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ABSTRACT

Taxi-calling apps are gaining increasing popularity for their effi-

ciency in dispatching idle taxis to passengers in need. To precisely

balance the supply and the demand of taxis, online taxicab plat-

forms need to predict the Unit Original Taxi Demand (UOTD),

which refers to the number of taxi-calling requirements submitted

per unit time (e.g., every hour) and per unit region (e.g., each POI).

Predicting UOTD is non-trivial for large-scale industrial online taxi-

cab platforms because both accuracy and flexibility are essential.

Complex non-linear models such as GBRT and deep learning are

generally accurate, yet require labor-intensive model redesign after

scenario changes (e.g., extra constraints due to new regulations).

To accurately predict UOTD while remaining flexible to scenario

changes, we propose LinUOTD, a unified linear regression model

with more than 200 million dimensions of features. The simple

model structure eliminates the need of repeated model redesign,

while the high-dimensional features contribute to accurate UOTD

prediction. We further design a series of optimization techniques

for efficient model training and updating. Evaluations on two large-

scale datasets from an industrial online taxicab platform verify

that LinUOTD outperforms popular non-linear models in accuracy.

We envision our experiences to adopt simple linear models with

high-dimensional features in UOTD prediction as a pilot study and

can shed insights upon other industrial large-scale spatio-temporal

prediction problems.
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1 INTRODUCTION

Large-scale online taxicab platforms such as Didi Chuxing [1], Uber

[3] and Grab [2] are becoming increasingly popular. For instance,

on Didi Chuxing, millions of taxi-calling transactions are made in

Beijing alone per day. To efficiently dispatch taxis in metropolises

and assign them to passengers [18, 19], it is important to predict fine-

grained taxi demands and allocate taxis in advance. In a large-scale
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online taxicab industry, a representative indicator of taxi demand is

the Unit Original Taxi Demand (UOTD), which refers to the number

of taxi-calling orders submitted to the online taxicab platform per

unit time (e.g., every hour) and per unit region (e.g., each POI).

UOTD is different from the number of pick-ups (PU ). The number

of PU per unit time and region is a subset of UOTD because the

former ignores potential passengers who eventually give up taking

taxis. In contrast, UOTD reflects the complete original passenger

demands for a given time and space.

Information of UOTD benefits online taxicab platforms in triple

ways. (i) Expanding potential market. By comparing historical

UOTD with the corresponding number of PU, the platforms can

discover times and regions with strong taxi-calling motivation yet

few final taxi rides. (ii) Assessing incentive mechanisms. UOTD

reflects the willingness of users to travel by taxi after adopting new

discount strategies and dynamic pricing. (iii) Guiding taxi dispatch-

ing. Predicting UOTD facilitates online taxicab platforms to allocate

roaming taxis to passengers in advance. Hence predicting UOTD is

a foundational issue in large-scale online taxicab industries.

Despite extensive research efforts on taxi demand prediction [14,

15, 28], none of them are applicable in predicting UOTD. These

works focus on predicting the number of PU. They usually predict

the number of PU based on the correlation between PU and taxi

trajectories. However, taxi trajectories are not always associated

with UOTD (e.g., original taxi demands that are cancelled or without

successful passenger pick-ups), making it impossible to extend

works on PU prediction to UOTD prediction.

It is also non-trivial to tailor generic research on spatio-temporal

prediction for UOTD prediction in the taxicab industry. Due to their

inherent complexity, real-world prediction problems are mainly

solved by high VC-dimension models [20], which consists of two

paradigms: (i) complicated (non-linear) models with a small number

of features [7, 9] and (ii) simple (linear) models with massive sets

of features [8, 13]. The former paradigm is preferred in most spatio-

temporal prediction studies, but can be cumbersome for large-scale

online taxicab industries. Imagine the following example. Andy, an

AI engineer of an online taxicab platform, needs to add new spatio-

temporal features to a deep learning model to meet a new business

strategy. He has to design extra spatio-temporal convolution neu-

rons to reflect periodical and locally smoothing characteristics. In

the fast-developing online taxicab industry, application and key

factor changes due to new regulations or business strategies are

common and frequent. Therefore Andy needs to repeat the labor-

intensive model redesign process almost continuously. To mitigate

such heavy burden, we propose to transfermodel redesign to feature
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Figure 1: An overview of the framework.

redesign. Specifically, we leverage the latter paradigm, i.e., a linear

model with massive features, to ease integration of new information

with a unified framework.

A natural question arises whether a unified simple linear model is

able to predict UOTD accurately. We tackle this problem by integrat-

ing high-dimensional features from heterogenous datasets. Specifi-

cally, we propose LinUOTD, a unified UOTD prediction framework

with a linear model and high-dimensional (200 million) features.

Fig. 1 illustrates the overview of LinUOTD. We first investigate

multiple real-world datasets including original taxi demands (OTD),

points of interest (POI) and meteorology. We then extract four types

of basic features over space, time, meteorology and event domains,

and generate massive combinatorial features based on the business

logics of online taxicab platforms.

The high-dimensional features also bring in an extra challenge in

training an effective model with high-dimensional features on large-

scale datasets. Our LinUOTD framework addresses this challenge

with a parameter-server based distributed framework to parallelize

and accelerate model training and a hash-based feature tokeniza-

tion scheme to enable parallel and scalable feature engineering.

In addition, LinUOTD adopts L1 and L2 regularizations and de-

signs a spatio-temporal regularization for accurate prediction while

avoiding over-fitting.

Contributions. To the best of our knowledge, this is the first

effort that adopts a simple linear model with very high-dimensional

(hundreds of millions) features in predicting UOTD, to meet the

requirements of accuracy and flexibility in large-scale online taxi-

cab platforms. We transform the overhead of model redesign into

feature engineering, and apply a distributed learning framework

to support rapid, parallel and scalable feature updating and testing.

Surprisingly, evaluations on two real datasets from the largest on-

line taxicab platform in China reveal that our approach outperforms

classical non-linear models in prediction accuracy. As a pilot study,

we envision our successful experiences on adopting simple linear

models with high-dimensional features can shed light upon other

large-scale industrial spatio-temporal prediction problems.

The rest of the paper is organized as follows. We describe the

real-world large datasets used in our study in Sec. 2, introduce our

feature engineering in Sec. 3, and elaborate on the LinUOTD model

and optimization techniques to handle high-dimensional features

in Sec. 4. Evaluations on two large-scale industrial datasets are

presented in Sec. 5. Finally we review related work in Sec. 6 and

conclude this paper in Sec. 7.

2 DATA DESCRIPTION

The section introduces the datasets used for UOTD prediction, in-

cluding original taxi demand records, geographical information and

meteorological data. Table 1 summarizes the statistics of the raw

Table 1: A summery of the sampled datasets.

Data Category Beijing Hangzhou

Raw taxi demand records 23851235 12354687

Raw POI records 12398746 9854621

Raw weather records 23445698 15468796

datasets. Note that our datasets were collected in two metropolises

in China (Beijing and Hangzhou).

2.1 Original Taxi Demand Record Data

The original taxi demand records of the Beijing dataset are sampled

in proportion from an online taxicab platform in China. The raw

dataset contains 23,851,235 original taxi demand records on 75 suc-

cessive days in three months in Beijing. The original taxi demand

records of the Hangzhou dataset are sampled in proportion from the

same online taxicab platform. The raw Hangzhou dataset contains

12,354,687 original taxi demand records on the same 75 successive

days within three months. Each record in both datasets consists of

a user ID, a time stamp, locations of the origin and destination, a

distance estimate and the discount information. The user ID, time

stamp, origin and destination are submitted by users. The distance

estimate and the discount information are calculated by the taxicab

platform based on the information submitted by users. User IDs

and destinations are omitted since they are irrelevant to UOTD

prediction 1.

Fig. 2a-Fig. 2d and Fig. 3a-Fig. 3d depict the distributions of the

UOTD records from the Beijing dataset and the Hangzhou dataset,

respectively. Here we take the Beijing dataset as an illustration.

The heat map of the origin locations in all the original taxi demand

records is shown in Fig. 2a. We observe that most original taxi

demand gathers in the city center, dense residential areas and traffic

hubs. For example, the red (hottest) dot in the right corner in

Fig. 2a denotes the Beijing Capital International Airport. Fig. 2b

plots the distribution of the normalized number of original taxi

demand records per day. The number of original taxi demands

fluctuates across the three months, indicating the taxi demands

may be influenced by dynamic temporal factors such as weather.

Fig. 2c shows the distribution (the yellow curve) and the cumulative

percentage (the green curve) of the normalized number of original

taxi demands with respect to different estimated distances. As

shown, about 60% of the original taxi demand records are short

trips within 8km, indicating that short rides dominate the total taxi

demand. Fig. 2d demonstrates the distribution of discounts, from

which we see that most taxi demands get discounts within [0.6,1.0].

The above observations also hold for the Hangzhou dataset and we

omit the details here.

There are also inter-city differences when comparing the corre-

sponding distributions of UOTD between Beijing and Hangzhou.

This is reasonable because of the differences in climate, economy

and urban planning of the two cities. From the above observations,

we decide to include data from other domains such as POI and

meteorological information to predict UOTD for each city.

1Note that valuable information of the destination has been explicitly encoded in the
distance estimate and the discount information.
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(b) Temporal distribution.
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(c) Distance distribution.
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(d) Discount distribution. (e) POI distribution.

1st month 2nd month 3rd month
Month

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e

Rainy
Snowy

Overcast
Sunny
Cloudy
Sleety
Hazy
Foggy

(f) Weather distribution.

Figure 2: Distribution of the Beijing dataset: (a) spatial distribution of origin locations; (b) normalized numbers of daily

original taxi demands in three successivemonths; (c) distribution of estimated taxi-trip distances; (d) distribution of discounts;

(e) spatial distribution of POIs; (f) monthly distribution of weather information.
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(b) Temporal distribution.
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(c) Distance distribution.
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(d) Discount distribution. (e) POI distribution.
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Figure 3: Distribution of the Hangzhou dataset: (a) spatial distribution of origin locations; (b) normalized numbers of daily

original taxi demands in three successivemonths; (c) distribution of estimated taxi-trip distances; (d) distribution of discounts;

(e) spatial distribution of POIs; (f) monthly distribution of weather information.

2.2 POI Data

In addition to the original taxi demand record data, we also use a

large-scale geographical information dataset from a major online

map service provider in China. Specifically, we leverage the geo-

graphical information of Point Of Interest (POI). The Beijing POI

dataset contains 55,447 distinct POIs in Beijing. Each record consists

of a position, a name, an administrative district and a three-level

category. For instance, (116.49460 40.00057, Wangjing Playground,

Changyang District, Entertainment:Ourdoor Activity:Playground) is a

POI record, where (116.49460 40.00057) represents the longitude and

the latitude of the POI,Wangjing Playground denotes the POI name,

Changyang District is an administrative district in Beijing, and En-

tertainment:Ourdoor Activity:Playground is the three-level category.
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(b) POIs-Demands distribution.
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(c) Three-Level-Distance distribution.
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(d) POI-Hour distribution.
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(e) Weather-POI distribution (Entertainment).

1 3 5 7 9 11 13 15 17 19 21 23
Hour

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 n
or

m
al

iz
ed

 n
um

be
r 

of
 O

T
D

Rainy days
Not rainy days

(f) Weather-POI distribution (Airport).

Figure 4: Distribution of features.

Table 2: Coarse-level categories of POIs.

ID Category Count ID Category Count

P01 Tourist attraction 2385 P09 Parking lot 2764

P02 Life service 7109 P10 Entertainment 3443

P03 Residence 2634 P11 Cultural venues 1384

P04 Hotel 2234 P12 Health care 2749

P05 Sports 2406 P13 Company 2237

P06 Shopping 6245 P14 Dining 8942

P07 Organization 2236 P15 Education 2553

P08 Finance 2570 P16 Infrastructure 3556

The three-level category consists of a coarse-level (Entertainment),

a mid-level (Ourdoor Activity) and a sub-level (Playground), re-

spectively. In total the POIs are divided into 16 coarse-levels, 83

mid-levels, and 155 sub-levels. Table 2 lists the 16 coarse-level cate-

gories of POIs. POIs can help explain the motivations of taxi trips,

and thus the spatio-temporal distributions of UOTD. For instance,

shopping centers may have notable peak hours at weekends. Fig. 2e

shows the spatial distribution of the POIs in Beijing. Since our

goal is to predict UOTD for each POI, we preprocess the origin

location of each original taxi demand record by associating its co-

ordinates to the nearest POI. We adopt a similar approach to collect

the POI dataset for Hangzhou, which contains 42,965 distinct POIs

in Hangzhou. Fig. 3e shows the spatial distribution of the POIs

in Hangzhou. Note that the POIs in Hangzhou share the same

categories with the POIs in Beijing.

2.3 Meteorology Data

We further collect the meteorology data in Beijing during the cor-

responding three months from an online meteorology web of the

Chinese government. Each meteorological record contains a time

stamp and the information of weather condition, temperature, wind,

humidity and air quality per hour. The weather condition is cate-

gorized into sleet, haze, snow, rain, clear, cloudy, fog and overcast.

Fig. 2f plots the monthly weather distributions. It can be observed

that there are more haze and less rain in Beijing from the first to

the third month. The air quality is discretized into six levels: good,

average, lightly polluted, moderately polluted, heavily polluted and

severely polluted. In the meteorology dataset, 6% of the records

are incomplete or empty. We complete the missing temperature,

wind, and humility by averaging the values in the previous and the

next hours. For missing information of weather condition and air

quality, we use the same value as the ones in the previous hour.

The meteorology data in Hangzhou is collected by the same ap-

proach as aforementioned, and the corresponding monthly weather

distributions in Hangzhou are shown in Fig. 3f.

3 FEATURE ENGINEERING

As discussed in Sec. 1, the key insight of this work is to adopt

high-dimensional features to compensate for the expressiveness of

simple linear models so that they possess the predictive ability of

complex non-linear models. In this section, we select the proper

feature sets for UOTD prediction via feature engineering. Feature

engineering is the process of using domain knowledge of the data to

create features for representing the human’s understanding about

influence factors of complicated problems. These understandings

include the influences from basic single factors and joint influence

from combinational multiple factors. Specifically, for our UOTD

prediction problem, we consider two categories of features: basic

features and combinational features.

3.1 Basic Features

Basic features are extracted from each individual domains.

3.1.1 Temporal Features. We exploit Month, Day of month, Day

of week, Hour, Holiday andHistorical UOTD as the temporal features
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Table 3: The description of features.

Feature Type Feature Description

Temporal

Month The month which the time interval is in
Day of month The ordinal number of the day in a month
Day of week The ordinal number of the day in a week
Hour The time interval in a day
Holiday The length of the holiday (e.g., Saturday is in a two-day holiday)
Historical UOTD The UOTD of the same POI of the same time period in the last N days

Spatial

District The administrative district which the POI belongs to
POI name The name of the POI that the location is associated with
POI category The three-level category of the POI
Distance distribution The distribution of the estimated taxi-ride distances from the POI

Meteorological

Weather condition The description of the weather condition in a time interval
Temperature The temperature measured by Celsius in a time interval
Wind The orientation and speed of the wind in a time interval
Humidity The index of humidity in a time interval
Air quality The discretized six levels of the air quality in a time interval

Event

Discount pricing strategy The discount pricing strategy adopted by the online taxicab platform
Even-odd license plate plan Traffic restrictions on the last digit of the license plate numbers
Version of the App The version of the taxi-calling App

Combinational

Temporal-Spatial

(Month, Spatial features)
(Day of month, Spatial features)
(Day of week, Spatial features)
(Hour, Spatial features)
(Holiday, Spatial features)

Temporal-Temporal
(Hour, Day of week)
(Hour, Day of month)
(Hour, Holiday)

Meteorological-Spatial

(Weather condition, Spatial features)
(Temperature, Spatial features)
(Wind, Spatial features)
(Humidity, Spatial features)
(Air quality, Spatial features)

Temporal-Meteorological

(Month, Meteorological features)
(Day of month, Meteorological features)
(Day of week, Meteorological features)
(Hour, Meteorological features)
(Holiday, Meteorological features)

Temporal-Event

(Month, Event features)
(Day of month, Event features)
(Day of week, Event features)
(Hour, Event features)
(Holiday, Event features)

Spatial-Temporal-Meteorological

(Spatial features, Hour, Meteorological features)
(Spatial features, Day of month, Meteorological features)
(Spatial features, Day of week, Meteorological features)
(Spatial features, Holiday, Meteorological features)

(see Table 3 for the detailed explanations). Intuitively, the taxi

demands exhibit distinctive temporal characteristics. Fig. 4a plots

the distribution of the normalized hourly taxi demands during

weekdays, weekends, and for all days. As shown, the demands

have different temporal patterns between weekdays and weekends.

Specifically, there are two peaks in weekdays, representing the

morning peak and the evening peak, respectively. However, at

weekends, there is the only a peak in the evenings.

3.1.2 Spatial Features. As observed from Fig. 2a, the taxi de-

mands at different locations vary in patterns and biases. Therefore,

we adopt District, POI name, POI category and Distance distribution

as the spatial features. Fig. 4b plots the normalized taxi demands

for each of the 16 coarse-level categories of POIs in Table 2. Accord

with our intuition, more taxi demands are seen at POIs belonging

to the categories of “Infrastructure” (e.g., railway stations and air-

ports) and “Residence”, where there are consistently huge volume

of mobility. We also plot the average normalized taxi demands

for short, medium and long taxi rides in Fig. 4c. As shown, there

are relatively stable demands for long (> 20km) rides across the

entire time span of our datasets, while the demands for short rides

(< 8km) dramatically fluctuate over different days. Thus if the taxi

demands from a POI are dominated by long rides, it is likely that

the taxi demands starting from this POI are stable over time.

3.1.3 Meteorological Features. Meteorological information such

asweather can be an important consideration to alter transportation

modes, and accordingly, an impacting factor on taxi demands. For

example, in Fig. 2b, many peaks occurred because of bad weather

conditions such as heavy rain, which leads to a surge of taxi de-

mands. In addition to Weather condition, we also use Temperature,

Wind, Humidity and Air quality as the meteorology features for the

similar reasons.

3.1.4 Event Features. We use event features of Discount pricing

strategy, Even-odd license plate plan and Version of the App because
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they can affect the incentives of taxi-calling users, and consequently,

the taxi demands. Fig. 2d shows the relationship between the av-

erage discount and the number of demands. It can be observed

that when the platform provides more discounts, the number of

demands tends to increase in general.

3.2 Combinational Features

Feeding basic features from multiple domains into a linear model

only contributes to limited improvement in model expressiveness,

because linear models fail to characterize correlations among input

features. To boost the expressiveness of linear models, it is vital to

harness combinational features, which explicitly account for the

correlations among basic features. Combinational features also

bring an extra advantage to simplify model updating. New features

and new correlations can be seamlessly integrated by adding the

corresponding combinational features without model redesign.

In principle, all correlated features need to be combined and

fed into the linear model. Since the impacts of different features

aggregate in linear models, feeding diversified combinational fea-

tures into the model assists in characterizing the interplays among

different factors from multi-scale and multi-aspect, which is the

key to improve the model’s predictive ability. The complete table

of combinational features is shown in [17]. We interpret several

illustrative examples of combinational features in the following.

3.2.1 Temporal-Temporal Combinational Features. As shown in

Fig. 4a, the influence of hours in weekdays and at weekends are

different. For example, the taxi demand during in weekdays shows

a sharp peak at 8:00, yet almost no notable increase in the same

hour at weekends. Therefore, we combine Hour of day and Day of

week as a combinational feature.

3.2.2 Temporal-Spatial Combinational Features. Since the taxi

demands vary both over time and space, it is rational to jointly con-

sider temporal-spatial features. As an example, we plot the average

hourly normalized taxi demands of Residence-category POIs and

Infrastructure-category POIs in Fig. 4d. It can be observed that the

taxi demands at both categories of POIs show two notable peaks

throughout a day (7:00 to 9:00 and 17:00 to 21:00). Nevertheless, in

Residence-category POIs, the higher peak is seen from 7:00 to 9:00,

when most residents leave home for work. Conversely, the taxi

demand in infrastructure-category POIs dramatically arises from

17:00 to 21:00, indicating large amounts of residents calling taxis

at transport infrastructure such as bus stops to return home after

work. A combination of POI category and Hour of day will capture

such temporal-spatial dependency of taxi demands.

3.2.3 Meteorological-Spatial Combinational Features. The ra-

tionale to combine meteorological and spatial features is that the

impact of meteorological information on taxi demands varies for

POIs of different functionalities. Fig. 4e and Fig. 4f show the average

hourly normalized taxi demands of an entertainment place and an

airport in rainy and non-rainy days. In general the influence of the

rain on the airport is not obvious. However, the demands of the

entertainment place are sensitive to the rain, as shown by the huge

gap of taxi demands between 15:00 and 20:00 in Fig. 4e.

3.2.4 Other Combinational Features. In addition to the above

combinational features of two basic features, it is also feasible and

necessary to compose combinational features among multiple basic

features, e.g., by combining POI, hour and weather, as a temporal-

spatial-meteorological feature (see Table 3). Note that the inclusion

of a complex combinational feature (e.g., hour-POI-weather) does

not necessarily mean the exclusion of the subsets of the combina-

tional feature (e.g., hour-POI). This is because the training samples

for complex features are usually sparse, making them difficult to

train effectively. In contrast, it is beneficial to keep a feature hier-

archy of the complex feature (i.e., its subsets) to train at multiple

scales. After training subset features on relatively abundant training

samples, it is plausible to effectively train complex combinational

features even with sparse data. Following the above principles and

the selection criteria from the understanding of the business logic

of online taxicab platforms, we finally choose over 100 features

consisting of 200 million dimensions.

4 MODEL AND OPTIMIZATION

In this section, we present our LinUOTD model, which is a lin-

ear regression model with high-dimensional features and a spatio-

temporal regularizer (Sec. 4.1). To efficiently train our LinUOTD

model, we adopt a parameter-server based distributed learning

framework and a hash-based tokenization method (Sec. 4.2).

4.1 UOTD Prediction Model

Let y be the UOTD in a specific hour at a given POI, and x ∈
R
m be the feature vector corresponding to y. Note that x is a

very high dimension vector with more than two hundred million

dimensions. Then, the raw data is reorganized to the set D =
{(x i ,yi )|i = 1, 2, ...,N }, where (x i ,yi ) represents the UOTD and

the corresponding feature vector of the i-th sample.

Our UOTD prediction model, LinUOTD, is a linear regression

model with very high dimension features, which can be formulated

as pi = w ′xi , wherew is the parameter vector to be learned, and

pi is the prediction result. The objective function is shown in (1),

which is a squared error loss with L1 and L2 regularizations.

objlinear(w) =
N∑
i=1

(yi − pi )2 + λ1 ‖w ‖1 + λ2 ‖w ‖2 (1)

where λ1 and λ2 are the trade-off parameters for L1 and L2 regular-
izations, respectively.

Note that real-world UOTD records close in space or time tend to

be similar. This smoothness requirement on the UOTD prediction

results leads us to design the following objective function to reflect

the spatio-temporal regularization:

objspatio-temporal(w) =
∑
X ⊆D

ϕ(X )var ({w ′x |x ∈ X }) (2)

where var () denotes the variance, X is a subset sampled from D,
and ϕ(X ) maps subsets of POIs and times to a real value which

controls the regularization of prediction variance of instances x
in X . In the following discussions, for the simplicity of notation,

we use X to both represent the subset of D, and the feature matrix

consists of all x ∈ X . For the aforementioned spatio-temporal

regularization, we devise ϕ(X ) based on the radial basis function
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Figure 5: The architecture of the parameter-server based dis-

tributed learning framework.

kernel:

ϕ(X ) =
∏
x ∈X

1

σ
√
2π

e−
(x−X )′(x−X )

2σ (3)

where X is the mean of data in X : X = 1
|X |

∑
x ∈X x

Putting the above two regularizations together, the final objective

function for LinUOTD is defined as:

objLinUOTD(w) =
N∑
i=1

(yi − pi )2 + λ1 ‖w ‖1 + λ2 ‖w ‖2

+γ
∑
X ⊆D

ϕ(X )var ({w ′x |x ∈ X }) (4)

where γ is the trade-off parameter which globally controls the

influence of spatio-temporal regularization.

To minimize the objective function objLinUOTD in (4), we adopt

stochastic gradient descent with regulatized dual average (RDA)

[22] and AdaGrad [26], as the FTRL algorithm in [13].

Without considering L1 and L2 regularization, we can minimize

(4) by using minibatch based stochastic gradient descent:

wt+1 = wt − ηtдt , (5)

where t indicates the number of iterations andηt is the learning rate
at t th iterationm and дt represents the gradient at the t th iteration.

We sample a minibatch X ⊆ D from data at iteration t , which is

represented in a matrix form X t = (x1, . . . ,x l )′, and we define

X t = (X t ,X t , . . . ,X t )′. The derivative of the objective function in

(4) without L1, L2 loss isдt = X ′
t (pt −yt )+γϕ(X )(X ′

tX −X t
′
X t )w ,

where pt and yt are the prediction vector and label vector for data

in X t respectively.

We use RDA to handle the regularizations. The dual of (5) is

wt+1 = arдminw (
t∑

s=1

дsw +
1

2

t∑
s=1

σs ‖w −ws ‖22 + λ1 ‖w ‖1) + λ2 ‖w ‖2)

(6)

and the closed-form solver of (6) is

wt+1,i =

{
0 |zt,i | ≤ λ1

−( β+
√
ni

α + λ2)−1(zi − λ1sдn(zi )) otherwise
(7)

Algorithm 1: Training Process

input : training data D, parameters λ1, λ2
1 For all i , initialize zi = ni = 0;

2 foreach train iteration do

3 foreach minibatch X ⊆ D do

4 Pull parametersw for all instances in X from

parameter servers;

5 Calcualte predition p = Xw ;

6 Calculate gradient

д = X ′(p −y) + γϕ(X )(X ′X −X
′
X )w ;

7 Push д to parameters servers (Call Parameter

updating);

Following AdaGrad, we adapt per-coordinate learning rates to

accelerate the learning process. For the i-th coordinate of дt , ηt,i
is calculated by

ηt,i =
α

β +
∑t
s=1 д

2
s,i

(8)

We refer readers to [13] for the deductions of the above formulas.

In the following, we present our optimization techniques in

implementing the above algorithms for high-dimensional feature

learning on massive datasets.

4.2 Implementation and Optimization

Despite the simple structure of LinUOTD, the 200 million dimen-

sional features make it infeasible to train LinUOTD on a single

machine. To efficiently learn the high-dimensional features, we

exploit a parameter-server based distributed learning framework

and a hash-based tokenization method, which we detail in sequel.

4.2.1 System Optimization. Fig. 5 illustrates the architecture

of the parameter-server based distributed framework to train Lin-

UOTD. The framework consists of multiple parameter servers and

work nodes, and is fit for parallel machine learning on massive

datasets. All the model parameters are stored evenly and distribu-

tively among the parameter servers, while the training data are

dispatched to each work node when the training process starts.

During the training process, each work node runs multiple par-

allel workers (threads), which analyze the training samples in mini-

batches, fetch the corresponding parameters from the parameter

servers via a global feature hashing function, and calculate the

prediction values and the gradients. Algorithm 1 summarizes the

gradient calculation process at each worker. Afterwards, the gradi-

ents of the same parameter will be aggregated first via in-worker

aggregation and then be transferred among work nodes for cross-

worker aggregation. Finally, all the newly calculated gradients will

be pushed to the corresponding parameter servers, and each pa-

rameter server will update the parameters accordingly using the

gradients received. Algorithm 2 details the process of parameter

updating at each parameter server based on the formulas in Sec. 4.1.

The above iteration continues till the end of the training process.

4.2.2 Feature Engineering Optimization. Feature tokenization is

important in practical machine learning systems. By tokenization,
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Algorithm 2: Parameter Updating

input :gradient д
1 index I = {i |дi � 0};
2 foreach i ∈ I do

3 σi =
1
α (

√
ni + д

2
i −

√
ni );

4 zi = zi + дi − σiwi ;

5 ni = ni + д
2
i ;

6 if |zi | < λ1 then
7 wi = 0;

8 else

9 wi = −( β+
√
ni

α + λ2)−1(zi − λ1sдn(zi ));

each feature, which can be either a value, a string or their combi-

nations, is allocated a unique ID. Tokenization can be a bottleneck

in efficiency for large-scale distributed machine learning systems.

Since allocating a globally unique feature ID requires all the threads

to share a lock, tokenization makes parallel computation difficult

and inefficient. In fact, in industrial machine learning systems,

tokenization sometimes takes longer time than training.

To break the bottleneck due to tokenization, we propose a hash-

based tokenization method, which assigns an ID to each feature in

a lock-free manner, while ensuring the global uniqueness of the

IDs. Specifically, each discrete feature is hashed to a 64-bit space by

hashing schemes such as murmurhash and cityhash. Hence the rate

of hash collision remains low even for billion-dimensional features.

Hash-based tokenization brings two advantages:

• Parallelism. Classical tokenization schemes cannot be par-

allelized due to the need of a shared lock among all threads.

Conversely, hash-based tokenization is lock-free, thus en-

abling parallel computation.

• Scalability. To tokenize new data feature dimensions, hash-

based tokenization simply needs to hash the new dimen-

sions without re-allocating IDs.

The above hash-based tokenization is essential in our distributed

parallel learning framework, which substantially accelerates the

process of data preparation.

5 EXPERIMENTAL STUDY

This section presents the evaluations of our LinUOTD scheme.

5.1 The Experimental Setup

We evaluate the performance of our scheme on both the Beijing

and the Hangzhou datasets. We chronologically order each dataset

and use the first 3/4 for training and the remaining 1/4 for testing.
In the experiments, we denote our approach as LinUOTD (Linear

regression for UOTD prediction).

5.1.1 Baselines. We compare our LinUOTD method with the

following state-of-the-arts as baselines.

• Historical Average (HA): predicting UOTD using the

average of the historical UOTD during the same periods,

e.g., exploiting all UOTD data from 7:00-8:00 of all historical

Fridays to predict the UOTD from 7:00-8:00 on a Friday.

Table 4: The performance of different methods.

Dataset Method ER SMAPE RMLSE

Beijing

HA 0.96957864 0.44033822 0.52884659

ARIMA 0.89574376 0.42708392 0.50064628

Markov 0.81039261 0.37087309 0.65547612

GBRT 0.73525391 0.43042413 0.42926168

NN 0.81226708 0.43515638 0.43978603

HP-MSI 0.72515736 0.38083785 0.44228373

LinUOTD 0.6466814 0.35701066 0.40665828

Hangzhou

HA 0.70616373 0.45098107 0.55787302

ARIMA 3.16414193 0.46414572 0.59576175

Markov 0.83794771 0.44441837 0.83023651

GBRT 0.52536404 0.54445512 0.50110505

NN 0.61526469 0.56586680 0.50200963

HP-MSI 0.63366671 0.43352982 0.51046835

LinUOTD 0.54730029 0.44870624 0.49750043

• Auto-Regressive IntegratedMovingAverage (ARIMA):

predicting UOTD using the well-known time-series model.

• Markov Model (Markov): predicting UOTD by training

a 3-order Markov predictor based on the UOTD of the 15

most recent corresponding periods, as in [28].

• Gradient Boosted Regression Tree (GBRT): predicting

UOTD using non-parametric regression, which is one of

the most effective statistical learning models for prediction.

• Neural Network (NN): predicting UOTD by training a

neural network using the UOTD of 15 most recent corre-

sponding periods (e.g., the UOTD from 7:00-8:00 of 15 latest

Fridays to predict the UOTD from 7:00-8:00 on a Friday)

and all the basic features, as in [15, 28].

• HP-MSI: predicting UOTD adopting the state-of-the-art in

predicting the number of bikes to be rent from or returned

to each bike station [12].

5.1.2 Metrics. We use three metrics: Error Rate (ER), Symmetric

Mean Absolute Percent Error (SMAPE) and Root Mean Squared Loga-

rithmic Error (RMLSE) for evaluation.

ER =
∑
N

i=1 |pi−yi |∑
N

i=1 yi

SMAPE = 2
N

∑N
i=1

|pi−yi |
pi+yi+1

RMLSE =
√

1
N

∑N
i=1(loд(pi + 1) − loд(yi + 1))2

where N is the number of testing data. pi and yi are the estimation

and the ground truth of the ith instance, respectively.

5.2 Overall Results

Table 4 summarizes the results of all the compared methods with

respect to the three evaluation metrics. From the results, we make

the following observations. (i) As expected, the naive HA performs

poorly on both datasets. However, sometimes ARIMA and Markov

are even worse than the naive HA method. A possible reason might

be that time-series methods ignore the spatial variations of UOTD.

Consequently, they tend to yield unstable prediction accuracies

for different regions and thus unsatisfactory overall performance

on large-scale datasets. (ii) NN and GBRT are two competitive

methods. The reasons might be that both methods are supervised
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Table 5: The top 10 features ranked by mutual information.

Rank Feature MI

1
(Day of week, Hour of day, POI name, POI category,

Weather condition, Temperature, Air quality)
1.560136

2 (Day of week, Hour of day, POI name, POI category) 1.279322

3 (Temperature, POI name, District, POI category) 0.893714

4 (Hour of day, POI name, District, POI category) 0.834471

5 (Day of week, POI name, District, POI category) 0.531203

6 (Air quality, POI name, District, POI category) 0.496533

7 (Holiday, POI name, District, POI category) 0.435790

8 (POI name, POI category) 0.353553

9 (UOTD of 1 day ago) 0.299916

10 (UOTD of 7 days ago) 0.299857

non-linear models and able to extract spatio-temporal features

from multiple heterogeneous data sources. (iii) Methods tailored

for spatio-temporal prediction (HP-MSI and our LinUOTD) achieve

the best overall performance. Our LinUOTD outperforms HP-MSI

in almost all the metrics on the two datasets. The only exception

is the SMAPE metric on the Hangzhou dataset, where HP-MSI

yields slightly lower SMAPE. In summary, LinUOTD generally out-

performs all the baselines (both time-series based approaches and

complex, non-linear models) by adopting a simple linear regression

model, indicating that properly selected massive feature sets can

compensate for the simplicity of models in UOTD prediction.

5.3 Feature Contribution Analysis

To evaluate the effectiveness of both the basic and the combina-

tional features, we list the top 10 features with respect to Mutual

Information (MI) [5] in Table 5. It can be observed that the top 7

features are all combinational ones, demonstrating the necessity

to include various cross-domain features. In particular, the most

contributive feature is a multi-scale combination of temporal (Day

of week, Hour of day), spatial (POI name, POI category), and meteo-

rological (Weather condition, Temperature, Air quality) features.

The last two top features are basic temporal features, which

accords with the intuition that UOTD is highly correlated to the

latest historical UOTD from different time scales. Concretely, UOTD

tends to vary smoothly within a short duration (e.g., compared with

the UOTD 1 day ago), and exhibits certain periodic patterns (e.g.,

compared with the UOTD 7 days ago).

5.4 Prototype System

To ease researchers/engineers to utilize the UOTD prediction re-

sults for further analysis and strategy making, we implement a

prototype system for users to navigate, query and visualize the

results of UOTD prediction. Fig. 6 shows a screen shot of the proto-

type system. We use flatty (a template based on bootstrap) to build

the front-end basic page and the mapbox API (a larger provider of

custom online maps) for map related elements on the page. For the

back-end, we use flask (a python microframework for web appli-

cation) to process the requests. From the user side, the prototype

works as follows. After the user submits the keyword for a POI

and the current time (see the top), relevant POIs are shown (see

the left), and the locations of the POIs are also marked on the map.

Figure 6: Prototype System Demo.

The user can also see the 3D views by selecting “View 3D”. The

predictions for the next hour for the POIs will be indicated by a bar

of different heights and colors. As the user navigates the POIs by

placing his/her cursor near a certain POI, the details of the UOTD

prediction will be shown in a gray table, which includes the predic-

tions for the next five hours and the historical UOTD records for

the last five hours.

6 RELATEDWORK

The design of LinUOTD is closely related to the following two

categories of research.

6.1 Prediction of Taxi Demands

In this subsection, we review mainstream schemes on taxi demand

prediction, which is one of the most important research topics in

urban computing[23, 29, 30]. Depending on whether the prediction

model requires taxi trajectories[24], we discuss trajectory-based

prediction and trajectory-free prediction, respectively.

Trajectory-basedPrediction. Zhang et al. [27] propose a frame-

work combining clustering and time-series forecasting based on

historical taxi trajectories to predict taxi demands in urban areas.

Moreira-Matias et al. [14] design a model to predict the number

of future services at a given taxi stand, where the GPS traces and

event signals are transformed into a time series of interest as both

a learning base and a streaming test framework. Yuan et al. [25]

recommend places to pick up passengers quickly leveraging histor-

ical GPS trajectories of taxicabs. Li et al. [21] devise an improved

ARIMA-based prediction model to forecast the spatio-temporal

variations of passengers at a given hotspot using a large-scale GPS

trace dataset. Zhao et al. [28] analyze over 14 million taxi pick-up

samples in NYC and show a high predictability of the taxi demand.

Moreover, Sun et al. [16] propose a predictive query to predict the

aggregation number of objects according to the historical data of

moving taxicabs. In addition, Anwar et al. [4] combine the trajec-

tories of taxicabs and flight arrival data to predict the unmet taxi

demands, which means the gap between taxi demands and potential

supply of taxicabs at airport. The above trajectory-based schemes

are not directly applicable in UOTD prediction, because trajectory

information is not always associated with UOTD information, e.g.,

the original taxi demands that have been cancelled.

Trajectory-free Prediction. Li et al. [12] propose to estimate

the overall demand in a bike-sharing system, which can be easily
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extended to predict taxi demands. In our work, we take the above

trajectory-free prediction schemes as baselines, and show that our

LinUOTD scheme outperforms the baseline in prediction accuracy.

6.2 Distributed Machine Learning with
Parameter-Servers

Industrial applications usually adopt distributed machine learn-

ing frameworks to process with massive features on big datasets.

Traditional distributed machine learning methods focus on “data

parallelism”, where each computing node needs to store the dupli-

cates of all the parameters and models, which leads to enormous

overhead in communication and storage. With the emergence of

Distbelief model [6], the parameter-server based distributed frame-

work is attracting increasing research interest [10, 11]. Our work

applies a parameter-server based framework, yet differs from exist-

ing works [6, 10, 11, 13] in two system optimization techniques: (i)

We design a hash-based feature tokenization scheme to enable par-

allel and scalable data preprocessing. (ii) We improve the efficiency

of communication via request aggregation.

7 CONCLUSION

In this paper, we propose LinUOTD, a unified approach to pre-

dicting unit original taxi demands (UOTD) for large-scale online

taxicab platforms. LinUOTD is a linear regression model with over

200 million dimensional features. The simple model structure facili-

tates easy model modification, while the high-dimensional features

guarantee accurate prediction performance. We design a spatio-

temporal regularization scheme, a distributed learning framework

and a hash-based tokenization method to enable effective, parallel

and scalable feature learning in a high-dimensional feature space on

massive datasets. Extensive evaluations on two large-scale datasets

from an industrial online taxicab platform validate the effectiveness

of our approach. We envision our experiences of a simple linear

model with massive features in UOTD prediction can serve as an

insightful reference for various practical spatio-temporal prediction

problems with both accuracy and flexibility requirements.
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