0.42− 0.85) + 0.65 ∗
(0.42− 0.12) + 0 ∗ (1.3− 0) = 0.0445.

Equipped with the above utility function, we are now ready to
provide the problem statement of Multiple HIT Selection.

PROBLEM STATEMENT 1 (MULTIPLE HIT SELECTION). For
a probabilistic object O, there is a table Ω(O) containing its all
possible deterministic outcomes, each of which is associated with
probability to be true. Given budget of HITs k, we aim to find k
HITs that maximize the utility function.

3.2 Approximation Algorithm

3.2.1 Problem Reduction
One can see that the optimization problem is non-linear, due to

the Shannon entropy. In addition, the optimization is essentially to
find k HITs from the HIT space, so the searching space is of com-
plexity O(k!). However, we found that the utility of a set of HITs
is mathematically equivalent to their joint entropy. As a result, the
utility function is a sub-modular function of the set of HITs. We
formally introduce this fact with the following theorems.

THEOREM 3.1 (EQUIVALENCY). Given a probabilistic object
O and a set of HITs S = {h1, ...hk}, the utility of S is equal to the
joint entropy (i.e. the entropy of their joint distribution) of h1, ...hk

, each of which is a discrete random variable following Bernoulli
distribution. So we have

U(S) = H(h1, ..., hk) (2)

PROOF. From Definition 3.2, first we have

U(Sh) =
∑

s∈Dh

Pr(s)H(O)−
∑

s∈Dh

Pr(s)H(O|Sh = s)

= H(O)−
∑

s∈Dh

Pr(s)H(O|Sh = s)

= H(O) +
∑

s∈Dh

Pr(s)

|Ω(O)|∑
l=1

Pr(ol|s) logPr(ol|s)

= H(O) +
∑

s∈Dh

|Ω(O)|∑
l=1

Pr(s)Pr(ol|s) logPr(ol|s)

(3)

By Bayes’ theorem, Pr(ol|s) = Pr(ol)Pr(s|ol)/Pr(s), then

U(Sh) = H(O)+

∑
s∈Dh

|Ω(O)|∑
l=1

Pr(s)
Pr(ol)Pr(s|ol)

Pr(s)
log

Pr(ol)Pr(s|ol)
Pr(s)

=H(O) +
∑

s∈Dh

|Ω(O)|∑
l=1

Pr(ol)Pr(s|ol) log
Pr(ol)Pr(s|ol)

Pr(s)

=H(O)+

∑
s∈Dh

|Ω(O)|∑
l=1

Pr(ol)Pr(s|ol){log(Pr(ol)Pr(s|ol))− logPr(s)}

=H(O) +

|Ω(O)|∑
l=1

∑
s∈Dh

Pr(ol)Pr(s|ol) log (Pr(ol)Pr(s|ol))

−
|Ω(O)|∑
l=1

∑
s∈Dh

Pr(ol)Pr(s|ol) logPr(s)

(4)
Note that Pr(s|ol) represents the probability of s being the correct
answers of HITs, given ol occurs, therefore, Pr(s|ol) = 1 if s
and ol reflect the same facts about the HITs (denoted ol ⇒ s),
otherwise Pr(s|ol) = 0 (denoted ol ⇒ s). Hence, for each l, we
have

U(Sh) = H(O) +

|Ω(O)|∑
l=1

∑
s∈Dh∧ol⇒s

Pr(ol) logPr(ol)

−
|Ω(O)|∑
l=1

∑
s∈Dh∧ol⇒s

Pr(ol) logPr(s)

= H(O) +

|Ω(O)|∑
l=1

Pr(ol) logPr(ol)−
∑

s∈Dh

Pr(s) logPr(s)

= H(O)−H(O)−
∑

s∈Dh

Pr(s) logPr(s)

= −
∑

s∈Dh

Pr(s) logPr(s) = H(h1, ..., hk)

(5)

COROLLARY 3.2 (SUB-MODULARITY). [1] The utility func-
tion derived in Definition 3.2 is a monotonic sub-modular set func-
tion of HITs.

14

As stated by the above theorems, selecting a k-element subset of
HITs is a maximization problem of a sub-modular function.

In general, maximizing sub-modular functions is NP-hard. Con-
cerning the computation of the value of information, [1] shows that,
for a general reward function Rj (in our problem, Rj = U(O)), it
is NPPP − hard to select the optimal subset of variables even for
discrete distributions that can be represented by polytree graphical
models. NPPP − hard problems are believed to be much harder
than NPC or #PC problems.

However, maximization of sub-modular functions can be approx-
imated with a performance guarantee of (1 − 1/e), by iteratively
selecting the best one HIT, given the ones selected so far [8].

Formally, we have the optimization function at the kth iteration:

x := arg max
x

U(Sk−1 ∪ hx)

= arg max
x

H(Sk−1, hx)
(6)

where Sk−1 is the set of HITs selected from previous iterations.
Now we consider Sk−1 and hx as two random variables, then by
the definition of conditional entropy, we have

H(Sk−1, hx) = H(Sk−1) +H(hx|Sk−1)

So we only need to maximize the conditional entropy at each itera-
tion, i.e.

x := arg max
x

H(hx|Sk−1) (7)

3.2.2 Selecting The First HIT
We first discuss the selection of the first HIT. This is particularly

important, because one may be only interested in finding the best
HIT (k=1) for each probabilistic object. In this case, the optimiza-
tion is to find the HIT hi that maximize U({hi}) = H(hi). Note

H(hi) = Pr(hi) logPr(hi) + (1− Pr(hi)) log(1− Pr(hi))

So by taking ∂H(hi)
∂Pr(hi)

= 0, we can conclude that, U({hi}) is a
symmetric function of Pr(c), with symmetry axis Pr(c) = 0.5.
Besides, U({hi}) achieves maximum Pr(c) = 0.5, and is mono-
tonic on [0, 0.5] (increasing) and [0.5, 1] (decreasing). Therefore,
U({hi}) is maximized by taking the hi with Pr(hi) being closest
to 0.5.

In the running example, HIT1 (Pr(HIT1)=0.45) can be the first
one to be selected, since no other possible HIT has probability
closer to 0.5 than HIT1 does.

Please note that, setting k = 1 in MaC framework would lead
to high utility-efficiency, but there would be only one HIT for each
probabilistic object for the entire process. Hence, the overall time
cost for spending the entire budget is significantly reduced.

3.2.3 Table-Partition Algorithm
For a probabilistic object O, we have a table containing n possi-

ble outcomes Ω(O) = {o1, ..., on} with probabilities
{Pr(o1), ..., P r(on)}, and

∑n
i=1 Pr(oi) = 1. Each outcome is

an entry of the table. For a given HIT h0 asking “Does A = a",
we denote h0 ∈ oi if a is the value of A in oi; h0 /∈ oi otherwise.
So we have Pr(h0) =

∑
h0∈oi Pr(oi). In the running example,

Pr(HIT1) = Pr(o1) + Pr(o4) = 0.45.
One can see that, a naive way of computing the conditional en-

tropy at the each iteration is to compute all the joint probabilities,
hence yields to O(2k) complexity. However, with creating a small
(O(n)) in-memory index, we can achieve overall linear complexity
(O(kn

∑n
i=1 |Ω(Ai)|)) for finding k HITs, where n is the size of

Ω(O).

We propose an novel algorithm named “Table Partition". The
intuition of this algorithm is the fact that, for each HIT h0, Ω(O)
can be divided in to two parts, with h0 = yes and h0 = no. Based
on this intuition, the essential goal of selecting k HITs is to partition
Ω(O) into at most 2k parts, and the aggregated probability of each
part (i.e. the sum of probabilities of entries within a part) is similar,
in order to maximize the overall entropy. Now we illustrate the
algorithm in detail as following steps.

Step 1: Find the HIT h1 withPr(h1) closest to 0.5 //Section 3.2.2
Step 2: Partition the table into two parts Ω0 and Ω1, where ∀o ∈

Ω0, h1 ∈ o, and ∀o ∈ Ω1, h1 /∈ o.
Step 3: Update Pr(oi) = Pr(oi)/Pr(h1) for oi ∈ Ω0 and

Pr(oj) = Pr(oj)/(1 − Pr(h1)) for oj ∈ Ω0. Index Pr(Ω0) =
Pr(h1) and Pr(Ω1) = 1− Pr(h1) .

Step 4: Find the HIT h2 that maximize the conditional entropy:∑
Ωl

Pr(Ωl)HΩl
(h2) (8)

Step 5: Partition each part Ωl further into two parts, Ωl0 and Ωl1.
Update Pr(oi) = Pr(oi)/Pr(h2) and Pr(oj) = Pr(oj)/(1 −
Pr(h2)) for Ωl0 and Ωl1, respectively. IndexPr(Ωl0) = Pr(Ωl)Pr(h2)
and Pr(Ωl1) = Pr(Ωl)(1− Pr(h2))

Step 6: repeat Step 4 and Step 5 until find k HITs
Step 7: compute the entropy of all the parts
Correctness and Complexity: The correctness of the algorithm

is straightforward. After a HIT is selected, we update the probabil-
ity of each outcome oi to become the current probability condition-
ing on the selected HITs. Therefore, each part Ωl corresponds to a
point of the marginal distribution of the selected HITs.

At each iteration, for a given HIT, computing the entropy with
in each Ωl is of complexity O(Ωl), hence the computation of Eq 8
is O(

∑
l |Ωl|) = O(n). So the maximization of each iteration is

of complexity O(n
∑n

i=1 |Ω(Ai)|). As a result, the overall com-
plexity becomes O(kn

∑n
i=1 |Ω(Ai)|), which is essentially linear

of the input.

4. UNCERTAINTY MANAGEMENT
In this section, we discuss the management of the uncertainty of

HIT answers from crowdsourcing workers. As illustrated in Sec-
tion 2, we consider a HIT batch as the basic unit of uncertainty
management. In general, we have the following problem defini-
tion.

PROBLEM STATEMENT 2 (UNCERTAINTY MANAGEMENT).
A batch of HITs {h1, ..., hk} is answered by a collection of work-
ers. Each HIT hi is at least answered by one worker, and each
worker answers at least one HIT. Note that the HITs of a batch are
independent, and we have a prior probability Pr(hi) of each HIT
(i.e. Pr(hi) to yes, and 1 − Pr(hi) to be no). We aim to esti-
mate the posterior probability Pr(hi|Ans) , where Ans denotes
the crowdsourced answers obtained.

Explicitly, we discuss the stated problem in three common sce-
narios of HIT publication: (1) the answer and confidence of each
worker is available for the given batch of HITs; (2) the confidence
of each worker is available, and we only have a voting score for
each HIT (e.g. yes:no = 10:8); (3) the answer of each worker is
available for the given set of HITs, but their confidences are un-
known. Note that, we assume workers independently answer each
HIT in all the above scenarios.

Remark: There are also other possible scenarios, in which the
uncertainty can be trivially evaluated. For instance, when only a
voting score (x : y);x ≥ y is available (no worker confidences),
the uncertainty is simply x

x+y
.

15

4.1 Confidence-Answer (CA) Scenario
In the rest of this paper, we naturally consider the confidence of

a worker i as a random variable following a Bernoulli distribution
with probability pi to answer a HIT correctly. Before detailing any
techniques, we first discuss the possible ways to obtain the confi-
dences with individual workers. In general, a confidence can be
estimated based on either frequency or inference. A) frequency:
when the personal historical records (i.e. the HITs previously an-
swered) are available, the confidence can be estimated by the per-
centage of correct ones. Typically, one may apply a set of HITs
with ground truths (a.k.a. golden standard) for such estimation. B)
inference: for a given HIT, the confidences can be inferred from the
expertise of workers, according to the documents associated with
each individual [9, 19]. Such inference is particularly appropriate
for HITs with inexplicit answers, i.e. the ground truth is defined as
“the experts’ opinion" (e.g. schema matching, truth discovery).

The Confidence-Answer scenario is described as follows. For
each HIT h0 in the HIT batch, a set of answers a1, a2, ..., am are
collected from the crowd, answered by independent workers with
confidences p1, p2, ..., pm, respectively. We aim to re-estimate the
probability of h0 being yes, based on the given answers. Since there
is no correlation between the HITs, we can reduce the problem of
solely one HIT. Then the solution can be repetitively applied every
HIT in the batch.

PROBLEM STATEMENT 3 (CA UNCERTAINTY MANAGEMENT).
Given a HIT h0 with Pr(h0) to be yes; a set of answers of h0

- {a1, ..., am} from independent workers of individual confidences
{p1, ..., pm}. We need to compute the posterior probability of h0,i.e.

Pr(h0|a1, a2, ..., am)

Computing the uncertainty is straightforward for CA scenario,
since all the information of the process of crowdsourcing is ob-
tained. From Bayes’ theorem, we have

Pr(h0|a1, a2, ..., am) =
Pr(h0)Pr(a1, a2, ..., am|h0)

Pr(a1, a2, ..., am)
(9)

Due to the independence of workers, we have

Pr(a1, a2, ..., am|h0) =
∏

ai=yes

pi
∏

aj=no

(1− pj)

Pr(a1, a2, ..., am) = Pr(h0)
∏

ai=yes

pi
∏

aj=no

(1− pj)

+ (1− Pr(h0))
∏

ai=yes

(1− pi)
∏

aj=no

pj

(10)

As a result, the posterior probability can be efficiently computed
with linear running time.

4.2 Majority Voting (MV) Scenario
Majority voting is one of the most popular paradigms of crowd-

sourcing, especially on on-line communities (e.g. social networks,
forums). However, for some reasons (e.g. privacy), the voting is
usually non-tangible, i.e. the individual results of workers is un-
available, and what we have is only the final voting score. In other
words, for a yes-no HIT, the voting score T:(m-T) indicates that T
out of m workers answered ‘yes’, others answered ‘no’. Similar to
the CA scenario, we can consider each HIT in the batch indepen-
dently. Therefore, we define the problem as follows.

PROBLEM STATEMENT 4 (MV UNCERTAINTY MANAGEMENT).
We are given a HIT h0 with Pr(h0) to be yes; a set m work-
ers(voters) of individual confidences {p1, ..., pm}; and we know

Input: A set of answers with individual confidences Pm

Output: A vector of probability distribution of T , VT

if m > 1 then
Split m workers into two sub-groups Pdm

2
e and Pbm

2
c;

VUpper ← DC(Pdm
2
e);

VLower ← DC(Pbm
2
c);

VT ← FFT (VUpper, VLower);
return VT ;

end
else

VT [0]← 1− p1;
VT [1]← p1;
return VT ;

end
Algorithm 1: Divide-and-Conquer-based Algorithm (DC)

Input: A set of answers with individual confidences Pm;
voting score t:(m-t)

Output: Pr(h0|e0)
VT ← DC(Pm)//indexing;
P0 ← VT [t] //Eq 12;
P1 ← VT [m− t]//Eq 12;
Pr(h0|e0)← Pr(h0)P0

P0∗P1
//Eq 11;

Algorithm 2: MV Uncertainty Management (MVUM)

that T of them answered ‘yes’, while others answered ‘no’. We
need to compute the posterior probability of h0,i.e.

Pr(h0|es : voting scores T : (m− T))

Comparing to the CA scenario, MV scenario preserves the pri-
vacy of individual option of workers. This is particularly advanta-
geous when the HIT contains sensitive information.

In the follows, we introduce a Divide-and-Conquer algorithm for
the stated problem. Similar to Eq 9, we want to compute

Pr(h0|es) =
Pr(h0)Pr(es|h0)

Pr(es)
=

Pr(h0)Pr(es|h0)

Pr(es|h0) + Pr(es|¬h0)
(11)

where es is the event of voting scores being T : (m − T). In
fact, T can be considered as a discrete random variable following
a Poisson Binomial distribution. Therefore, the probability mass
function of T , given h0 is

Pr(T = t|h0) =
∑

A∈Ft

∏
i∈A

pi
∏

j∈Ac

(1− pj)

Pr(T = t|¬h0) =

= Pr(T = (m− t)| h0) =
∑

A∈Ft

∏
i∈A

(1− pi)
∏

j∈Ac

pj ,

(12)

where Ft = {A||A| = T ; ∀i ∈ A, answer of worker pi is
consistent with h0}. Eq 12 states the closed-form expression of
the Pr(T = t|h0). However, the possible number of A is facto-
rial of T , so traversing the searching space is infeasible in practice
unless the number of workers is small.

Based on Formula 5, Pr(T = t|h0) aims to compute the prob-
ability when the T = t under the condition of h0 given. Because
each pi follows the Bernoulli distribution, T is the sum of pi, each
of which follows the Bernoulli distribution with different probabil-
ity parameter. Thus, it is the core problem for obtaining the un-
certainty to compute the probability mass function of T efficiently.
Since the different value of T can be enumerated, the probabil-
ity distribution of different values of T is represented as a vector.
When the set of confidences is given, the probability distribution

16

of T can be computed by the following divide-and-conquer-based
algorithm , as shown in Algorithm 1.

In Algorithm 1, the algorithm firstly divides the set of workers
Pm into two groups of the same size as long as Pm includes more
than one element. Then, the algorithm recursively solves the confi-
dences of partitioned groups. In particular, we use the fast Fourier
Transform (FFT) to speed up the recursive processing. Moreover,
the recursive boundary is computed. Therefore, based on Algo-
rithm 1, we obtain the probability distribution of

∣∣C∣∣ and can com-
puteAcc of the given set of workers Pm easily. Algorithm 2 shows
the details of computing Acc.

According to Algorithm 1, the computational complexity is
O(m log2 m) where m is the size of the set of worker Pm, due to
the Fast Fourier Transform acceleration. Based on the Algorithm 2,
the total computational complexity is O(m log2 m) for indexing
the probability distribution plus O(1) to answer a given query of
voting scores. Therefore, when multiple HITs are answered by the
same group of workers via majority voting, Algorithm 1 only needs
to be executed once.

4.3 Answer-Only(AO) Scenario
In the Answer-Only(AO) scenario, we do not assume any prior

information concerning the worker confidences. AO scenario is
particularly appropriate when neither personal information nor his-
torical records of the workers are available.

PROBLEM STATEMENT 5 (AO UNCERTAINTY MANAGEMENT).
A HIT batch H = {h1, ...hm} are answered by a set of workers
U = {u1, ..., um}. Each HIT is answered by one or more workers,
and each user answers at least one HIT. Given the set of answers
A = {aij |aij is the answer for HIT hi from worker uj},
our objective is to estimate Pr(hi|A) without knowing the individ-
ual confidences.

Since the HITs are published in batch, we can estimate the con-
fidences of workers if the hi are known. On the other hand, we
can also estimate Pr(hi|A) with the given confidences of workers.
Based on this intuition, we adopt the Dawid-Skene’s approach [3],
which utilizes an EM algorithm for the problem presented above.
The details of algorithm are illustrated in the appendix.

5. APPLICATIONS AND EVALUATIONS
By adopting MaC framework, we design hybrid machine-crowd

systems for three real-world applications: data fusion, information
extraction and pattern recognition. The experimental results veri-
fied the effectiveness of the proposed methods. We focus on evalu-
ating two issues. First, we examine the effectiveness of MaC frame-
work in reducing the uncertainty of probabilistic objects. Second,
we verify the correctness of MaC framework, by evaluating the im-
provement of overall accuracy, i.e. the fraction of best outcomes
that are the same as the ground truth. In particular, we compare
hybrid machine-crowd systems with machine-only systems. The
experimental results verified the effectiveness and applicability of
our proposal. In this section, we present the details of our experi-
mental studies on data fusion, information extraction and pattern
recognition. The experimental study shows that MaC has wide
applicability on various applications as well as different types of
"crowds".

5.1 MaC-based Data Fusion System
Introduction to Data Fusion: Handling conflicting web data

from a series of websites has been one of the most challenging

CA Scenario

0 10 20 30 40 50
0

1

2

3

4

k=2
k=4
k=8
k=16

No. of HITs

av
e

ra
g

e
H

(O
)

MV Scenario

0 10 20 30 40 50
0

1

2

3

4

5
k=2
k=4
k=8
k=16

No. of HITs
av

e
ra

g
e

H
(O

)

AO Scenario

0 10 20 30 40 50
0

1

2

3

4

5 k=2
k=4
k=8
k=16

No. of HITs

av
e

ra
g

e
H

(O
)

CA Scenario

0 10 20 30 40 50
0

1

2

3

4

5

Random
k=1

No. of HITs

av
e

ra
g

e
H

(O
)

MV Scenario

0 10 20 30 40 50
0

1

2

3

4

5

Random
k=1

No. of HITs

av
e

ra
g

e
H

(O
)

AO Scenario

0 10 20 30 40 50
0

1

2

3

4

5

Random
k=1

No. of HITs

av
e

ra
g

e
H

(O
)

Figure 2: Uncertainty Reduction of Truth Discovery

issues in modern data management systems. In many real applica-
tions, the users are also willing to make a contribution to the appli-
cation. Hence, such users can be considered a crowd, which brings
the opportunity to resolve the conflicting information. In this exper-
iment, we adopt MaC framework to build a hybrid machine-crowd
fusion system.

Data sources: We identified a number of websites containing
general information of computer-science conferences, including wi-
kiCFP (wikicfp.com), confSearch (www.confsearch.org) and some
personal web-pages manually maintained by computer scientists.
We designed a crawler for each of the websites.

System overview: We implemented a system, namely ConfMGT,
to integrate the information of computer-science conferences. This
system is designed for researchers to conveniently manage the con-
ferences with their cellphones. In general, a user can search con-
ferences (s)he is interested in, and maintain personal categories of
conferences. The whole system follows a classical Client-Server
architecture. On the client side, a user may maintain a list of con-
ferences, and synchronize the important dates with his or her calen-
dar. On the server side, the crawlers constantly monitor the updates
of the websites. Due to data entry errors or copying the same er-
ror web-pages [5], there is usually conflicting information for the
same conference. Explicitly, we focused on the truth finding on
the following three pieces of information: the conference starting
time, place (city), and deadline of submission. We also manually
extracted the ground truths from the official websites, which are
used for evaluation.

Framework Adoption: According to MaC framework, we nat-
urally consider each conference as a query object (Definition 2.1).
We first adopt the fusion techniques proposed in [5], which con-
siders the accuracy of the websites and the copying relationship
among the websites in truth finding. These fusion techniques are
corresponding to the machine-only system of MaC framework. As
a result, we have several possible outcomes for each conference,
which is a probabilistic object (Definition 2.2) with three attributes.
An example is shown in Table 3.

17

 Machine_Only
 NO_UNCERTAINTY
 CA
 MV
 AO

Figure 3: Accuracy Improvement of Data Fusion

Crowd: We leveraged the users of ConfMGT as the crowd to
improve the data quality of our system. Users may answer sim-
ple YES-No HITs, which are generated by the method introduced
in Section 3, and pushed to users. In detail, we have 70 confer-
ences with conflicting information, and set k = 2, 4, 8, 16 for HIT
selection of each conference. Note that these HITs are batched ac-
cording to Definition 2.4.

id Start Date Deadline Location Prob
o1 22 Apr. 2013 Oct. 28, 2012 Wu Han,China 0.13
o2 25 April 2013 Oct. 28, 2012 Wu Han,China 0.02
o3 22 Apr. 2013 Nov. 2, 2012 Wu Han,China 0.43
o4 25 April 2013 Nov. 2, 2012 Shang Hai,China 0.42

Table 3: Probabilistic object in MaC-based Fusion System
Performance: For evaluation purpose, we manage the uncer-

tainty of the crowd under the three scenarios introduced in Sec-
tion 4. As shown in Figure 2, the average uncertainty of the con-
ferences (with conflicting information) is significantly reduced as
HITs are answered, comparing to selecting HITs randomly. On the
other hand, the overall accuracy, i.e. the fraction of best outcomes
that are the same as the ground truth, outperforms the machine-only
system in all the three scenarios, as shown in Figure 3. It worth
noticing that the change of uncertainty is not necessarily mono-
tonic. The uncertainty may increase when some surprising answers
are received. For instance, a worker with high confidence answered
‘yes’ for a HIT of prior probability Pr(h) = 0.1. Please note
that, for each bar chart in Figure 3, the bar on the intersection of
‘NO_UNCERTAINTY’ and ‘Random’ refers to the scenario that
all the HITs are randomly selected, and we consider the crowd-
sourced answer to be 100% accurate. When conflicting answers
are received, the majority one is accepted.

An important phenomenon is that both the lowest average en-
tropy and the highest accuracy are consistently found when k = 1.
This is because we always choose the very best HIT at each iter-
ation. When k > 1, not every HIT is at the top of the list when
they are selected, so the uncertainty is reduced more rapidly with a
smaller k.

5.2 MaC-based Information Extraction
Problem Introduction: Information Extraction (IE) is the prob-

lem of finding specific information from unstructured data, which
is a critical issue for many applications. In general, it is still very
difficult to tackle IE completely with an algorithmic approach. Ac-
tually, the uncertainty of information extraction is because the ex-
isting models (e.g. HMM or CRF) cannot fully capture the seman-
tic of given data representation (e.g. human language). Therefore,
we adopt our proposal to built a hybrid machine-crowd system of
Information Extraction.

Datasets: In particular, we have a data set including 400 location
addresses written in natural English (i.e. string segments). We have

CA Scenario

0 10 20 30 40 50
0

2

4

6

8

10

k=2
k=4
k=8
k=16

No. of HITs

av
e

ra
g

e
H

(O
)

CA Scenario

0 10 20 30 40 50
0

2

4

6

8

10

Random
k=1

No. of HITs

av
e

ra
g

e
H

(O
)

MV Scenario

0 10 20 30 40 50
0

2

4

6

8

10
k=2
k=4
k=8
k=16

No. of HITs

av
e

ra
g

e
H

(O
)

MV Scenario

0 10 20 30 40 50
0

2

4

6

8

10

Random
k=1

No. of HITs

av
e

ra
g

e
H

(O
)

AO Scenario

0 10 20 30 40 50
0

2

4

6

8

10 k=2
k=4
k=8
k=16

No. of HITs
av

e
ra

g
e

H
(O

)

AO Scenario

0 10 20 30 40 50
0

2

4

6

8

10

Random
k=1

No. of HITs

av
e

ra
g

e
H

(O
)

Figure 4: Uncertainty Reduction of Information Extraction
the following attributes of interests: house number, street name,
and city name.

Framework Adoption: In information extraction problem, the
input of a string segment is considered as a query object. The
well-known learning-based tools (HMM or CRF) generate a set of
ranked list of extracted data, each of which is associated with a
probability. As a result, we consider the a learning-based IE tool
as the machine-only system to obtain a set of possible extraction
results, which can be seen as a probabilistic object defined in MaC
framework. Naturally, each attribute of interests is an attribute of
MaC framework, as illustrated in the running example of Section 1.

Crowd: In order to evaluate MaC framework with various crowd-
sourcing platforms, we adopt the Amazon Mechanical Turk (AMT),
which is a widely used crowdsourcing marketplace, as the crowd.
Empowered with the Amazon Mechanical Turk SDK for Java, we
are able to interactively publish and manage the HITs. In our im-
plementation, each HIT is priced US$0.05. Each HIT is associated
with a batch id, and workers are informed that, they are only al-
lowed to accept HITs with the same batch id. Otherwise, their
answers would not be accepted (i.e. no payment). In addition,
a qualification test is required for each worker. For CA and MV
scenarios, the confidence is computed as the fraction of questions
answered correctly in the qualification test.

Performance: We demonstrate the change of average uncer-
tainty of the extraction results. Similar to Section 5, we use the
crowdsourced answers under the three scenarios. As shown in Fig-
ure 4, the average entropy is reduced significantly. In addition, the
accuracy is also improved in all the three scenarios, as shown in
Figure 5. An important observation is that, in Figure 4, the curves
with small k tend to have better performance. This is because that
the smaller k leads to more knowledge for selecting each HIT. This
phenomenon is intuitive, but not very obvious in the other two ex-
periments. A possible reason could be that, each HIT is only an-
swered by a small number of workers in AMT.

5.3 MaC-based Recognition System

18

Machine_Only
NO_UNCERTAINTY
CA
MV
AO

Figure 5: Accuracy Improvement of Information Extraction

CA Scenario

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

k=2
k=4
k=8
k=16

No. of HITs

av
e

ra
g

e
H

(O
)

CA Scenario

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

Random
k=1

No. of HITs

av
e

ra
g

e
H

(O
)

MV Scenario

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5
k=2
k=4
k=8
k=16

No. of HITs

av
e

ra
g

e
H

(O
)

MV Scenario

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

Random
k=1

No. of HITs

av
e

ra
g

e
H

(O
)

AO Scenario

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5 k=2
k=4
k=8
k=16

No. of HITs

av
e

ra
g

e
H

(O
)

AO Scenario

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

Random
k=1

No. of HITs

av
e

ra
g

e
H

(O
)

Figure 6: Uncertainty Reduction of Poker Card Recognition
 Machine_Only
 NO_UNCERTAINTY
 CA
 MV
 AO

Figure 7: Accuracy Improvement of Recognition

Problem Introduction: In the field of pattern recognition, the
study on recognition of poker cards is not only interesting but also
practical and valuable, especially in gaming industry. When the en-
vironment is clear and stable, the accuracy of identifying ranks and
suits of the poker images can be almost 100%. However, there are
cases that are very difficult for a machine-only system in the real
applications. For instance, the pokers may be overlapped; the light
may change over time; and there may be different brands of pok-

Outcome Suits Ranks Probability
o1 Hearts A Pr(o1)=0.4
o2 Diamonds 8 Pr(o2)=0.3
o3 Clubs 8 Pr(o3)=0.25
o4 Spades A Pr(o4)=0.05

Table 4: Probabilistic objects in MaC-based Recognition System
ers (i.e. different pattens). In this experiment, we adopt the MaC
framework to build a MaC-based system for poker recognition.

Framework Adoption: We consider each poker card as a query
object, so the possible recognition results are probabilistic objects,
as shown in Table 4. For experimental purpose, we develop a sim-
ple card recognition system as follows. We set up four cameras
(10 million pixels). Each cameras is connected with a different
classification program. Explicitly, we apply the following classical
methods- Regularized discriminant analysis (RDA), Classification
and Regression Trees (CART), Support Vector Machine (SVM),
and Artificial Neural Networks (ANN). The cameras are set 1.5
meters above a Baccarat gambling table. For simplicity, we set that
each image includes six poker cards.

With a testing set of 500 images, RDA,CART,SVM,ANN have
the individual accuracies 0.62,0.63,0.85,0.88 respectively. Note
that, the cards in the testing set are randomly placed (may have
overlapping), and 40% ‘salt and pepper’ noise are added. As a re-
sult, a probabilistic object can be constructed when the classifiers
have conflicting results. We select 50 probabilistic objects, with
initial uncertainty (entropy) 2.06 on average.

Crowd Simulation and Performance: In this experiment, we
conduct a simulation of the crowd’s behavior according to three
scenarios described in Section 4. Explicitly, we simulate 100 work-
ers, with confidences following a uniform distribution on [0.5, 1).
Figure 6 illustrates the reduction of the average of entropies; and
the accuracy is improved up to almost 100%, as shown in Figure 7.
A valuable observation is that, the reduction is very rapid com-
paring to the other two experiments. This phenomenon indicates
that, when confidences of workers follow Bernoulli distributions,
the entropy would converge to zero reasonably fast. In addition,
this experiment uses synthetic crowd responses, and the entropy
converges to small values much faster than the previous two exper-
iments. This is because there are other factors in real-world crowds
that is not captured by our model.

6. RELATED WORK
In this section, we review the related work in two categories:

crowdsourcing-based data management and active learning via crowds.

6.1 Crowdsourcing
The recent booming up of crowdsourcing brings us a new op-

portunity to engage human intelligence into the process of answer-
ing queries (see [4] as a survey). Crowdsourcing provides a new
problem-solving paradigm [2, 10], which has been blended into
several research communities. In particular, crowdsourcing-based
data management techniques have attracted much attention in the
database and data mining communities recently. In the practical
viewpoint, [6] proposed and developed a query processing system
using microtask-based crowdsourcing to answer queries. More-
over, in [14], a declarative query model is proposed to cooper-
ate with standard relational database operators. In addition, in the
viewpoint of theoretical study, many fundamental queries have been
extensively studied, including filtering [13], max [7], etc. Besides,
crowdsourcing-based solutions of many complex algorithms are
also developed, such as categorization based on graph search [15],
entity resolution [17], etc.

19

Although the previous studies have already proposed some fun-
damental data operations based on crowdsourcing, they only focus
on solving individual queries or operations. In contrast, our work
aims to propose a general framework for a series of crowdsourcing-
based data processing problems.

6.2 Active Learning
Active learning is a form of supervised machine learning, in

which a learning algorithm is able to interact with the workers (or
some other information source) to obtain the desired outputs at new
data points. A widely used technical report is [16]. In particular,
[12, 18] proposed active learning methods specially designed for
crowdsourced databases. Our work is essentially different from ac-
tive learning in twofold: (1) the role of workers in active learning
is to improve the learning algorithm (e.g. a classifier); in MaC
framework, the involvement of workers is to answer queries. (2)
The uncertainty of answers in active learning is usually assumed
to be given before generating any questions; in MaC framework,
the uncertainty of answers has to be estimated after the answers are
received, since we cannot anticipate which workers would answer
our questions.

7. CONCLUSION
In this paper, we proposed a novel framework, namely MaC, to

form a collaboration with the power of machine and the wisdom of
crowds. In particular, we tracked two challenging issues involved in
the MaC framework - HIT selection and uncertainty management.
For HIT selection, we provided an entropy-based model to measure
the importance of HITs, and an efficient (1+ε) approximation algo-
rithm is deigned for the selection. For uncertainty management, we
discussed the modelling and computation of workers’ uncertainty
in three common scenarios. By adopting the MaC framework, we
conducted extensive experiments on real-world applications. The
experimental results demonstrate that the proposed framework is
applicable to a wide range of applications.

8. ACKNOWLEDGMENT
This work is supported in part by the Hong Kong RGC Project

N_HKUST637/13, National Grand Fundamental Research 973 Pro-
gram of China under Grant 2012-CB316200, National Natural Sci-
ence Foundation of China (NSFC) Grant No. 61328202, Microsoft
Research Asia Gift Grant and Google Faculty Award 2013.

9. REFERENCES
[1] C. G. Andreas Krause. A note on the budgeted maximization of

submodular functions. Technical report, School of Computer
Science, Carnegie Mellon University, March 2005.

[2] D. C. Brabham. Crowdsourcing as a model for problem solving an
introduction and cases. Convergence February 2008 vol. 14 no. 1
75-90, 2008.

[3] A. P. Dawid and A. M. Skene. Maximum likelihood estimation of
observer error-rates using the em algorithm. Applied Statistics,
28(1):20–28, 1979.

[4] A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing
systems on the world-wide web. Commun. ACM, 54(4):86–96, 2011.

[5] X. L. Dong, L. Berti-Equille, and D. Srivastava. Integrating
conflicting data: The role of source dependence. PVLDB,
2(1):550–561, 2009.

[6] A. Feng, M. J. Franklin, D. Kossmann, T. Kraska, S. Madden,
S. Ramesh, A. Wang, and R. Xin. Crowddb: Query processing with
the vldb crowd. PVLDB, 4(12):1387–1390, 2011.

[7] S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who won?:
dynamic max discovery with the crowd. In SIGMOD Conference,
pages 385–396, 2012.

[8] S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage
problem. Inf. Process. Lett., 70(1):39–45, 1999.

[9] W. Li, C. Zhang, and S. Hu. G-finder: routing programming
questions closer to the experts. In Proceedings of the ACM
international conference on Object oriented programming systems
languages and applications, OOPSLA ’10, pages 62–73, New York,
NY, USA, 2010. ACM.

[10] T. Malone, R. Laubacher, and C. Dellarocas. Harnessing crowds:
Mapping the genome of collective intelligence. Research Paper No.
4732-09, MIT, Sloan School of Management, Massachusetts Institute
of Technology, Cambridge, MA, USA, February 2009. Sloan
Research Paper No. 4732-09.

[11] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Human-powered sorts and joins. PVLDB, 5(1):13–24, 2011.

[12] B. Mozafari, P. Sarkar, M. J. Franklin, M. I. Jordan, and S. Madden.
Active learning for crowd-sourced databases. CoRR, abs/1209.3686,
2012.

[13] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom. Crowdscreen: algorithms for filtering data
with humans. In SIGMOD Conference, pages 361–372, 2012.

[14] A. G. Parameswaran and N. Polyzotis. Answering queries using
humans, algorithms and databases. In CIDR, pages 160–166, 2011.

[15] A. G. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis,
and J. Widom. Human-assisted graph search: it’s okay to ask
questions. PVLDB, 4(5):267–278, 2011.

[16] B. Settles. Active Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers,
2012.

[17] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. PVLDB, 5(11):1483–1494, 2012.

[18] L. Zhao, G. Sukthankar, and R. Sukthankar. Robust active learning
using crowdsourced annotations for activity recognition. In Human
Computation, 2011.

[19] Y. Zhou, G. Cong, B. Cui, C. S. Jensen, and J. Yao. Routing
questions to the right users in online communities. In ICDE, pages
700–711, 2009.

APPENDIX
EM algorithm in Answer-Only(AO) Scenario:
We regard T = {p1, p2, ..., pm} as the missing data, which are the corre-
sponding confidences of workers inU ; and θ = {Pr(h1|A), ..., P r(hm|A)}
as the parameters to be estimated, while the set of answers A are fixed.
Since EM algorithms are sensitive of initialization, we apply the prior prob-
ability Pr(hi) as the initialized value of Pr(hi|A) for the first iteration.

E-step: The E-step computes the expectation of the complete-data log-
posterior w.r.t. the missing data T, given the current estimates of the param-
eters θ̂, the so-called Q-function is computed with the following definition:

Q(θ|θ̂) = ET [logPr(W,T |θ)]

= log{
∏

aij=yes

(pjPr(hi|A) + (1− pj)(1− Pr(hi|A))

∏
aij=no

(1− pj)Pr(hi|A) + pj(1− Pr(hi|A))}

(13)

where pi is the estimation of personal confidence of user ui at the current
iteration. We denote the number of answers from ui as W (ui), then we
have

pi =

∑
aij=yes Pr(hi|A) +

∑
aij=no(1− Pr(hi|A))

W (ui)
(14)

By substituting Equation 14 into Equation 13, we have a Q-function that
is differentiable for all Pr(hj |A).

M-step: The M-step then updates the parameter estimates for each hj by
maximizing the Q-function in Equation 13. By setting the partial derivative
of the Q function w.r.t. hj to zero, we get the update value of hj by solving

∂Q(θ|θ̂)
∂Pr(hi|A)

= 0 (15)

20

