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Abstract—Uncertain data has been emerged as an important
problem in database systems due to the imprecise nature of many
applications. To handle the uncertainty, probabilistic databases
can be used to store uncertain data, and querying facilities
are provided to yield answers with confidence. However, the
uncertainty may propagate, hence the returned results from a
query or mining process may not be useful. In this paper, we
leverage the power of crowdsourcing for cleaning uncertain data.
Specifically, we will design a set of Human Intelligence Tasks
(HIT)s to ask a crowd to improve the quality of uncertain data.

Each HIT is associated with a cost, thus, we need to design
solutions to maximize the data quality with minimal number of
HITs. There are two obstacles for this non-trivial optimization -
first, the crowd has a probability to return incorrect answers;
second, the HITs decomposed from uncertain data are often
correlated. These two obstacles lead to very high computational
cost for selecting the optimal set of HITs. Thus, in this paper,
we have addressed these challenges by designing an effective
approximation algorithm and an efficient heuristic solution. To
further improve the efficiency, we derive tight lower and upper
bounds, which are used for effective filtering and estimation. We
have verified the solutions with extensive experiments on both a
simulated crowd and a real crowdsourcing platform.

I. INTRODUCTION

Uncertain data has been emerged as an important problem
in database systems due to the imprecise nature of many appli-
cations. In the field of information extraction, some learning-
based model (e.g. Conditional Random Field) usually produces
a ranked list of extractions, each of which is associated with a
probability of correctness [15]. In entity resolution and schema
matching, automatic tools may generate multiple results, each
of which is associated with a confidence value indicating the
matching quality [30], [10]. When data from multiple data
sources are integrated, conflicting information may be handled
by keeping conflicted data associated with probabilities, a.k.a
uncertain/probabilistic data.

Due to the existence of an exponential number of possible
worlds in an uncertain database (a possible world is one
possible combination of real instances of uncertain data),
mining uncertain data is often computationally expensive.
Moreover, the uncertainty may propagate, so the returned
results from a query may not be useful. Thus, it is desirable
to improve the data quality by reducing the uncertainty. In
many applications, data becomes uncertain because computers
have difficulties to recognize human-intuitive semantics via the
given data representation (e.g. images, natural language) or
handle human-intrinsic tasks (e.g. extracting the correct infor-
mation or language translation). Therefore, intuitively, human
perception should be very effective in cleaning uncertain data.

Existing works of uncertain data cleaning [5], [23] assume
there is a cleaning agent (e.g. an expert) available, which may
access and return the ‘ground truth’ of the uncertain data.
However, in many circumstances, such availability does not
hold. Along with the emerging of uncertain data, crowdsourc-
ing has become a hot research topic due to the success of
several crowdsourcing platforms such as Amazon Mechanical
Turk and CrowdFlower. These platforms provide human com-
putational power, which is not only always available, but is at
least fairly affordable. In this paper, we leverage the power of
crowdsourcing for cleaning uncertain data.

A. Uncertainty Model and Quality Measurement
Among various models of uncertainty, we consider the x-

relation, which is widely adopted in the field of uncertain
database [1], [5], [23], [34], [33]. In the x-relation model,
an x-relation contains a set of independent x-tuples. Each x-
tuple includes a set of mutually exclusive tuples (or called
alternatives), associated with probabilities, which represent a
discrete probability distribution of these tuples being correct.

Table I illustrates a probabilistic database, where the uncer-
tainty of each entry is captured by an x-tuple. In particular,
each x-tuple represents an address of a facility location,
provided by an information extraction model (e.g. CRF or
HMM, and the creation of such probabilistic database from
the extraction models is detailed in [15]). For instance, the x-
tuple T1 indicates four possible addresses for a location, i.e.
{t1,t2,t3,t4}, for textual data “51A Hayward East New York”;
and the probability of t1 being correct is 0.4. Such a prob-
abilistic data model well captures the correlation among the
attributes (labels). In the example of Table I, the labels ‘House
no’, ‘Area’ and ‘City’ are correlated: the marginal probability
Pr(House no = 51A) = Pr(t2) + Pr(t3) = 0.5, while con-
ditional probability Pr(House no = 51|Area = East) = 1
and Pr(House no = 51|Area = Hayward East) = 0.

To measure the data quality of an x-tuple, we follow the
proposal in [5], [23], [4] and use the negative value of the
Shannon entropy, i.e.

∑
p p log p. For instance, the quality of

T1 in Table I, denoted by Q(T1), is computed as Q(T1) =
0.4 ∗ log 0.4 + 0.3 ∗ log 0.3 + 0.2 ∗ log 0.2 + 0.1 ∗ log 0.1 =
−0.55. This measure quantifies the ambiguity of an x-tuple:
the more uncertain the data, the lower the quality. Our core
objective is to improve the quality of x-tuples with the help of
crowdsourcing.

B. Cleaning with Crowd
In Table I, we demonstrate an example of uncertain data,

in which the uncertainty is essential because data extraction
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Location address of T1: 51A Hayward East New York
Xid Tid House no Area City Pr(ti)
T1 t1 51 Hayward New York 0.4
T1 t2 51A Hayward East New York 0.3
T1 t3 51A Hayward East York 0.2
T1 t4 51 East York 0.1

TABLE I. RUNNING EXAMPLE - UNCERTAIN DATA GENERATED BY AN
INFORMATION EXTRACTION TOOL

ID HIT content ground truth crowdsourced
Pr(hc) answer Pr(Ac)

HIT1 Is the House no 51? y(0.5) n(0.5) y(0.5) n (0.5)
HIT2 Is the House no 51A? y(0.5) n (0.5) y(0.5) n(0.5)
HIT3 Is the Area Hayward? y(0.4) n (0.6) y(0.45) n (0.55)
HIT4 Is the Area Hayward East? y(0.5) n (0.5) y(0.5) n (0.5)
HIT5 Is the Area East? y(0.1) n (0.9) y(0.3) n (0.7)
HIT6 Is the City New York? y(0.7) n (0.3) y(0.6) n (0.4)
HIT7 Is the City York? y(0.1) n(0.9) y(0.3) n (0.7)

TABLE II. RUNNING EXAMPLE - CANDIDATE HITS FOR CLEANING
WITH CROWD, AND DISTRIBUTIONS OF THE GROUND TRUTH AND

CROWDSOURCED ANSWER (CROWD ACCURACY = 0.75)

techniques cannot entirely ‘understand’ the location address
written in English - a natural language. Therefore, it becomes
critical to investigate the following question: where can we find
the human perceptions concerning the given uncertain data?
Fortunately, we have crowdsourcing as a promising solution.
With the recent development of crowdsourcing in both aca-
demic and industrial communities, there are sophisticated on-
line crowdsourcing platforms (e.g. Mechanical Turk, Crowd-
Flower) serving affordable sources of human perceptions. The
expected information concerning the given uncertain data can
be queried via publishing questions, named Human Intelligent
Tasks (a.k.a. HITs), each of which would generate a monetary
cost. Additionally, the work-flow of publishing HITs can be
automated with available APIs (e.g. REST API). Facilitated
with these, we can significantly improve the data quality by
automatically issuing a number of HITs.

It is well-known that crowdsourcing works best when tasks
can be broken down into very simple pieces [27], [26], [19].
An entire tuple (containing values of many attributes) may
be too large a grain for a crowd - each individual worker
may have small quibbles with a proposed tuple, so that a
simple question on the correctness of tuples may get mostly
negative answers, with each user declaring it less than perfect.
In other words, determining the correctness of an entire tuple
is too difficult for crowdsourcing workers. On the other hand,
asking open-ended questions is not recommended for a crowd,
because it may be difficult to integrate multiple suggestions
of heterogeneous semantics. As a result, we propose to ask
the crowd questions regarding individual cells. Each HIT is a
question of form “Is the c.att c?” , where c and c.att represent
a cell value and its corresponding attribute, respectively. Given
an example in Table I, there are seven candidate HITs available
to be selected for crowdsourcing, as shown in Table II. This
kind of much simpler questions, in most circumstances, can
be easily answered with a yes or no.

With the running example in Table I, we demonstrate how
the crowd is going to clean the uncertain data by answering
HITs, and improve the data quality as a consequence. Assum-
ing that “I: City = New York” (i.e. HIT6) is confirmed to be

true by the crowd. Then we have

Pr(t1|I) =
Pr(t1)Pr(I|t1)

Pr(I) = Pr(t1) + Pr(t2)
=

0.4 ∗ 1

0.4 + 0.3
= 0.57 > 0.5

(1)

and similarly Pr(t2|I) = 0.43, P r(t3|I) = 0 and
Pr(t4|I) = 0. As a result, the quality Q(T1) is improved
from -0.55 to -0.3.

In the above example, we assume that obtaining information
I from crowds with 100% confidence, which is unrealistic
if we consider the error rate of crowdsourcing workers. As
pointed out in paper [22], even with the simple tasks such as
labelling, the quality of normal workers (not sloppy workers or
spammers) is around 75%. Clearly, this quality varies depend-
ing on many factors, including the format and domain of the
HIT, the time of publication, the HIT interface etc. Sometimes
the quality may be even worse than 75%. Nevertheless, such
noisy answers may still be conductive as far as the uncertainty
is well managed. Continued with the running example, we
make a more realistic assumption: “I: City = New York”
is answered by a crowd C with general confidence 60%.
Assuming the HIT is answered independently by the worker,
we have
Pr(t1|e : I is obtained from crowd) = Pr(t1)Pr(e|t1)/Pr(e)

=
Pr(t1)Pr(crowd is correct)

Pr(I)Pr(C is correct) + (1− Pr(I))Pr(C is incorrect)

=
0.4 ∗ 0.6

0.7 ∗ 0.6 + 0.3 ∗ 0.4
= 0.44

Similarly, Pr(t2|e) = 0.34, Pr(t3|e) = 0.15 and Pr(t4|e) =
0.07. The quality Q(T1) is hereby improved to −0.52. From
the above results, we can see that, even when the crowd
is imperfect, the quality of uncertain data is still improved
after cleaning. After crowdsourcing a few more HITs, the
confidence of the correct tuple is increased to be close to 1,
while the others approach to 0.

C. Challenges and Contributions
The above analysis shows that crowdsourcing provides a

new opportunity for uncertain data cleaning. However, since
each HIT is associated with a cost, we need to design solutions
to maximize the data quality by selecting an optimal minimum
set of HITs. This selection is not trivial due to the following
two obstacles: first, the crowd has a probability to return
incorrect answers; second, the HITs decomposed from an x-
tuple are naturally correlated. These two obstacles lead to the
NP-hardness for selecting the optimal set of HITs. To address
this challenge, firstly, we design an approximation algorithm
with approximation guarantee (1 + 1/e); and secondly, we
propose a heuristic solution, which is much more efficient than
the approximation one, but has comparable effectiveness.

We summarize our contributions as follows:
First, in Section III, we indicate how to utilize noisy

crowdsourced answers to improve the data quality of an x-
tuple, and analyze the functional relations among the crowd’s
accuracy, data quality and a candidate HIT.
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T an x-tuple
t1...t|T | tuples of T

Pr(t1)...P r(t|T |) probabilities of tuples
Q(T ) data quality of T

ATT = {att1...att|ATT |} semantic attributes of T
cij (c for simplicity) value of the cell

intersecting ti and attj
hcij (hc) the cleaning HIT verifying cij(c)
Pr(hcij ) probability of cij being the correct

value of attj , i.e. the probability
that the ground truth of hcij is ‘yes’

m the total number of candidate HITs
Ac the crowdsourced answer of hc

Pcr the accuracy of the crowd
Pr(Ac) probability of crowd

answering ‘yes’ to hc

H(cr) the entropy of the crowd
H(.) the entropy of a random variable
t |= c c contains the correct(incorrect)

value if t is correct(incorrect)
TABLE III. MEANINGS OF SYMBOLS

Second, in Section IV and V, we address the core optimiza-
tion problem - how to select the most profitable questions with
a cardinality constraint. We prove that the finding the exact
solution is NP-hard, and an approximation algorithm as well
as a heuristic solution are proposed. In addition, we derive tight
lower and upper bounds, which are used for effective filtering
and estimation.

Third, in Section VI, we have conducted extensive experi-
ments on both synthetic and real data sets. The experimental
results show that the data quality is significantly improved via
the power of crowdsourcing.

II. PROBLEM FORMULATION

In this section, we first formally introduce x-tuple together
with its quality metric. Then, we define crowd-based cleaning
operations, and finally formulate our problem of utilizing
crowdsourcing to clean x-tuples.

A. Uncertain Data and Quality Metric
Definition 2.1 (x-tuple with semantic attributes): For a

given table under schema Σ, which consists of a set of
semantic attributes ATT = {att1, att2, ..., att|ATT |}. Each
tuple ti consists of three components: a unique identifier
Tid, a confidence P (ti) that is the probability of t being
correct, and the set of semantic attributes ATT . An x-tuple
T consists of one or more tuples i.e. T = {t1, t2, ..., t|T |}.
|ATT | and |T | are the size of ATT and T , respectively. Each
of the tuples is associated with a probability of being correct.
Let Pr(ti) denote the probability of ti being correct, then∑|T |

i=1 Pr(ti) ≤ 1.
Please note the semantic attributes indicate the attributes

describing human-intrinsic information of an entity. Besides
the semantic attributes, schema Σ may also consist other
attributes (e.g. IDs). In the example of Table I, “House no”,

“Area” and “City” are semantic attributes, while others are not.
Intuitively, only data under semantic attributes worth being
crowdsourced.

Definition 2.2 (Data Quality [5], [23]): Given an x-tuple
T , the quality of T , denoted by Q(T ), is the negative value
of the Shannon entropy, i.e.

Q(T ) =

|T |∑
i=1

Pr(ti) logPr(ti) (2)

where
∑|T |

i=1 Pr(ti) = 1. If
∑|T |

i=1 Pr(ti) < 1, we conceptu-
ally insert into T a tuple tnull, with null values for all attributes
and probability Pr(tnull) = 1−

∑|T |
i=1 Pr(ti).

We are using the same mathematical metric as proposed in [5],
[23], which is originally called PWS-quality. Shannon entropy
quantifies the randomness of a random variable, and low
randomness indicates high quality of uncertain data. However,
we adopt the metric to evaluate the quality of an individual
x-tuple, rather than the answer of a query. By improving the
quality of x-tuples (i.e. the data), the quality of any query
answers would be naturally improved.

B. Crowdsourcing Model

Definition 2.3 (cleaning HIT): Given x-tuple T , let cij be
the cell intersecting tuple ti ∈ T and attribute attj . A cleaning
HIT (or HIT in short) corresponding to cij , denoted hcij , is a
human intelligent task asking the crowd to verify whether cij
is the correct value for attj in T . Moreover, let Pr(hcij ) be
the probability that the correct answer of hcij is ‘yes’, then

Pr(hcij ) =
∑

tx|=cij

Pr(tx) (3)

where tx |= cij denotes cij is the value of attj in tuple tx,
i.e. tx entails cij . In other words, tx |= cij means that if tx is
correct (incorrect), then cij is correct (incorrect).

From Definition 2.3, we can see that the candidate HITs
can be easily constructed for a given x-tuple T . Since different
tuples may have the same value for an attribute, the probability
of cij being the correct value of attj (i.e. the correct answer of
hcij is yes) can be computed by summing up the probabilities
of tuples in which cij is the value of attj . The total number
of HITs constructed for t, denoted by m, is upper bounded by
|Att| ∗ |T |, i.e. the number of attributes multiply the number
of tuples. Each HIT can be considered as a random variable
following a Bernoulli distribution. The distributions of HITs
in Table I are demonstrated. Please note that the HITs derived
from the same x-tuple are correlated in general. In the example
of Table I, given that “the House no is 51A” (HIT2), we can
easily infer that “the Area is Hayward East”(HIT4), and the
probability of “the City is York”(HIT7) becomes 0.4 (similar
to Equation 1).

Due to differences in skill levels, or the amount of time
and effort spent, the answers returned by the crowd may be
imperfect. We model the potential noisy answers by a general
error model for the crowd, illustrated as follows.
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Definition 2.4 (Crowd’s Accuracy): Given a crowd cr, the
crowd’s accuracy (or accuracy for short), denoted by Pcr ∈
[0.5, 1], is the probability that cr correctly answers each HIT. In
addition, each HIT is assumed to be answered independently.
How to model the crowds is application-specific. While some
works assume that the crowdsourced answers are 100% ac-
curate [37], [36], [38], [26], we adopt a more general error
model, which ensures that the answer returned by the crowd is
always correct with a probability no lower than 1/2, as shown
in Definition 2.4. This is a classical crowdsourcing model
widely used by a stream of works [14], [7], [29], [24], [20].
A crowd may have different accuracies for different domains.
The accuracy for a domain can be easily estimated with a set
of sample HITs with ground truth.

Definition 2.5 (Entropy of Crowd): Given a crowd cr and
its accuracy Pcr, the entropy of cr is

H(cr) = −Pcr logPcr − (1− Pcr) log (1− Pcr) (4)

Given the crowd’s accuracy, H(cr) is a positive constant
measuring the randomness of the crowd’s behaviour.

C. Problem Statement
Now, we formally define the problem of data cleaning via

crowdsourcing as follows.
Definition 2.6 (Problem Statement): Given an x-tuple T ,

the budget B, a crowd with accuracy Pcr, our goal is to
maximize the quality Q(T ) by selecting HITs and receiving
at most B crowdsourced answers.

From the above statement, the crowd is considered as a tool
for cleaning uncertain data. However, since crowds may be
noisy and unreliable, the first concern is how to use the noisy
crowdsourced answers to improve data quality. In Section III,
we present a series of theoretical analyses, proving that the
expected improvement of data quality is always non-negative.
Then, in Section IV, we optimize the crowdsourcing process
by selecting the most profitable set of HITs.

III. UTILIZATION OF CROWDSOURCED ANSWERS

A crowd can be noisy, hence each crowdsourced answer is
inherently uncertain. In this section, we discuss how to use
uncertain crowdsourced answers to improve the data quality
of x-tuples.

A. Merging Crowdsourced Answers into X-tuples
Since both crowdsourced answers and x-tuple are essentially

uncertain, the effect of crowdsourced answers on data quality
can be treated as posterior probabilities conditioning on an-
swers, which is properly addressed with Bayes’ theorem.

First, for a given x-tuple T , we clarify the functional
relations among the crowd accuracy Pcr, data quality Q(T )
and a candidate HIT hc. Let Ac be the answer of hc provided
by the crowd, and Pr(Ac) and 1−Pr(Ac) be the probabilities
of ‘yes’ and ‘no’ being answered, respectively. Please note the
difference between hc and Ac: hc denotes the ‘ground truth’
of the HIT, i.e.

Pr(the ground truth of hc is yes) = Pr(hc)

while Ac denotes the ‘crowdsourced answer’ of the HIT, and

Pr(hc is answered yes by the crowd) = Pr(Ac)

Because the crowd may make mistakes, they follow different
distributions. Since the HITs are assumed to be answered
independently, the relation between Pr(hc) and Pr(Ac) can
be expressed as the following equation.

Pr(Ac) = Pr(hc)Pcr + (1− Pr(hc))(1− Pcr) (5)

In table II, the values of Pr(hc) and Pr(Ac) are demon-
strated, which reveal the differences discussed above.

Then, we are interested in how this answer Ac would
affect the quality, i.e. how to compute Q(T |Ac = yes) and
Q(T |Ac = no). In fact, the probability of each t ∈ T is
updated when the Ac is received. Intuitively, if t indicates
contradicting content as Ac, then Pr(t) should decrease;
otherwise Pr(t) should increase since it is further confirmed
by the crowd. Explicitly, for each crowdsourced answer Ac,
the probability of any t ∈ T is modified as

Pr(t|Ac = yes) = Pr(t)Pr(Ac = yes|t)/Pr(Ac)

Pr(t|Ac = no) = Pr(t)Pr(Ac = no|t)/(1− Pr(Ac))
(6)

where Pr(Ac|t) = Pcr when t |= c (i.e. the crowd
confirms t), and Pr(Ac|t) = 1 − Pcr when t |= ¬c (i.e. the
crowd disagrees with t). By recursively applying Equation 6,
conflicting crowdsourced answers are integrated into the x-
tuple t.

It is easy to perform the algebraic manipulations to show
that, for any two answers Ac0 and Ac1 , we have

Pr(t|Ac0 , Ac1) = Pr(t|Ac1 , Ac0) (7)

Equation 7 indicates that the final result of adjustment is
independent of the sequence of the crowdsourced answers. In
other words, when we have a deterministic set of HITs, it does
not matter in what sequence the answers are used for adjusting
the distribution in the x-tuple. In contrast, what matters is
to determine the set of HITs to be asked, which is the core
challenge addressed in Section IV.

B. Crowd’s Accuracy vs. Data Quality
According to the Equations 5 and 6, we introduce two

theorems to conclude the relation between the crowd accuracy
and the data quality.

Theorem 3.1 (Harmless Random): If a crowd randomly an-
swers a HIT, i.e. Pcr = 0.5, then it does not affect the data
quality.

Proof: When a crowd randomly answers HITs, i.e. Pcr =
0.5. By Equation 5, we have Pr(Ac) = 0.5. In addition,
by Equation 6, we have Pr(t|Ac = yes) = Pr(t|Ac =
no) = Pr(t). Therefore, the distribution of the tuples remains
unchanged, so is the data quality. This completes the proof of
Theorem 3.1.

Now we compute the expectation of data quality after re-
ceiving the answer Ac, denoted by EQ(T |Ac). For simplicity,
we summarize the result of the computation with lemma 3.2
as follows, and include the process of deduction as the proof,
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which is detailed in the appendix. Then, we achieve the proof
of Theorem 3.3 based on the result of Lemma 3.2.

Lemma 3.2:
EQ(T |Ac) = Q(X) + Pcr logPcr + (1− Pcr) log (1− Pcr)

− Pr(Ac) logPr(Ac)− (1− Pr(Ac)) log (1− Pr(Ac))
(8)

Proof: (Sketch) Facilitated by Equation 5, we have

EQ(T |Ac) = Pr(Ac)Q(T |Ac = yes)+(1−Pr(Ac))Q(T |Ac = no)

= Pr(Ac)
∑
t∈T

Pr(t|Ac = yes) logPr(t|Ac = yes)

+(1− Pr(Ac))
∑
t∈T

Pr(t|Ac = no) logPr(t|Ac = no)

By substituting Equation 6 and Equation 3, we have

EQ(T |Ac) =
∑
ti|=c

Pr(ti) logPr(ti) + Pr(hc)Pcr log
Pcr

Pr(Ac)

+
∑

ti|=¬c

Pr(ti) logPr(ti) + (1− Pr(hc))(1− Pcr) log
1− Pcr

Pr(Ac)

+ Pr(hc)(1− Pcr) log
1− Pcr

1− Pr(Ac)

+ (1− Pr(hc))Pcr log
Pcr

1− Pr(Ac)

= Q(X) + Pcr logPcr + (1− Pcr) log (1− Pcr)

− Pr(Ac) logPr(Ac)− (1− Pr(Ac)) log (1− Pr(Ac))

Theorem 3.3 (Non-negative Expectation): Given an x-tuple
T , if a HIT hc is answered by a crowd with accuracy Pcr,
the expected improvement of data quality of T is mathemati-
cally equivalent to the difference between ‘the entropy of the
crowdsourced answer of hc’ and the ‘entropy of the crowd
(Definition 2.5)’, which is non-negative.

Proof: From the result of Lemma 3.2,we derive the
expected improvement of data quality:

∆Q(T ) = EQ(T |Ac)−Q(T )

= Pcr logPcr + (1− Pcr) log (1− Pcr)

− Pr(Ac) logPr(Ac)− (1− Pr(Ac)) log (1− Pr(Ac))
(9)

Descriptively, the expected quality improvement is equivalent
to the ‘entropy of the answer minus the entropy of the crowd’,
which is always non-negative as shown as follows.

By substituting Equation 5 into Equation 9, we take the
derivative of ∆Q(T )

∂∆Q(T )

∂Pcr
=

(2Pr(hc)− 1) log
1− (1− Pr(hc))(1− Pcr)− Pr(hc)Pcr

2Pr(hc)Pcr − Pr(hc)− Pcr + 1

+ log
Pcr

1− Pcr
(10)

It is easy to see that ∆Q(T ) achieves minimum when Pcr =
0.5. Together with the result that ∆Q(T ) = 0 if Pcr = 0.5
(Theorem 3.1), we complete the proof of Theorem 3.3.
From the above analysis, we always have non-negative expec-
tation of quality improvement for asking each HIT. However,
the quality of an x-tuple does not necessarily monotonically
increase as receiving crowdsourced answers. It is possible for
the quality to decrease, when a ‘surprising’ answer is received -
a ‘no’ is answered by the crowd for a HIT with high probability
to be correct, or vice versa. However, one can see that the data
quality obviously converges to zero (i.e. the upper bound of
data quality), since each HIT has a non-negative expectation
on the change of quality. To achieve fast convergence, the key
issue is how to select the HITs wisely.

IV. K-HIT SELECTION

The core computational challenge we need to address is to
select a collection of HITs with a cardinality constraint k. For
the given budget B, we are interested in asking k HITs at
each iteration, so there are totally dBk e iterations for budget to
run out. When k > 1, different workers can then pick up these
tasks and solve them in parallel, cutting down wall-clock time.
Therefore, for a given budget of HITs B, larger k value leads
to lower latency. However, we pay for this by having some
questions answered that are not at the top of the list - we are
issuing k good questions rather than only the very best one. At
each iteration, we select k distinct HITs; but the same HIT may
be repetitively selected in different iterations. Please note that
the selection of HITs depends on the crowdsourced answers
received from previous iterations. So the overall selection is
an adaptive process, and how many times each HIT is asked
during the whole process is determined by the crowdsourced
answers and the proposed algorithms discussed in the rest of
this section.

For a given x-tuple with m candidate distinct HITs, there are
potentially Ck

m possible selections. In this section, we discuss
how to select k HITs in order to maximize the expected quality
improvement.

A. Deriving Objective Function

For a given set of k HITs - Sh = {hc1 , hc2 , ..., hck}, we
derive the expectation of quality improvement caused by the
aggregation of crowdsourced answers of these k HITs. Let ASh

denote the aggregated answer of Sh, then ASh
is a discrete

random variable with 2k possible outcomes, since each hcj is
either answered ‘yes’ or ‘no’. Let DA and pA be the domain
and probability distribution of ASh

, respectively, i.e.

DA = {ai|ai ⊆ 2{hc1 ,hc2 ,...,hck
} and

∀hcj ∈ ai , hcj is answered yes by crowd;

and ∀hcj /∈ ai , hcj is answered no by crowd}
pA = (Pr(a1), P r(a2), ..., P r(a2k))

(11)

We aim to find a set of k HITs such that their answers
would lead to the maximal (expected) improvement of data
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quality. So we investigate expected data quality by receiving
the crowdsourced answer ASh

- we have

EQ(T |ASh
) =

∑
ai∈DA

Pr(ai)
∑
t∈T

Pr(t|ai) logPr(t|ai)

=
∑

ai∈DA

∑
t∈T

Pr(t)Pr(ai|t) log
Pr(t)Pr(ai|t)

Pr(ai)

=
∑
t∈T

Pr(t) logPr(t) +
∑
ai,t

Pr(t)Pr(ai|t) logPr(ai|t)

−
∑

ai∈DA

Pr(ai) logPr(ai)

Then we have the expected improvement

∆QSh
(T ) = EQ(T |ASh

)−Q(T )

=
∑
ai,t

Pr(t)Pr(ai|t) logPr(ai|t)−
∑

ai∈DA

Pr(ai) logPr(ai)

(12)

Note
∑

ai,t
Pr(t)Pr(ai|t) logPr(ai|t) = −H(ASh

|T ),
where H(ASh

|T ) is the entropy of ASh
conditioned on T .

Recall that ASh
is a set of k HITs, each of which is answered

by the crowd independently. This reflects that answers in ASh

are independent conditioned on T . So

H(ASh
|T ) = −

k∑
i=1

H(Aci |T )

= −
k∑

i=1

{Pcr logPcr + (1− Pcr) log (1− Pcr)}

= −k{Pcr logPcr + (1− Pcr) log (1− Pcr)} = kH(cr)
(13)

Therefore, given fixed k and crowd accuracy Pcr, H(ASh
|T )

is equivalent k times the entropy of the crowd H(cr), i.e. a
constant. So, we have

∆QSh
(T ) =−

∑
ai∈DA

Pr(ai) logPr(ai)− kH(cr)

=H(ASh
)− kH(cr)

(14)

We highlight the conclusion of Equation 14 with the fol-
lowing theorem.

Theorem 4.1 (Objective Function): Given an x-tuple, a set
of k cleaning HITs Sh, and the crowd accuracy, the expected
quality improvement by asking these HITs is equivalent to
difference between the ‘entropy of the answer’ and ‘k times
the entropy of crowd’.

Since kH(cr) is a constant, we only need to select HITs
to maximize H(ASh

). Formally, we have the following opti-
mization goal:

Sh := arg max
Sh

H(ASh
) (15)

B. Lower and Upper bounds

According to Theorem 4.1, we expect to select a set of
k HITs, with highest H(ASh

). For a given set HITs Sh,
computing the exact value of H(ASh

) encounters exponential
complexity, due to the correlation among HITs and the crowd
imperfection. Explicitly, we present the closed-form formula
for the computation of H(ASh

)

H(ASh
) =

−
∑

a∈DA

[
∑
t∈T

Pr(t)
∏

hci
∈ai,t|=ci

Pcr

∏
hci
∈ai,t|=¬ci

(1− Pcr)

+ log
∑
t∈T

Pr(t)
∏

hci
∈ai,t|=ci

Pcr

∏
hci
∈ai,t|=¬ci

(1− Pcr)]

(16)

Clearly, the exact computation yields exponential complex-
ity w.r.t k, which is inefficient when k is large. Thus, we
are interested in reducing or avoiding the exact computation
pertaining to H(ASh

). In this subsection, we include an upper
bound and a lower bound, both of which can be computed in
linear time. The bounds can be used to enable effective filtering
(in Section V-A) and heuristic estimation (in Section V-B).

1) Upper Bound: We use H(Sh) to denote the joint entropy
of HITs in Sh. Please note the difference between H(Sh) and
H(ASh

) - H(Sh) measures the randomness of the HITs, or
more precisely, ‘the ground truth of the HITs’; while H(ASh

)
measures the randomness of the ‘crowdsourced answer of the
HITs’. Intuitively, this difference is caused by the fact that the
crowd makes mistakes. Then by the chain rule of Shannon
entropy, we have H(Sh|ASh

) = H(ASh
, Sh) − H(ASh

),
therefore

H(ASh
) = H(ASh

, Sh)−H(Sh|ASh
)

= H(ASh
|Sh) + H(Sh)−H(Sh|ASh

)
(17)

Note all the HITs are independently answered, so

H(ASh
|Sh) =

k∑
i=1

H(Ahi
|Sh) =

k∑
i=1

H(cr) = kH(cr)

(18)
Therefore, we have the following upper bound -

H(ASh
) =H(Sh) + kH(cr)−H(Sh|ASh

)

≤ H(Sh) + kH(cr)
(19)

2) Lower Bound: Recall that H(Sh) and H(ASh
) are dif-

ferent because the crowd makes mistakes. Inspired by this, we
define an indicator function:

Y =

{
0 crowd correctly answers all the HITs in Sh

1 crowd answers at least one HIT incorrectly
(20)

Naturally, Y determines whether the crowd makes mistakes on
the HITs in Sh, and we have the distribution of Y - Pr(Y =
0) = P k

cr and Pr(Y = 1) = 1− P k
cr.
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Now, we rewrite H(Sh|ASh
)

H(Sh|ASh
) = H(Sh|ASh

)−H(Sh|ASh
, Y ) + H(Sh|ASh

, Y )

= H(Y |ASh
)−H(Y |ASh

, Sh) + H(Sh|ASh
, Y )

= H(Y |ASh
) + H(Sh|ASh

, Y )

≤ H(Y ) + H(Sh|ASh
, Y )

= H(Y ) +
∑

ai∈DA

[Pr(ASh
= ai, Y = 0)H(Sh|ASh

= ai, Y = 0)

+ Pr(ASh
= ai, Y = 1)H(Sh|ASh

= ai, Y = 1)]
(21)

Please note that ASh
is equivalent to the ground truth of Sh

when the crowd makes no error, i.e. Y = 0. So the first term
in the summation becomes 0:

H(Sh|ASh
= ai, Y = 0) = 0 (22)

The entropy of any random variable is maximized when each
possible outcome has the same probability. Since ASh

includes
k HITs, the size of the domain of ASh

is 2k. When Y = 1, we
know that the crowd makes errors, so the number of possible
outcome becomes 2k−1, i.e. the original minus the value that
ASh

has taken. Therefore, we have

H(Sh|ASh
= ai, Y = 1) ≤ log (2k − 1) (23)

Substituting formula 22 and 23 into formula 21, we can show

H(Sh|ASh
) ≤ H(Y ) + log (2k − 1)

∑
ai∈DA

Pr(ASh
= ai, Y = 1)

≤ H(Y ) + Pr(Y = 1) log (2k − 1)

≤ −P k
cr logP k

cr − (1− P k
cr) log (1− P k

cr)

+ (1− P k
cr) log (2k − 1)

(24)
Finally, we substitute formula 24 into formula 19, we have

H(ASh
) =H(Sh) + kH(cr)−H(Sh|ASh

)

≥H(Sh) + kH(cr) + P k
cr logP k

cr+

(1− P k
cr) log (1− P k

cr)− (1− P k
cr) log (2k − 1)

(25)

C. Computing the Bounds: X-partition Algorithm

From formula 19 and 25, one can see that we only need to
compute the joint entropy H(Sh), since the other components
are all constant for a given x-tuple and a set of HITs. A
naive way of computing the joint entropy is to compute all
the marginal probabilities, hence yields to O(2k) complexity.
However, with creating a small O(|T |) in-memory index, we
can achieve overall linear complexity - O(k|T |).

We propose a novel algorithm named “X-partition”. The
intuition of the algorithm is, for each HIT hc, the x-tuple T
can be divided in to two parts, with ti |= c and tj |= ¬c
respectively. As a consequence, k HITs can partition T into at
most 2k parts, and the aggregated probability of each part (i.e.
the sum of probabilities of entries within a part) constitutes the
marginal distribution of Sh. Note each part includes at least

one tuple, so the total number of parts is at most |T |. Now we
illustrate the algorithm in detail as following steps.

Step 1: Remove a HIT hc from Sh.
Step 2: Partition the table into two parts T0 and T1, where
∀t ∈ T0, t |= c, and ∀t ∈ T1, t |= ¬c.

Step 3: Remove a HIT hc′ from Sh

Step 4: For each of the current parts Tl, further divide it
into two parts, Tl0 and Tl1.

Step 5: repeat Step 3 and Step 4 until all k HITs are
removed, then return −

∑
p log p, where p is the sum of

probabilities of tuples within each part.
Correctness and Complexity: The correctness of the algo-

rithm is straightforward. Each part Tl corresponds to a point
of the marginal distribution of the Sh, so the entropy of these
parts are equivalent to the joint entropy. In addition, the order
of HITs would not affect the final partitioning result. At each
iteration, for a given HIT, partitioning requires all the tuples,
hence takes O(|T |) time. As a result, the overall complexity
becomes O(k|T |), which is essentially linear w.r.t the size of
input.

Running example: Given the example in Table I and II, we
consider a set of HITs Sh = {h2, h3}. Assume the accuracy
of the crowd is 0.75, then as shown in Table II, we have -
Pr(h2) = 0.5 ,Pr(h3) = 0.4 , i.e. the probability of h2 (h3)
has ground truth ‘yes’ are 0.5 (0.4); moreover, the probability
of h2 (h3) being answered ‘yes’ by the crowd is 0.5 (0.45).
Now we present the distributions of Sh and ASh

as follows.
outcomes prob (Sh) prob (ASh

)
h2 = y,h3 = y 0 0.175
h2 = y, h3 = n 0.5 0.325
h2 = n,h3 = y 0.4 0.275
h2 = n,h3 = n 0.1 0.225

Note the distribution of Sh indicates the ground truth of the
HITs, which is derived from the x-tuple in Table I. Clearly, this
distribution is irrelevant with the accuracy of the crowd. On the
other hand, ASh

denotes the distribution of the crowdsourced
answer, which is computed according to formula 16. Having
these two distributions, we can easily compute H(Sh) = 1.36,
and H(ASh

) = 1.96. We also have H(cr) = 0.81, then the
upper bound is H(Sh) + kH(cr) = 1.36 + 2 ∗ 0.81 = 2.11 ≥
1.96 and lower bound H(Sh) + kH(cr) + P k

cr logP k
cr + (1−

P k
cr) log (1− P k

cr)− log (2k − 1) = 1.36 + 2 ∗ 0.81− 0.337−
1.58 = 0.193 ≤ 1.96

V. HARDNESS AND ALGORITHMS

One can see that the optimization problem derived in
formula 15 is non-linear, due to the nature of Shannon entropy.
In fact, the optimization problem is to find k HITs from the
m candidate HITs, so the searching space is of complexity
O(m!). However, H(ASh

) is the entropy of the crowdsourced
answer of a set of HITs, and it is known that entropy is a sub-
modular function [2]. Our optimization problem is essentially
a sub-problem of the maximization of a general submodular
function. We prove that finding the optimal solution for our
optimization problem is NP-hard.

Theorem 5.1 (NP-hardness): It is NP-hard to find a set of
k HITs such that the expected improvement of data quality is
maximized.
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Proof: It is sufficient to prove the NP-completeness of
its decision version, Decision k-HIT Selection (DkHIT) , i.e.
given an x-tuple and an integer k and a value H0, decide
whether one can find a set of k HITs such that H(ASh

) ≥ H0.
To reach the NP-completeness of DkHIT, it is sufficient to
prove a special case of DkHIT is NPC. Now we state the
special case of DkHIT by adding the following constraint
on T : for each way of partitioning T into two subsets S1

and S2, there exists a cell c such that (∀ti ∈ T1, ti |=
c) ∧ (∀tj ∈ T2, ti |= ¬c). With this constraint, we reduce
this sub-problem of DkHIT to the set partition problem. The
partition problem is the task of deciding whether a given
multiset of positive integers can be partitioned into two subsets
S1 and S2 such that the sum of the numbers in S1 equals the
sum of the numbers in S2. Given a set partition problem with
input multiset S, let Sum =

∑
x∈S x. We create a tuple ti

for each positive integer xi ∈ S, and assign its possibility
Pr(ti) = xi/Sum. Let the cells satisfy the constraint, and
we set k = 1,∆H = − log(0.5) = 1 for DkHIT. Assume
there is yes-certificate for the special case of DkHIT when
k = 1,∆Q = log(0.5) = −1. Since k = 1, HASh

is
actually equivalent to H(Ac). Then there exists a cell c such
that Pr(hc) = 0.5. Therefore, by the constraint, there is
a way to partition T into two subsets, each with aggregate
probability 0.5. Since the mapping from the positive integers
to the tuples is one-to-one, we obtain a yes-certificate for the
special case of DkHIT. If there is a yes-certificate for the
set partition problem, then the T can be partitioned into two
subsets, each with aggregate probability 0.5. According to the
constraint, there exists a cell c with Pr(hc) = 0.5. Then,
selecting SQ = {hc} would achieve quality improvement
HAh

= −0.5 log 0.5 − 0.5 log 0.5 = 1. Therefore,{hc} serves
as yes-certificate for the special case of DkHIT

A. Approximation Algorithm
Although finding the optimal solution is intractable, it is

known that the maximization of submodular functions can be
approximated with a performance guarantee of (1−1/e), by a
greedy algorithm [18] - we iteratively select the best one HIT,
given the ones selected so far.

Formally, we have the optimization function at the kth

iteration:
x := arg max

x
H(A(Sk−1∪{hx})) (26)

where Sk−1 is the set of HITs selected from previous
iterations.

At each iteration, we need to determine one HIT hx out of m
candidates, so H(A(Sk−1∪{hx})) would be computed at most
m times to find the maximum. Therefore, this approximation
algorithm entails time complexity O(2km), i.e. linear w.r.t the
size of the x-tuple, but exponential w.r.t k. In order to further
improve the efficiency, we propose two pruning methods,
illustrated as follows.

Instance-level pruning:
We first adopt the lower upper bounds derived from Sec-

tion IV-B. For a pair of HITs h0 and h1, if we have

H(A(Sk−1∪{h0})).lb ≥ H(A(Sk−1∪{h1})).ub

then h1 can be safely pruned. Please note that A(Sk−1∪{h0}).lb
and A(Sk−1∪{h1}).ub denote the lower bound of A(Sk−1∪{h0})
and the upper bound of A(Sk−1∪{h1}), respectively. Both of
them can be efficiently computed within O(k) time by the
X-partition algorithm in Section IV-C.

Algorithm-level pruning:
Submodularity can be exploited algorithmically to imple-

ment an accelerated variant of the greedy algorithm. In
each of the k iterations, the greedy algorithm must iden-
tify the HIT with maximum marginal gain, given the HITs
selected in the previous iterations. The key insight is that,
as a consequence of submodularity of the objective func-
tion, the marginal benefit of any HIT is monotonically non-
increasing during the iterations of the algorithm. In other
words, for all h and k, the submodularity guarantees that
H(A(Sk∪{h})) ≤ H(A(Sk−1∪{h})). Therefore, we maintain a
list of upper bounds (i.e.A(Sk−1∪{h})) on the marginal gains
sorted in decreasing order. In each iteration, the algorithm
extracts the HIT h0 with the highest value from the ordered
list. As a result, for all h1, if we have

A(Sk∪{h0}) ≥ A(Sk−1∪{h1}) (27)

then, h1 can be safely pruned.

B. Heuristic Algorithm
In the approximation algorithm above, after applying the

pruning methods, we may still have to compute the exact value
of H(A(Sk−1∪{hx})) for several times, each of which entails
exponential complexity w.r.t k. This can be inefficient when k
is large. In this subsection, we use the average of upper bound
and lower bound to estimate the value of H(A(Sk−1∪{hx})) for
HIT selection. Explicitly, we apply the following estimator:

H(A(Sk−1∪{hx})) ≈
A(Sk−1∪{hx}).lb + A(Sk−1∪{hx}).ub

2
=H(Sh) + kH(cr)

+
P k
cr logP k

cr + (1− P k
cr) log (1− P k

cr)− log (2k − 1)

2
(28)

We compute the estimator with formula 28, and select the
HIT with the highest estimated value. Therefore, considering
the entire heuristic algorithm, we do not need to compute any
exact value of H(A(Sk−1∪{hx})). In the experiments, we show
that the effectiveness of this heuristic algorithm is comparable
with the approximation algorithm.

The heuristic algorithm is particular useful when k is large
- it entails very short (linear w.r.t k) execution time for the
program to select HITs. On the other hand, recall that larger k
would lead to less overall time cost of crowdsourcing (i.e. the
time waiting for the crowd to return answers), since multiple
workers can take HITs in parallel. So the heuristic algorithm is
recommended over the approximation algorithm when the user
expects short overall running time (program execution time +
crowdsourcing). In other words, when the budget is the main
constraint, small k and the approximation algorithm should be
adopted, whereas the heuristic algorithm with a large k value
is suggested if the time-efficiency is the primary constraint.

13



0 20 40 60
-8

-6

-4

-2

0

appr
heur
rand

No. of HITs

Q
(T

)

(a) k = 1, Pcr = 0.9
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(b) k = 1, Pcr = 0.8
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(c) k = 1, Pcr = 0.7
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(d) k = 2, Pcr = 0.9
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(e) k = 2, Pcr = 0.8
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(f) k = 2, Pcr = 0.7
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(g) k = 4, Pcr = 0.9
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(h) k = 4, Pcr = 0.8
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(i) k = 4, Pcr = 0.7
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(j) k = 8, Pcr = 0.9
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(k) k = 8, Pcr = 0.8
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(l) k = 8, Pcr = 0.7

Fig. 1. Pcr = 0.9, 0.8, 0.7 and k = 1, 2, 4, 8

VI. EXPERIMENTAL EVALUATION

The goal of our experiments is twofold: first, we study
the effect of different parameters for quality improvement
with respect to our approximation algorithm and heuristic
algorithm; second, we compare the two proposed algorithms
with a baseline algorithm, which randomly selects HITs. With
simulation on synthetic data, we explore wide ranges of values
for our parameters Pcr and k. In addition, we test our methods
with Amazon Mechanical Turk, which is a well-known public
crowdsourcing platform.

A. Simulation on Synthetic Data
In this subsection, we conduct a series of experiments on

synthetic data with a simulated crowd. In particular, a crowd
answers each HIT independently, and each HIT has probability
Pcr to be correctly answered. We set the total budget of HITs
B = 60 for an x-tuple, and at each iteration we select k
HITs, so there are totally d60/ke iterations (there are maybe
less than k HITs in the last iteration). In the experiments, we
demonstrate the performances of the approximation algorithm
(appr), the heuristic algorithm (heur) and a naive algorithm
(rand) - each HIT is selected randomly. In this subsection, we
use a total of 10, 000 x-tuples, each of which contains 50 tuples
and 20 attributes, and report the average performance. Since
each x-tuple usually contains a small number of tuples (less
than 15 in real data sets used in Section VI-C), the synthetic
data is fairly large enough to test the scalability of the proposed

algorithms. Please note that the proposed algorithms are both
linear w.r.t the size of x-tuples. The main computational
challenge is that the time cost of appr is exponential w.r.t
k. This is thoroughly evaluated in the experiments.

We first present the results on varying the crowd accuracy
Pcr. As shown in Figures 1(a)-1(l), regardless the setting of k
and the option of k-HIT selection algorithm, Q(T ) is gradually
improved with the reception of crowdsourced answers, when
Pcr is set to 0.7, 0.8 and 0.9. This is consistent with our
theoretical analysis, that is any HIT would positively affect the
quality of the x-tuple when Pcr is larger than 50%. Moreover,
for all three competing algorithms, we find that the higher Pcr

is, the faster the convergence. This finding is supported by
observing Figures 1(a)-1(c), Figures 1(d)-1(f), Figures 1(g)-
1(i), and Figures 1(j)-1(l). In other words, we would need less
HITs for a crowd with higher accuracy.

Second, we discuss the effectiveness of the algorithm with
varying k, which is the number of questions selected for
each iteration. For a given budget B = 60, larger k leads
to less iterations. Having more than one (k) HITs on the
crowd, different workers can take them on parallel. We set
k to 1,2,4,8, and test the performances of appr and heur. As
shown in Figure 1, smaller k tends to be more effective on
quality improvement. In fact, the larger k is, the less advantage
appr and heur have comparing to a random selection. This is
because each HIT is selected based on crowdsourced answers
of HITs selected in previous iterations. Recall that we select
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k out of m candidates at each iteration, so when k = m, appr
and heur are the same as random selection, i.e. select all of
the HITs we have.

Third, we compare the performances of the approximation
algorithm (appr), the heuristic algorithm (heur) and a naive
algorithm (rand). As indicated in Figure 1, heur and appr
significantly outperform rand in all cases. It’s worth noting that
appr and heur have the same performance when k = 1. This
is because, at each iteration, both algorithms would always
select the HIT with probability closest to 0.5, which happens
to achieve their respective local optima. When k > 1, heur
and appr occasionally have similar performance (e.g. in Fig-
ures 1(d),1(h),1(j)); whereas appr performs slightly better than
heur in most cases (e.g. Figures 1(e),1(f),1(g),1(i),1(k),1(l)) in
terms of the number of HITs.

B. Efficiency

In Section V-A and V-B, the approximation algorithm
(appr) and the heuristic algorithm (heur) are proposed as
solutions for k-HIT selection. Recall that appr generates
near-optimal solutions with approximation guarantee, but it
encounters high computational cost when k is large. Therefore,
two filtering techniques are proposed. In this subsection, we
demonstrate the computational cost of the proposed algo-
rithms in Figure 2. In particular, the curves labelled with
appr i pruning and appr a pruning represent the approxima-
tion algorithm facilitated by the instance-level pruning and
algorithm-level pruning, respectively. In addition, the curve
appr both prunings indicates that both pruning methods are
used. As a result, the pruning techniques significantly improve
the efficiency of the appr, and the time cost of heur is linear
w.r.t k. We can observe that the instance-level pruning is more
effective than the algorithm-level one. In addition, combining
the pruning methods is better than any single one of them.
We also run the exact solution of k-HIT selection, which
enumerates all the possible size-k sets of HITs. However,
due to the NP-hardness of the exact solution, we cut off the
experiments when k > 7, in which it takes more than half an
hour.

C. Testing on Amazon Mechanical Turk

We implement our two approaches on Amazon Mechanical
Turk (AMT), which is a widely used crowdsourcing market-
place. We tested two real-world data sets, namely Address
and Call-for-paper. In particular, Address includes 30 x-tuples,
each of which has 5 attributes and 3-10 tuples. It contains data
of facility addresses, which are extracted from plaintext by a
CRF-based extraction tool. On the other hand, Call-for-paper
includes 40 x-tuples, each of which has 7 attributes and 3-15
tuples. Call-for-paper is aggregated from a number of websites
containing general information of computer-science confer-
ences, including the location city, submission deadlines etc.
These websites include wikiCFP (wikicfp.com), confSearch
(www.confsearch.org) and some personal web-pages manually
maintained by computer scientists. We designed a crawler to
fetch data from each website. Since different data sources may
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Fig. 2. Efficiency of k-HIT Selection Algorithms

provide conflicting information, we consider the information
of each conference as an x-tuple. More details can be found
in [32].

For each x-tuple in these two data sets, we manually label
the ground truth. In Address, we manually determine the best
tuple according to the raw data (i.e. plain text); in Call-
for-paper, we use the data from the official websites of the
conferences as ground truth.

For each data set, each worker is required to take an unpaid
Qualification Test containing 10 sample questions. A worker is
accepted only if he/she correctly answers at least 6 questions
in the qualification test. Each worker is only allowed to
answer one HIT from each x-tuple, but they may take multiple
HITs from different x-tuples. In order to estimate the crowd’s
accuracies, we first publish 30 testing HITs for each data set.
Then we estimate the crowd’s accuracies with these testing
HITs as well as the questions answered in the qualification
tests. Initially, after the 30 testing HITs being finished, the
crowd’s accuracies on Address and Call-for-paper are 0.86
and 0.73, respectively. We use these two values to set up the
crowd’s accuracies for the data sets. At the end of experiments,
crowd’s accuracies on Address and Call-for-paper are 0.85 and
0.76, respectively. This suggests that members of the crowd,
though far from perfect, were pretty good at completing their
tasks correctly. We set the budget B = 60, and each HIT
is awarded 0.06 USD for both data sets. We compare appr,
heur and rand with k = 1, 5, 10. The average performances
are demonstrated in Figure 4. In terms of the improvement
of data quality, one can see that the performance is basically
consistent with the simulation - appr and heur outperform
rand in all cases in terms of the number of HITs. Please
note a budget is set up for each x-tuple, so users are allowed
to set different budgets for different data instances. For the
scalability concerning the number of x-tuples, if the same
budget is assumed to be set for all x-tuples, the total number
of HITs is simply equal to the ‘number of x-tuples’ multiplies
the ‘budget’, i.e. linear w.r.t the number of x-tuples.

Data Accuracy Improvement:
Lastly, we verify the correctness of our approaches, by

evaluating the accuracy of the best tuple in each x-tuple, i.e. the
tuple with the highest possibility after cleaning. The accuracy
is the ratio between the number of best tuples that are the same
as the ground truth and the total number of x-tuples. The data
accuracy improvement is illustrated in Figure 3. Please note
that “Raw Data” denotes the data accuracy before cleaning.
One can see that the data accuracy is significantly improved
after cleaning. Moreover, for appr and heur, the lower value
of k tend to have higher accuracy. This is because smaller k
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Fig. 3. Data Accuracy Improvement

indicates better HIT selections, but longer latency.

VII. RELATED WORKS

A. Cleaning Uncertain Data
Data cleaning techniques have been developed for decades

by the database community [11], [28]. In particular, there is
a number of works studying the issues of cleaning uncertain
data [35], [16], [5], [23]. Given that a limited amount of
resources to clean the database, [5] describes a technique for
choosing the set of uncertain objects to be cleaned, in order to
achieve the best improvement in the quality of query answers.
They develop a quality metric, namely PWS-quality, for a
probabilistic database, and they investigate how such a metric
can be used for data cleaning purposes. Please note PWS-
quality is essentially the negative value of Shannon entropy,
which is the same metric we adopt in this paper. In [23], the
authors extend the approach of [5] to support top-k queries.
[16] provides an analysis on the sensitivity of a probabilistic
query answer to the input data. [35] applies user feedbacks
to improve the quality of an uncertain database integrated
from different sources. This paper distinguishes itself from
the existing works in two perspectives as follows. First, we
consider the crowd as a special resource for cleaning uncertain
data. The speciality includes 1) the crowd works best when
the tasks are broken down into small pieces; and 2) crowd
may provide wrong information. Second, we focus on cleaning
individual data instances (i.e. x-tuples), not query answers. By
improving the quality of data instances, any related queries
can be benefited.

B. Crowdsourcing
The recent development of crowdsourcing brings us a new

opportunity to engage human intelligence into the process
of answering queries (see [8] as a survey). Crowdsourcing
provides a new problem-solving paradigm [3], [21], which
has been blended into several research communities, includ-
ing database and data mining. In the practical viewpoint,
[9] proposed and develop a query processing system using
microtask-based crowdsourcing to answer queries. Moreover,
in [25], a declarative query model is proposed to cooperate
with standard relational database operators. In addition, in
the viewpoint of theocratical study, many fundamental queries
have been extensively studied, including filtering [24], max
[14], sorting [22], join [37], etc. Besides, crowdsourcing-based
solutions of many complex algorithms are developed, such
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Fig. 4. Testing on Amazon Mechanical Turk

as categorization based on graph search [26], clustering [13],
entity resolution [36], [38], tagging in social networks [6], trip
planning [17], topic discovery [31] etc.

In the recent work [12], the authors use crowdsourcing
techniques to improve the results of information extraction
systems. Our work is essentially different from [12] discussed
as follows. First, during the selection of HITs, [12] uses the
‘token entropy’ and ‘mutual information’ to select HITs, but
does not consider the error rate of the crowd, which is one
of the core challenges addressed in our model. Second, [12]
only focuses on data from information extraction systems, and
their methods cannot be used when the uncertainty is caused
by other reasons (e.g. information conflicts among different
websites in the call-for-paper data set in Section VI-C).

VIII. CONCLUSION

In this paper, we propose utilizing the power of crowdsourc-
ing on cleaning uncertain data. In many circumstances, the
uncertainty is caused by the fact that machines cannot fully
capture the human-intuitive semantics (e.g. images, human
languages). Therefore, we are motivated to use crowdsourcing
to eliminate the uncertainty of the data. In particular, we first
prove that the crowd, although noisy, is a profitable approach
for cleaning uncertain data. Then, we optimize the approach
by efficiently identifying the most valuable set of questions
(HITs).

Uncertainty is inherited in many modern applications, such
as information extraction, entity resolution, schema matching,
and truth discovery. We believe that adopting crowdsourc-
ing as a new component of a DBMS would be extremely
conductive for the improving the quality of uncertain data,
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hence effectively improve the overall performance. Our work
represents an initial solution towards cleaning uncertain data
with crowdsourcing.
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