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Abstract—Crowdsourcing has been shown to be effective in a wide range of applications, and is seeing increasing use. A large-scale

crowdsourcing task often consists of thousands or millions of atomic tasks, each of which is usually a simple task such as binary choice

or simple voting. To distribute a large-scale crowdsourcing task to limited crowd workers, a common practice is to pack a set of atomic

tasks into a task bin and send to a crowd worker in a batch. It is challenging to decompose a large-scale crowdsourcing task and

execute batches of atomic tasks, which ensures reliable answers at a minimal total cost. Large batches lead to unreliable answers of

atomic tasks, while small batches incur unnecessary cost. In this paper, we investigate a general crowdsourcing task decomposition

problem, called the Smart Large-scAle task DEcomposer (SLADE) problem, which aims to decompose a large-scale crowdsourcing

task to achieve the desired reliability at a minimal cost. We prove the NP-hardness of the SLADE problem and propose solutions in

both homogeneous and heterogeneous scenarios. For the homogeneous SLADE problem, where all the atomic tasks share the same

reliability requirement, we propose a greedy heuristic algorithm and an efficient and effective approximation framework using an

optimal priority queue (OPQ) structure with provable approximation ratio. For the heterogeneous SLADE problem, where the atomic

tasks can have different reliability requirements, we extend the OPQ-based framework leveraging a partition strategy, and also prove

its approximation guarantee. Finally, we verify the effectiveness and efficiency of the proposed solutions through extensive

experiments on representative crowdsourcing platforms.

Index Terms—Crowdsourcing, task decomposition

Ç

1 INTRODUCTION

CROWDSOURCING refers to the outsourcing of tasks tradi-
tionally performed by an employee to an “undefined,

generally large group of people in the form of an open call
[1]”. Early success stories include Wikipedia, Yelp and
Yahoo! Answers. In recent years, several general-purpose
platforms, such as Amazon Mechanical Turks (AMT)1 and
oDesk,2 have made crowdsourcing more powerful andman-
ageable. Crowdsourcing has attracted extensive research
attention due to its success in human intrinsic applications.

Particularly, a wide spectrum of fundamental data-driven
operations have been studied, such as max [2], [3], filter-
ing [4], inference [5], [6] and so on. In addition, researchers
and practitioners also pave the way for building crowd-
powered databases and data mining systems, and a couple
of prototypes have been successfully developed, such as
CrowdDB [7], Deco [8], Qurk [9], DOCS [10] and CDB [11].
We refer readers to tutorials and surveys [12], [13], [14], [15],
[16] for a full picture on crowdsourcing.

The rapid development of crowdsourcing platforms con-
tributes to the ever-increasing volume and variety of crowd-
sourcing tasks. A real-world crowdsourcing task can contain
thousands or millions of atomic tasks, where an atomic task
can be considered as a unit task that requires trivial cognitive
load. Despite the complexity and the variety of the crowd-
sourcing task goals, most atomic tasks are in the form of
binary choices. According to a recent study on 27 million
tasks performed by over 70,000 workers [17], boolean ques-
tions dominate the types of task operations and are widely
applied in basic data-driven operations such as filtering.
These large-scale crowdsourcing tasks are usually distrib-
uted to a wide range of crowd workers and are often sensi-
tive to false negatives. To distribute a large-scale task to
limited crowd workers, a common practice is to pack a set of
atomic tasks into a task bin and send to a crowd worker in a
batch [7], [18]. Furthermore, using a task bin to batch atomic
tasks is also an effective way to reduce the average cost per
atomic task [19]. In the following, we illustrate the adoption
of task bins in large-scale crowdsourcing tasks via a real-
world example in crowdsourced environmentmonitoring.

1. https://www.mturk.com/mturk/
2. http://www.odesk.com/
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Example 1 (Fishing-Line Discovery). The over-use and
out-of-report of large fishing-lines violate the international
fishing treaties, but are difficult to monitor by only a small
group of people. To fight against such illegal usages of
large fishing-lines, a project has been published on the
Tomnod website,3 where a satellite image covering more
than two million km2 has been transformed into a large
trunk of small pieces of images. The participants are asked
to decide “whether there is a ‘fishing-line’ shape in the
given piece of image”, which is considered as an “atomic
task”. Fig. 1 shows four example images in four atomic
tasks a1, a2, a3, a4. Since the project manager cannot afford
to miss any dubious image, they ask multiple participants
to review the same image and any image with at least one
“yes” will be further scrutinised. The project manager
needs to decide plans to distribute these images. One way
is to process a1 to a4 only once but individually (10 cents
each and 40 cents in total). Another way is to group a1 and
a2 in one task bin and a3 and a4 in another task bin and
then ask two workers to process each task bin twice (12
cents for each task bin, 12*2*2 ¼ 48 cents in total). Which
plan is better? Is there an even better choice?

We argue that the size of the task bins (or cardinality) plays
a crucial role in the execution plan of a large-scale crowd-
sourcing task in terms of cost and reliability. Decomposing a
large-scale crowdsourcing task into task bins of a larger size
results in a lower average cost of each atomic task in the task
bins. However, it is observed that the overall reliability of a
large batch of atomic tasks tends to decrease due to the
increase of cognitive load [19]. Consequently, these atomic
tasks have to be executed more times or dispatched to more
workers to meet the reliability requirement of the large-scale
crowdsourcing task, which leads to an increase in the total
cost. Previous works either set the fixed cardinality of a task
bin [7], [8] or adopt simple heuristics to determine a single
cardinality for the entire large-scale crowdsourcing task.

To further reduce the total cost in executing a large-scale
crowdsourcing task while retaining the desired reliability,
we propose to harness a set of task bin cardinalities rather
than a single one. The key insight is that with the increase of
the cardinality of task bins, there is a mismatch in the drop
of per atomic task reliability and the drop of per atomic task
cost. For instance, it may cost 10 cents to process a1 individ-
ually with a reliability of 0.9, while it only costs 6 cents to
process a1 in a task bin of size 2 (i.e., the cost of the task bin
is 12 cents), yet with a reliability of 0.8. There is a 40 percent
in per atomic task cost while only a 11 percent drop in reli-
ability, or equivalently, approximately 1.43 task bins are
needed to achieve a reliability (formally defined in Section

3.1) of 0.9 at the cost of 0:6� 1:43 ¼ 0:86 cents. With task
bins of different cardinalities (and of different reliability),
we then have the flexibility to optimize the total cost to sat-
isfy a certain reliability requirement. In the above example,
to fulfill a reliability requirement of 0.9 on a1, the optimal
plan is to execute a1 individually (i.e., in a task bin of size 1)
once, while for a reliability requirement of 0.95, the optimal
plan is to execute a1 in a task bin of size 2 twice.

In this paper, we propose the Smart Large-scAle task
DEcomposer (SLADE) problem to investigate the optimal
plan to decompose a large-scale crowdsourcing task into
batches of task bins of varied sizes, which satisfies the reli-
ability requirements of each atomic task at a minimal total
cost. In effect, the SLADE problem is similar to the role of
the query optimizer of a database that tries to find an effi-
cient execution plan given a logical expression to be evalu-
ated. As far as we know, this is the first work to tackle the
large-scale crowdsourcing task decomposition problem.

To sum up, we make the following contributions:

� We identify a new crowdsourcing task decom-
position problem, called the Smart Large-scAle task
DEcomposer problem, and prove its NP-hardness.

� We study two variants of the SLADEproblem. The first
is the homogeneous SLADE problem, where all atomic
tasks have the same reliability requirement. We pro-
pose a greedy heuristic and an optimal priority queue-
based approximation algorithm with logn-approxima-
tion ratio, where n is the number of all atomic tasks.
The second is the heterogeneous SLADE problem, where
different atomic tasks may have different reliability
requirements. We extend the above approximation
framework to heterogeneous SLADE problem, which
guarantees a slightly lower approximation ratio.

� We extensively evaluate the effectiveness and effi-
ciency of the proposed algorithms on real datasets.

The rest of the paper is organized as follows. We present a
motivation experiment in Section 2, and formally formulate the
SLADE problem in Section 3.We analyze the complexity of the
SLADE problem in Section 4 and propose approximation algo-
rithms for the homogeneous SLADE problem in Section 5 and
for the heterogeneous SLADE problem in Section 6, respec-
tively. We evaluate the proposed algorithms in Section 7 and
review relatedwork in Section 8. Section 9 concludes thiswork.

2 MOTIVATION EXPERIMENTS

In this section, we study the tradeoff between the per atomic
task reliability and the per atomic task cost as a function of
the task bin size (cardinality), which motivates our SLADE
problem. We conduct the motivation experiments on Ama-
zon Mechanical Turk using the following two crowdsourc-
ing tasks.

Fig. 1. Fishing-line discovery.

3. http://www.tomnod.com/

TONG ET AL.: SLADE: A SMART LARGE-SCALE TASK DECOMPOSER IN CROWDSOURCING 1589

http://www.tomnod.com/


Example 2 (Jelly-Beans-in-a-Jar). Given a sample image
containing 200 dots, a crowd worker is asked to deter-
mine whether another image contains more dots or not.
Each image is an atomic task of binary choice, whose
answer is independent of each other (Fig. 2a). We then
specify the cardinality of a task bin ranging from 2 to 30 by
aligning the target images along the question webpage.
For each task bin, 10 assignments are issued to smooth
the randomness of workers, and three different incentive
costs for one task bin are tested ($0.05, $0.08 and $0.1). As
is typical in such scenarios, we set a response time thresh-
old, after which the batch of atomic tasks is considered
too slow for practical use. We used 40 minutes as the
threshold.

Example 3 (Micro-Expressions Identification). Some cam-
paign activities record photos or videos and ask the crowd
to find the participants with certain expressions. The
crowd may receive basic training on the targeted micro-
expression and then photos or videos are distributed to be
screened. As shown in Fig. 2b, a crowd worker is expected
to label the emotion of another target portrait as positive
or negative given a sample portrait. The images are from
the Spontaneous Micro-expression Database (SMIC) [20].
We also vary the cardinality from 2 to 30 with the incentive
cost per task bin as $0.05, $0.1 and $0.2, respectively. Simi-
larly, we set a time threshold of 30 minutes.

Fig. 3 characterizes the relationships among the cardinal-
ity, confidence and cost of a task bin on both the Jelly-
Beans-in-a-Jar (Jelly, Fig. 3a) and the Micro-Expressions
Identification (SMIC, Fig. 3b) tasks. Here confidence refers
to the average probability that the crowds can correctly
complete each atomic task in this task bin. We also conduct
experiments on the Jelly dataset with different difficulty
(Fig. 3c). The difficulty of a Jelly task is indicated by the

number of dots in the given sample image. We specify the
difficulty level as 1 for 50 dots, level 2 for 200 dots, and level
3 for 400 dots (labeled as Diff. 1/2/3).

Take Fig. 3a as an illustration. Overtime task bins (not fin-
ishedwithin 40minutes) are shown in dotted lines, while the
rest are in sold lines. We see that the confidence declines
with the increase of cardinality. After cardinality of 14 (resp.
24), the task bins with cost $0.05 ($0.08) are disqualified since
no enough answers are obtained within 40 minutes. As the
cardinality goes from 2 to 30, the confidence decreases from
0.981 to 0.783, and the average cost per atomic task decreases
from $0.025 (¼ 0:05=2) to $0.003 (¼ 0:1=30).

We make the following observations: (1) There is a mis-
match in the drop of confidence and the drop in cost. Specifi-
cally, the confidence only decreases from 0.981 to 0.783 while
the average cost per atomic task decreases from 0.025 to 0.003.
The moderate drop in confidence may be explained by the
preference of performing a sequence of similar atomic
tasks, which reduces cognitive load of task-switching [21].
It indicates the potential of total cost saving to apply task bins
rather than dispatch each atomic task individually to each
crowd worker. (2) The decreasing trends of confidence vary
for different costs (see the curves for the cost of 0.05, 0.08, and
0.1). Thus it is more flexible to achieve certain accuracy
requirement by using a combination of task bins of different
sizes and confidence. (3)While the confidence of crowdwork-
ers tend to be less sensitive to the drop in cost (i.e., reward to
workers), the quantity of crowd workers is notably sensitive
to the drop in cost (e.g., themaximal size for in-time responses
at a cost of 0.05 is only half of that at a cost of 0.1 (14 versus 30).

The above observations hold for different types of tasks
(Fig. 3b) and for the same tasks of different difficulty levels
(Fig. 3c). The difference lies in the absolute values, e.g., the
general confidence is only 0.7 for the SMIC tasks. It is essential
to adopt a set of task bins as probes to evaluate the difficulty
of different types of atomic tasks so as to select a proper set of
task bins. We refer readers to [19] for further discussions on
the difficulties and task designs of atomic tasks. In this paper,
we focus on how to batch atomic tasks that are homoplasmic
and thus with the same difficulty. Packing tasks that vary sig-
nificantly in difficulty is out of the scope of thiswork.

3 PROBLEM STATEMENT

In this section, we first introduce several important concepts
of large-scale crowdsourcing tasks and then formally define
the SLADE Problem and discuss its complexity.

Fig. 2. Screen-shots of (a) Jelly-Beans-in-a-Jar and (b) Micro-expres-
sions identification.

Fig. 3. Relationships among the cardinality, confidence, and cost of a task bin tested on (a) Jelly-Beans-in-a-Jar, (b) Micro-Expressions Identification
tasks, and on (c) Jelly-Beans-in-a-Jar tasks of different difficulties.
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3.1 Preliminaries

We focus on large-scale crowdsourcing tasks consisting of
atomic tasks. An atomic task, denoted by ai, is defined as a
binary choice problem. Due to their trivial cognitive load
and simple structure, atomic tasks of boolean questions
dominate the types of task operations adopted in the mar-
ketplace [17]. We further define a large-scale crowdsourcing
task T as a set of n independent atomic tasks, i.e., T ¼
fa1; a2; . . . ; ang (n ¼ jT j). Large-scale crowdsourcing tasks
are common in real-world crowdsourcing. For example, in
the fishing-line discovery application, an atomic task is to
decide whether there is a fishing-line shape in a given
image, while the whole task consists of over 100,000 satellite
images to be checked. Note that typical tasks posted on pop-
ular crowdsourcing platforms such as AMT and oDesk are
large-scale tasks consisting of simple atomic tasks that can
be handled independently by each crowd worker, e.g., the
decision of one image will not affect that of another image.
We therefore omit the task coordination among co-workers
and refer readers to [22] for the high-level discussions on
complex task decomposition.

As discussed in Section 2, batched atomic tasks hold
promise to reduce the total cost of a large-scale crowdsourc-
ing task with achieving the same accuracy requirement. The
aim of this study is to explore the design space of cost-
effective batched atomic task decomposition plans for a
large-scale crowdsourcing task. Formally, we define a batch
of atomic tasks as l-cardinality task bins as follows.

Definition 1 (l-Cardinality Task Bin). An l-cardinality task
bin is a triple, denoted as bl ¼ hl; rl; cli, where (1) the cardinality
l is the maximum number of different atomic tasks that can be
included in the task bin; (2) rl is the confidence, which indicates
the average probability that the crowds can correctly complete
each atomic task in this task bin; (3) cl is the incentive cost given
to the crowds who complete all the atomic tasks in this task bin.

An l-cardinality task bin is similar to a container, which
can contain at most l atomic tasks. Different combinations
of atomic tasks can be contained in a task bin, and the
atomic tasks contained in an l-cardinality task bin are given
to one crowd worker in a bundle. Table 1 shows an example
of task bins, fb1; b2; b3g, where the ith column corresponds
to the i-cardinality task bin. For example, the second col-
umn represents the 2-cardinality task bin b2, with the confi-
dence r2 ¼ 0:85 and the cost c2 ¼ 0:18. Based on the
observations in Section 2, Table 1 assumes the average cost
and the confidence of an atomic task drop with the increase
of the task bin cardinality. For example, the average costs of
the three task bins are 0.1, 0.09 and 0.08, respectively, while
their confidences are 0.9, 0.85, and 0.8, respectively.

In practice, the choices of task bin cardinalities and the
corresponding confidences and costs can be learned from
historical records. In fact, popular marketplaces such as like

AMT and oDesk use a set of different task bins as real-time
probes to monitor the quality of the current work flow [23].
To obtain the parameters of the set of tasks bins, when a
batch of atomic tasks arrives, one can regularly issue testing
task bins with different cardinalities. The atomic tasks in
testing task bins are the same as the real tasks, yet the
ground truth is known to calculate the confidence. A data-
base system, although crowd-powered, always has a
response time requirement, which is inversely proportional
to the incentive cost of each task bin. Thus the cost for each
cardinality is calculated as the minimum cost that meets the
response time requirement. After obtaining the answers
from the testing task bins, the confidence can be obtained
by regression or counting methods.

Each atomic task is usually performed by multiple crowd
workers to guarantee the quality of the task [19]. For
batched atomic tasks, each atomic task is assigned to multi-
ple task bins for the same purpose.

Since many real-world crowdsourcing applications
require low false negative ratios, e.g., discovering fishing-
lines from satellite images, we define the reliability of an
atomic task as the probability of no false negatives. We can
link the reliability of an atomic task to the confidences of the
task bins where the atomic task is assigned.

Definition 2 (Reliability). Given an atomic task ai and the set
of assigned task bins BðaiÞ, the reliability, denoted by Relðai;
BðaiÞÞ, of ai inBðaiÞ is as follows:

Relðai;BðaiÞÞ ¼ 1�
Y

b2BðaiÞ
ð1� rjbjÞ; (1)

where jbj is the cardinality of the task bin b, and rjbj is the con-
fidence of the task bin b.

Equation (1) represents the estimated possibility that ai
can be correctly completed by at least one assigned task bin.

Table 2 summarizes the notations used in this paper.

3.2 SLADE Problem

According to the definitions of task bins and the reliability of
each atomic task, we define the SLADE Problem as follows.

Definition 3 (SLADE Problem). Given a large-scale crowd-
sourcing task T consisting of n atomic tasks fa1; . . . ; ang, the
corresponding reliability thresholds ft1; . . . ; tng for each atomic
task, and a set of task bins B ¼ fb1; . . . ; bmg, the SLADE Prob-
lem is to find a planning DPT ¼ fti; bigmi¼1, which means task
bin bi is used for ti times, to minimize the total cost,

Pm
i¼1 tici,

such that Relðai;BðaiÞÞ � ti, 8ai 2 T .

In particular, if the reliability threshold ti of each atomic
task is the same, the variant of the SLADE problem is called
the homogeneous SLADE problem, which is studied in
Section 5. When the reliability thresholds of the atomic tasks
are different, the variant is called the heterogeneous SLADE
problem, which is discussed in Section 6. Moreover, each
atomic task can be assigned to multiple l-cardinality task
bins in a decomposition plan, i.e., each atomic task can be
dispatched to and processed by multiple crowd workers to
improve the reliability (will be defined shortly) of each
atomic task. We illustrate the (homogeneous) SLADE prob-
lem via the following example.

TABLE 1
A Set including Three Task Bins

Task Bins b1 b2 b3

Cardinality l 1 2 3
Confidence rl 0.9 0.85 0.8
Incentive Cost (USD) cl 0.1 0.18 0.24

TONG ET AL.: SLADE: A SMART LARGE-SCALE TASK DECOMPOSER IN CROWDSOURCING 1591



Example 4 (Homogeneous SLADE Problem). Given a
crowdsourcing task T ¼ fa1; a2; a3; a4g, where each atomic
task ai is the same as in Fig. 1, a set of task bins
B ¼ fb1; b2; b3g in Table 1, and the reliability thresholds of
each atomic task ti ¼ 0:95; 1 � i � 4, the homogeneous
SLADE problem can be illustrated in Fig 4. A feasible
decomposition plan, P1, is to adopt four 2-cardinality task
bins, i.e., fa1; a2g, fa1; a2g, fa3; a4g and fa3; a4g, respec-
tively. In P1, the reliability of ai, ð1 � i � 4 is 1� ð1 �
0:85Þ � ð1� 0:85Þ ¼ 0:98 > 0:95, with a total cost of 0:18 �
4 ¼ 0:72. Another feasible decomposition plan, P2, is to use
two 3-cardinality task bins and one 2-cardinality task bin,
i.e., fa1; a2; a3g, fa1; a2; a4g and fa3; a4g, respectively. The
reliability of all the atomic tasks in P2 also exceeds 0.95,
while P2 costs only 0:24� 2þ 0:18 ¼ 0:66. Fig. 4 illustrates
the two decomposition plans. In fact, P2 is the optimal
decomposition plan since it has the lowest total cost among
all the feasible decomposition plans. Note that the cost sav-
ing scales up with the amount of the atomic tasks in T . For
a large-scale crowdsourcing task T with thousands or mil-
lions of atomic tasks, the optimal decomposition plan can
reduce substantial incentive costs while retaining the
desired reliability for each atomic task.

4 PROBLEM REDUCTION

In this section, we first reduce the reliability constraint of
the SLADE problem to an equivalent simple form. Then, we
prove the NP-hardness of the SLADE problem. We also
show that there are polynomial-time solutions to a relaxed
variant of the SLADE problem. Finally, we reduce the
SLADE problem to the covering integer programming (CIP)
problem [24], and apply the existing solution of the CIP
problem as the baseline algorithm for our SLADE problem.

4.1 Reduction of Reliability

We equivalently rewrite Equation (1) in Definition 2 as:

Rðai;BðaiÞÞ ¼ �lnð1�Relðai;BðaiÞÞ ¼
X

b2BðaiÞ
�lnð1� rjbjÞ: (2)

In Definition 2, the constraint of the SLADE problem is
that the reliability of each atomic task satisfies a given
reliability threshold ti, namely Relðai;BðaiÞÞ � ti. Base on
Equation (2), this constraint is equivalent to �lnð1 �

Relðai;BðaiÞÞ � �lnð1� tiÞ, namely
P

b2BðaiÞ �lnð1� rjbjÞ �
�lnð1� tiÞ , for an atomic task ai. Thus the reliability of an
atomic task is transformed to a sum of

P
b2BðaiÞ �lnð1� rjbjÞ.

4.2 Complexity Results

We first show the NP-hardness of the SLADE problem and
then demonstrate that there are polynomial-time solutions
to a relaxed variant of the SLADE problem.

Theorem 1. The SLADE problem is NP-Hard.

Proof. To complete the proof, we reduce the Unbounded
Knapsack Problem(UKP) [25] to the SLADE problem.
Then the hardness of the SLADE problem follows.

An instance of UKP is: given a set of m items with
weights fw1; . . . ; wmg and values fv1; . . . ; vmg, and each
item can be used unbounded multiple times. The deci-
sion problem is to decide whether there exists a set
N ¼ fn1; . . . ; nmg (denoted as the number that each item
is used) such that the total weight is no more than a spe-
cific weight threshold, i.e.,

Pm
i¼1 ni � wi �W and the total

value is no less than a given value threshold, i.e.,Pm
i¼1 ni � vi � V . Without loss of generality, we can

assume that vi > 0 for every item.
An instance of SLADE problem can be constructed

from the above instance of UKP as follows:

� Construct m task bins B ¼ fb1; . . . ; bmg. Each item
in UKP corresponds to a task bin.

� For each task bin bi, let ci ¼ wi and ri ¼ 1� e�vi .
� For the crowdsourcing task T in SLADE problem,

there is only one atomic task a1 with the reliability
threshold t1 ¼ 1� e�V .

Let DPT ¼ fti; bigmi¼1 be the decomposition plan of the
SLADE instance. To complete the proof, we prove that
the decomposition plan DPT spends no more than W
subject to

Pm
i¼1 ½ti � � ln ð1� riÞ� � � ln ð1� t1Þ if and

only ifN ¼ ft1; . . . ; tmg is a feasible solution of UKP.
Since there is only one atomic task in T , then the

reduction of reliability defined by Equation (2) is equal to

Xm

i¼1
½ti � � ln ð1� riÞ� ¼

Xm

i¼1
½ti � � ln ð1� 1þ e�viÞ� ¼

Xm

i¼1
ti � vi:

Besides,� ln ð1� t1Þ ¼ � ln ð1� ð1� e�V ÞÞ ¼ V . There-
fore, a feasible decomposition plan DPT of the SLADE
problem should satisfy

Pm
i¼1 ti � vi � V . And we also

know that the cost of this plan is
Pm

i¼1 ti � ci ¼
Pm

i¼1 ti � wi,
which should be nomore thanW .

Therefore, as long as DPT is a feasible plan of the
SLADE problem, N ¼ ft1; . . . ; tmg must be a feasible
solution of UKP and vice versa.

TABLE 2
Summary of Symbol Notations

Notation Description

ai an atomic task
T ¼ fa1; . . . ; ang a large-scale crowdsourcing task
bl an l-cardinality task bin
B ¼ fb1; . . . ; bmg the set of task bins
n ¼ jT j the number of atomic tasks in T
m ¼ jBj the number of task bins in B
rl the confidence for each atomic task in a bl
cl the incentive cost of a bl
b an arbitrary task bin
BðaiÞ the set of assigned task bins for ai
Relðai;BðaiÞÞ the reliability of ai in the setBðaiÞ
Rðai;BðaiÞÞ the equivalent reduction of Relðai;BðaiÞÞ
ti the reliability threshold of ai
DPT optimal decomposition plan of T

Fig. 4. Illustration of the SLADE problem.
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To sum up, the decision version of SLADE problem
can be reduced from an instance of UKP and UKP is
NP-Complete. Hence, the decision version of SLADE
problem is NP-Complete and the SLADE problem is
NP-Hard. tu
Complexity of a Relaxed Variant of the SLADE Problem.

Although the SLADE problem is NP-Hard, there is a
relaxed variant which can be solved in polynomial time.
The relaxed variant requires that the confidences of all task
bins are always greater than the maximum reliability
threshold of all atomic tasks, namely rj � tmax where
1 � j � m, and tmax is the maximum ti (1 � i � n). That is,
each atomic task satisfies its reliability threshold require-
ment no matter which task bin it is assigned to. This relaxed
variant of the SLADE problem can be simplified to the ROD

CUTTING problem [26], which has an efficient dynamic pro-
gramming exact solution with OðnmÞ time complexity,
where n and m are the number of atomic tasks in the large-
scale task and the number of distinct task bins, respectively.

4.3 Baseline Algorithm

In this subsection, we first reduce the SLADE problem to the
CIP problem [24] and present a baseline algorithm using
existing solutions of the CIP problem.

The CIP problem is shown as follows. Given a matrix U
of integer non-negative coefficients ui;j 2 N (i 2 I ¼ f1; . . . ;
jIjg, j 2 J ¼ f1; . . . ; jJ jg), and positive vectors C and V , the
CIP problem is to find a vector Y 2 N such that

min
X

j2J
cjyj

s.t.
X

j2J
uijyj � vi 8i 2 I

yj 2 N; 8j 2 J;

(3)

where yj 2 Y , cj 2 C and vi 2 V [24].
We can reduce the SLADE problem to the CIP problem in

two steps.

� Step 1. For the n atomic tasks in T and an l-cardinal-
ity task bin bl 2 B, there are n

l

� �
distinct combination

instances, which consist of the set Cl (l 2 f1; . . . ; mg)
and jClj ¼ n

l

� �
. Thus, let jJ j ¼Pm

l¼1 jClj, and for j 2
½1þPl�1

i¼1 Ci;
Pl

i¼1 Ci�, each cj ¼ cl and uij ¼ � ln ð1� rlÞ
if the task ai is batched into an l-cardinality task bin
in the jth instance of J .

� Step 2. For each atomic task ai with the reliability
threshold ti in the SLADE problem, we have vi ¼
� lnð1� tiÞ (vi 2 V ) and jIj ¼ n in the CIP problem.

Finally we come up with a baseline algorithm for the
SLADE problem as follows.

� Transform the SLADE problem to the CIP problem
by the aforementioned reduction process.

� Solve the CIP problem via existing methods [24].
� Return the results of the reduced CIP problem,

which is equivalent to the planning of the SLADE
problem.

Note that the baseline algorithm cannot give the optimal
solution, as the CIP problem [24] is NP-hard. Existing solu-
tions are only approximate. Although the baseline algorithm

can be applied to both homogenous and heterogenous
SLADE problems and can be easily implemented, the reduc-
tion step will generate exponential (

Pm
l¼1

n
l

� �
) combination

instances. Thus, the baseline algorithm is impractical for
large-scale crowdsourcing tasks, where there can be thou-
sands or millions of atomic tasks. Accordingly, we only gen-
erate part of the combination instances for performance
evaluation. To address the scalability issue, we propose a
greedy heuristic algorithm and an optimal priority queue-
based approximation framework in the next two sections.

5 HOMOGENEOUS SLADE

In this section, we study the homogeneous SLADE problem,
where all reliability thresholds tið1 � i � nÞ are equal. Thus,
all reliability thresholds are simplified as t (ti ¼ t; 8i) in the
rest of this section. In Section 5.1, we first present a greedy
heuristic algorithm, called Greedy, which is simpler and
more efficient than the baseline algorithm but has no
approximation guarantee. Then we propose an optimal pri-
ority queue-based (OPQ) algorithm in Section 5.2, which is
not only faster than the Greedy algorithm but also guaran-
tees logn approximation ratio, where n is the number of
atomic tasks in a specific large-scale crowdsourcing task. In
particular, in some cases, the OPQ-Based algorithm can
even return the exact optimal solution.

5.1 Greedy Algorithm

To obtain a decomposition plan that satisfies the reliability
threshold and has low total cost, we need to consider both
the incentive cost (cost for short) and the confidence of the
assigned task bins to each atomic task. A task bin with
smaller cost will result in lower total cost, while a task bin
with higher confidence can possibly reduce the number of
task bins used in the decomposition plan. Therefore, the
greedy algorithm is to consider the cost-confidence ratio of
each task bin and its corresponding atomic tasks and
include the task bin and its corresponding atomic tasks with
the lowest ratio into the decomposition plan until the all
atomic tasks satisfy the reliability threshold constraint.

Specifically, the cost-confidence ratio for an l-cardinality
task bin and its corresponding atomic tasks is defined as:

ratio ¼ cl

minfl� ð� lnð1� rlÞÞ;
Pl

k¼1 uikg
: (4)

In Equation (4), cl is the cost of the l-cardinality task bin bl,
and rl is the confidence of the atomic tasks in bl. As
explained in Section 4.1, � lnð1� rlÞ is the contributed reli-
ability per atomic task in bl. Thus, l� ð� lnð1� rlÞÞ is the
total contributed reliability for the atomic tasks in bl. We fur-
ther define the threshold residual uik of the ik-th (1 � k � l)
atomic task, which is its reliability threshold subtracting its
current total reliability contributed by the assigned task
bins. It is possible that the total threshold residual of the
assigned l atomic tasks in bl is smaller than � lnð1� rlÞ, thus
the cost-confidence ratio should be cl

minfl�ð� lnð1�rlÞÞ;
Pl

k¼1 uik g
.

Based on the cost-confidence ratio, the main idea of the

greedy algorithm is to choose the locally optimal task bin bl	

and assign l	 atomic tasks with the highest l	 threshold

residuals in each iteration, and then the algorithmmaintains

the threshold residual of each atomic task and ranks all the
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atomic tasks according to their current threshold residuals.
Finally, the algorithm terminates when every threshold

residual becomes zero.

Algorithm 1. Greedy

Input: A large-scale task T ¼ fa1; . . . ; ang, a set of task bins
fb1; . . . ; bmg, a reliability threshold t

Output: An approximate decomposition planDPT , and an
approximate total cost CostT

1 DPT  ;;
2 Initialize u ¼ fu1; . . . ; ung for each atomic task, where each
ui  � lnð1� tÞ;

3 Rank T ¼ fai1 ; . . . ; aing in non-ascending order of ui;
4 while ui1 > 0 do
5 l	  argminl2B

cl

minfl�ð� lnð1�rlÞÞ;
Pl

k¼1 uik g
;

6 DPT  DPT [ ffai1 ; . . . ; ail	 gg;
7 CostT  CostT þ cl	 ;
8 for k 1 to l	 do
9 uik  uik � ð� lnð1� rl	 ÞÞ;
10 Rank T ¼ fai1 ; . . . ; aing in non-ascending order of ui;
11 returnDPT and CostT

The procedure of the greedy algorithm is illustrated in
Algorithm 1. Initially, the decomposition planDPT is empty
in line 1. Line 2 initializes the threshold residual ui of each
atomic task to � lnð1� tÞ. Then it ranks n atomic tasks in
terms of their threshold residuals in line 3. Lines 4-10 itera-
tively perform the greedy strategy. As long as at least one
atomic task fails to satisfy the reliability threshold require-
ment, the algorithm chooses the task bin with the minimum

cl

minfl�ð� lnð1�rlÞÞ;
Pl

k¼1 uik g
. After choosing the locally optimal

task bin bl	 , the algorithm allocates the first l	 ranked atomic
tasks in T to the final decomposition plan and adds cl	 to
the incentive cost in lines 6 and 7, respectively. Then, the
threshold residuals of the first l	 ranked atomic tasks are
reduced by � lnð1� rl	Þ each in lines 8-9. Afterwards the
algorithm re-ranks all the atomic tasks in T in a non-ascend-
ing order of their threshold residuals in line 10. Finally, the
whole procedure terminates when the threshold residual of
each atomic task is zero.

Example 5 (Greedy Algorithm). Back to our running
example. Given a crowdsourcing task with 4 atomic tasks,
the set of task bins in Table 1, and the reliability threshold
t ¼ 0:95, Algorithm 1 executes as follows. It first initial-
izes each ui ¼ 2:996 where 1 � i � 4. Since all ui’s are the
same, the initial order of the atomic tasks is ha1; a2; a3; a4i.
Then the algorithm selects the first task bin {a1} in the first
round because the ratio 0:1

� lnð1�r1Þ ¼ 0:043 is the smallest in

line 5. Then, u1 ¼ 2:996� 2:303 ¼ 0:693, and the algorithm

re-ranks T as ha2; a3; a4; a1i, based on the corresponding

threshold residuals of 2:996; 2:996; 2:996; 0:693. The algo-

rithm continues similar iterations till all the threshold resid-

uals become zero. The final decomposition plan is: fa1g;
fa2g; fa3g; fa4g; fa1; a2; a3g; fa4g, with a total cost of 0.74.

Computational Complexity Analysis. Note that the task bin
with the maximum cardinality has the smallest confidence
for each atomic task in this task bin. Therefore given an arbi-
trary atomic task and a reliability threshold t in the

homogeneous SLADE problem, the upper bound on the

number of iterations in Algorithm 1 is nd lnð1�tÞ
lnð1�rmÞe, where rm

is the confidence of the m-cardinality task bin, n is the total
number of atomic tasks, and m is the maximum cardinality
of all the task bins. Furthermore, the algorithm needs to
rank all the atomic tasks according to their current threshold
residuals, which costs Oðn lognÞ time per iteration. Hence
the total computational complexity of Algorithm 1 is
Oðnd lnð1�tÞ

lnð1�rmÞe ðmþ n lognÞÞ ¼ Oðn2 lognÞ since d lnð1�tÞ
lnð1�rmÞe is a

constant andm
 n in practice.

5.2 Optimal-Priority-Queue-Based (OPQ) Algorithm

In this subsection, we introduce an approximation algo-
rithm based on a specific data structure, called the optimal
priority queue. This approximation algorithm not only
returns decomposition plans with lower total cost in prac-
tice but also has a lower time complexity. In particular, with
the optimal priority queue data structure, we can even
obtain the exact optimal solution in certain cases. In the fol-
lowing, we first introduce how to construct the optimal pri-
ority queue and then devise a faster approximation
algorithm that guarantees logn approximation ratio.

5.2.1 Constructing the Optimal Priority Queue

Before introducing the optimal priority queue data struc-
ture, we first define two basic concepts, the lowest common
multiple in a combination of task bins and the unit cost of an
atomic task using this combination. Denote a combination
of task bins as Comb ¼ fnk1 � bk1 ; . . . ; nkl � bklg, where nki�
bki means that an atomic task is assigned nki times to ki-car-
dinality task bins. The least common multiple, denoted as
LCM, of Comb is lcmðk1; k2; . . . ; klÞ, which represents the
number of atomic tasks in T to be assigned using this com-
bination. The unit cost of Comb is UC ¼Pl

i¼1
cki
ki
nki .

Example 6 (Combination (Comb)). Given the set of task
bins in Table 1, we can construct an arbitrary combination
of task bins e.g., Comb ¼ f3� b1; 2� b2; 1� b3g. For Comb,
its lowest common multiple is LCM ¼ 1� 2� 3 ¼ 6, and
the unit cost of an atomic task using Comb is UC ¼
3� 0:1þ 2� 0:18

2 þ 1� 0:24
3 ¼ 0:56, meaning that we can

assign 6 atomic tasks to Comb, with an “averaged” incen-
tive cost of 0.56 per atomic task and a total cost of
0:56� 6 ¼ 3:36 for the 6 atomic tasks. Fig. 5 illustrates the
above Comb and how 6 atomic tasks are assigned in this
combination, where each atomic task is assigned to six
task bins (three 1-cardinality bins, two 2-cardinality bins
and one 3-cardinality bins). For example, as shown in the
last row in Fig. 5, the atomic task a1 is assigned into the six
task bins (fa1g; fa1g; fa1g; fa1; a2g; fa1; a2g; fa1; a2; a3g).

Definition 4 (Optimal Priority Queue). Given a set of task
bins B ¼ fb1; . . . ; bmg and a reliability threshold t, an optimal
priority queue OPQ is a priority queue consisting of the combi-
nations of task bins (Comb’s) and satisfies the following condi-
tions: (1) the elements in the optimal priority queue is ranked
in an descending order of their corresponding LCM values;
(2) for any element OPQi (with OPQi:LCM and OPQi:UC)
in the optimal priority queue, there is NO element OPQj (with
OPQj:LCM and OPQj:UC) such that OPQi:LCM �
OPQj:LCM and OPQi:UC � OPQj:UC; (3) all the
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combinations of task bins in this optimal priority queue satisfy
the reliability threshold requirement for each atomic task.

Example 7 (Optimal Priority Queue). Back to our run-
ning example, given the set of task bins in Table 1, the
optimal priority queue is shown in Table 3 with a reliabil-
ity threshold of 0.95 for ai, 1 � i � 4. In Table 3, each col-
umn corresponds to a combination of task bins. For
example, for the first column f2� b3g, OPQ1:UC ¼ 2 �
0:24
3 ¼ 0:16 and OPQ1:LCM ¼ 3. In addition, if an atomic
task is assigned to the Comb in the first column, its
reliability is 2� ð� lnð1� 0:8ÞÞ ¼ 3:22 > � lnð1� 0:95Þ ¼
2:996. Thus, the atomic task satisfies the reliability thresh-
old requirement. In fact, the Comb in the first column is
the optimal decomposition plan for OPQ1:LCM ¼ 3
atomic tasks. We describe an optimal priority queue
based approximate algorithm for arbitrary numbers of
atomic tasks in Section 5.2.2.

To obtain the optimal priority queue, we design a
depth-first-search-based enumeration algorithm (Algo-
rithm 2). The algorithm starts depth-first-search enumera-
tion from one b1 instance, removes unnecessary elements
and returns the optimal priority queue in lines 1-3. In the
depth-first-search enumeration process in lines 5-13, each
recursion operation first checks whether the new combi-
nation cannot be pruned by Lemma 1 in line 7 and satis-
fies the reliability threshold requirement in line 8. If yes,
the algorithm inserts the current combination into the
optimal priority queue. Otherwise the algorithm contin-
ues until a combination of task bins satisfies the condi-
tions in lines 7 and 8.

In Algorithm 2, the pruning rule in line 7 significantly
reduces the redundant enumeration space as shown below.

Lemma 1. Given two combinations of task bins Comb1 and
Comb2, Comb2 and all combinations that are supersets of
Comb2 can be safely pruned in the enumeration process if
Comb1:UC < Comb2:UC and Comb1:LCM � Comb2:LCM.

Proof. According to the definition of the optimal priority
queue, this pruning rule deletes the combinations which
violate the requirement of monotonicity, i.e., condition
(2). Hence, the lemma is correct. tu

Example 8 (Building Optimal Priority Queue). Back to
the set of task bins in Table 1 and t ¼ 0:95. Algorithm 2 first
enumerates the combinations based on b1 until the combi-
nation f2� b1g since 2� ð� lnð1� 0:9ÞÞ ¼ 4:605 > �lnð1 �
0:95Þ ¼ 2:996. Then, the algorithm inserts the combination
f2� b1g as OPQ1, which is the first element in the optimal
priority queue OPQ. After that, it recursively enumerates

fb1 þ b2g, which is updated as OPQ1 because � lnð1 �
0:9Þ � lnð1� 0:85Þ ¼ 4:20 > 2:996, i.e., its LCM ¼ 2 > 1
and its UC ¼ 0:19 < 0:2. {2� b1} then becomes OPQ2.
Note that fb1 þ b2g is removed from OPQwhen the combi-
nation f2� b2g is enumerated because 2� ð� lnð1 �
0:85ÞÞ ¼ 3:794 > 2:996, its LCM ¼ 2 and its UC ¼ 0:18 <
0:19. The finalOPQ is shown in Table 3.

Algorithm 2. Building Optimal Priority Queue

Input: A set of task bins B ¼ fb1; . . . ; bmg, a reliability
threshold t

Output: An optimal priority queue OPQ
1 Enumerate(1; 0; ;; B; t);
2 Remove any OPQi with OPQi:LCM � OPQj:LCM and
OPQi:UC � OPQj:UC for some j;

3 returnOPQ;
4 SubFunction:Enumerate(p; q; S; B; t)
5 for k p tom do
6 Add bk into S;
7 if 8i: S:LCM < OPQi:LCM or S:UC < OPQi:UC then
8 if q � lnð1� rkÞ � � lnð1� tÞ then
9 Insert S into OPQ;
10 Remove any OPQi with

OPQi:LCM ¼ S:LCM and
OPQi:UC > S:UC;

11 else
12 Enumerate(k; q � lnð1� rkÞ; S;B; t);
13 Remove bk from S;

5.2.2 OPQ-Based Algorithm

Based on the optimal priority queue, we propose an
enhanced approximation algorithm, called the optimal-
priority-queue-based algorithm (OPQ-Based for short). Its
main idea is to repeatedly utilize the optimal combinations
in the optimal priority queue to approximate the global opti-
mal solution. Given the number of atomic tasks in T , denoted
by n, and the lowest common multiple of the first element in
the optimal priority queue, denoted by LCM, the decompo-
sition plan is globally optimal if n � 0; ðmod LCMÞ. Other-
wise, we prove that the enhanced approximation algorithm
still has a logn approximation ratio guarantee.

The pseudo code of theOPQ-BasedAlgorithm is shown in
Algorithm 3. Line 1 initializes the optimal priority queue
using Algorithm 2. Then the algorithm iteratively assigns
atomic tasks to combinations of task bins in OPQ in lines
4-17. Specifically, the algorithm assigns the first b n

OPQ1:LCM
c�

OPQ1:LCM atomic tasks to the first element OPQ1 in OPQ
in each iteration. The remaining n modOPQ1:LCM atomic
tasks are processed in subsequent iterations in lines 13-17.
We record the previous assignment in lines 16-17 to avoid
the condition where the cost incurred in lines 8-10 in the
current iteration is greater than the previous one. Once
the condition holds, we simply use OPQprev to make

Fig. 5. Illustration of an arbitrary combination of task bins Comb ¼
f3� b1; 2� b2; 1� b3g.

TABLE 3
The Optimal Priority Queue (OPQ) of Table 1 (t ¼ 0.95)

Comb f2� b3g f2� b2g f2� b1g
UC 0.16 0.18 0.2
LCM 3 2 1
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assignments for the remaining tasks. Since n is smaller than
OPQprev:LCM, the algorithm will terminate. We explain
Algorithm 3 in the following example.

Algorithm 3. OPQ-Based

Input: A large-scale task T ¼ fa1; . . . ; ang, a set of task bins
fb1; . . . ; bmg, a reliability threshold t

Output: An approximate decomposition planDPT , and an
approximate decomposition cost CostT

1 Initialize the optimal priority queue OPQ;
2 Costprev  1;
3 while n > 0 do
4 while OPQ1:LCM > n do
5 Remove OPQ1 from OPQ;
6 k b n

OPQ1:LCM
c;

7 if k�OPQ1:LCM �OPQ1:UC > Costprev then
8 DPT  Assignment(T , OPQprev; OPQprev:LCM);
9 CostT  CostT þOPQprev:LCM � OPQprev:UC;
10 n n�OPQprev:LCM;
11 else
12 DPT  Assignment(T , OPQ1; k�OPQ1:LCM);
13 CostT  CostTþk�OPQ1:LCM �OPQ1:UC;
14 Remove the first k�OPQ1:LCM atomic tasks from T ;
15 n nmodOPQ1:LCM;
16 OPQprev  OPQ1;
17 Costprev  OPQ1:LCM �OPQ1:UC ;
18 returnDPT and CostT

Example 9 (OPQ-Based Algorithm). Given the set of task
bins in Table 1 and a reliability threshold t ¼ 0:95, the
algorithm first finds the optimal priority queue as in
Table 3. Then in the first iteration, the algorithm uses
OPQ1 ¼ f2� b3g to assign a1, a2 and a3. In the second
iteration, it uses f2� b1g to assign a4. The final decompo-
sition plan is 2� fa1; a2; a3g and 2� fa4g with the total
cost of 1� 3� 0:16þ 1� 1� 0:2 ¼ 0:68 (the cost of one
combination of f2� b3g plus the cost of one combination
of f2� b1g), which is lower than 0.76 using the greedy
algorithm.

Lemma 2. OPQ1 yields the lowest unit cost (OPQ1:UC) for one
atomic task in all the combinations of task bins (Comb).

Proof. Note that for any Comb which is used to accomplish
one atomic task, its Comb:UC > OPQ1:UC if its
Comb:LCM > OPQ1:LCM, since this Comb must be vis-
ited in Algorithm 2 and replaced by OPQ1. Suppose its
Comb:LCM < OPQ1:LCM, we consider two cases. If this
Comb remains in OPQ, it becomes OPQi and its OPQi:UC
is still greater OPQ1:UC due to the smallest index of
OPQ1. If not, there must be an OPQi 2 OPQ ði � 1Þ such
that OPQi:UC < Comb:UC, and the result still holds. tu

Lemma 3. When the total number of tasks n is equal to
OPQ1:LCM, OPQ1 achieves an optimal solution.

Proof. From lemma 2 we know the lowest unit cost is
OPQ1:UC. Since we need to finish (at least) n atomic tasks,
the lemma follows straightaway. tu
By induction, we have the corollary below.

Corollary 1. When n is equal to k�OPQ1:LCMðk 2 NþÞ,
using OPQ1 for n times is an optimal solution.

The following theorem shows the approximation ratio of
Algorithm 3 (the OPQ-Based algorithm) for an arbitrary n.

Theorem 2. The approximation ratio of Algorithm 3 is logn,
where n denotes the number of atomic tasks in T .

Proof. We denote the index of combinations of task bins in
OPQ in Algorithm 3 by j1; j2; . . . ; jr, where r is the num-
ber of iterations of the algorithm. Then the number of
atomic tasks assigned in each iteration will be k1 �
OPQ1:LCM; . . . ; kl �OPQjr :LCM. We assume j1 ¼ 1 for
a large-scale crowdsourcing task T , i.e., n � OPQ1:LCM.
Lines 8-11 in Algorithm 3 indicate that for any s; t,
1 � s � t � r, we have ks �OPQjs :LCM� OPQjs :UC �
kt �OPQjt :UC �OPQjt :UC. Then we have

OPT � n�OPQ1:UC

� k1 �OPQ1:LCM �OPQ1:UC

� ks �OPQjs :LCM �OPQjs :UC; s ¼ 1; 2; . . . ; r:

(5)

The first inequality holds because the optimal value of the
linear programming relaxed from the original problem is
a lower bound of OPT . We sum up the costs incurred in
each iteration (ks �OPQjs :LCM �OPQjs :UC), then we
have CostT � r�OPT . Next we give an upper bound of
the total number of iterations r. We consider some itera-
tion s. Here we use n to denote the number of remaining
tasks in this iteration. If OPQjs :LCM � n=2, the remain-
der will be n�OPQjs :LCM < n=2. If OPQjs :LCM <
n=2, the remainder is less than OPQjs :LCM < n=2. In
total, at most logn iterations, the algorithm terminates.
The approximation ratio will be logn. tu

Computational Complexity Analysis: According to Algo-
rithm 3, the time complexity of this algorithm is Oða lognÞ,
where a is the cost to make assignment for OPQ1:LCM
atomic tasks, which is small in practice.

6 HETEROGENEOUS SLADE

In this section, we study the heterogeneous SLADE prob-
lem, where the atomic tasks in a large-scale crowdsourcing
task can have different reliability thresholds. In the follow-
ing, we will introduce how to extend our proposed algo-
rithms, Greedy and OPQ-Based in the homogeneous
scenario to solve the heterogeneous SLADE problem.

First, we shows that the Greedy algorithm (Algorithm 1)
still works by only changing the reliability thresholds of the
atomic tasks. In fact, for Algorithm 1, different reliability
thresholds ti only affect the original threshold residual ui of
each atomic task in line 2 in Algorithm 1. Thus the algo-
rithm still works in the heterogeneous SLADE problem.

The OPQ-Based algorithm (Algorithm 3) can be also
extended to the heterogeneous scenario using the following
partition method, and we call the extended algorithm OPQ-
Extended. The main idea is to partition the whole set of
atomic tasks into groups and run Algorithm 3 for each
group. Specifically, we first use quantiles of 2aþi to divide
the range of the thresholds into different intervals. a will be
defined in line 4 of Algorithm 4. Since the upper bound of
an interval can bound the thresholds of the atomic tasks
that fall into this interval, we construct some optimal
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priority queues based on the upper bounds of the divided
intervals. Then for each interval, we can perform Algo-
rithm 3 to obtain an approximate decomposition plan.

Algorithm 4. Building Optimal Priority Queue Set

Input: A large-scale task T ¼ fa1; . . . ; ang, a set of task bins
B ¼ fb1; . . . ; bmg, reliability thresholds ft1; . . . ; tng

Output: A set of optimal priority queues OPQS
1 Initialize OPQS  ;, u ¼ fu1; . . . ; ung, where each
ui  � lnð1� tiÞ;

2 umin  minðu1; . . . ; unÞ;
3 umax  maxðu1; . . . ; unÞ;
4 a blog uminc, i 0;
5 while 2aþi < umax do
6 if 2aþiþ1 > umax then
7 t  umax;
8 else
9 t  2aþiþ1;
10 OPQi  Algorithm2ðB; 1� etÞ;
11 OPQS  OPQS [OPQi;
12 i iþ 1;
13 return OPQS

The Algorithm 4 shows the process that builds a set of
optimal priority queues, denoted by OPQS, based on the
range of the thresholds ½umin; umax�. Specifically, the algo-
rithm iteratively builds an optimal priority queue OPQi for
the interval with the upper bound 2aþiþ1. In line 7, it ensures
that the upper bound of the final interval is umax. In each
iteration, the algorithm increases i by 1 in line 12 and thus
proceeds to the next interval. The algorithm will terminate
until the upper bound is greater than umax. It finally returns
the set of optimal priority queues OPQS.

Example 10 (Building Optimal Priority Queue Set).
Back to our running example of four atomic tasks
a1; a2; a3 and a4, we set their reliability thresholds to 0.5,
0.6, 0.7 and 0.86. Thus the corresponding the values of
ui ¼ � lnð1� tiÞ are u1 ¼ 0:69, u2 ¼ 0:92, u3 ¼ 1:61 and
u4 ¼ 1:97, respectively. The parameter a is initialized
as blog 0:69c ¼ �1. In the first (i ¼ 0) iteration, since
2�1þ0þ1 ¼ 20 ¼ 1 < 1:97 ¼ umax, therefore t ¼ 1 and
OPQ0 is generated with threshold 1� e�1 ¼ 0:632 using
Algorithm 2. Table 4 shows the optimal priority queue
OPQ0 generated after this iteration. Then in the second
(i ¼ 1) iteration, note that 2 > 1:97 ¼ umax, t ¼ umax ¼
1:97. Hence OPQ1 is generated with the threshold
1� e�1:97 � 0:86, which is shown in Table 5. Finally,
OPQS ¼ fOPQ0; OPQ1g in this example.

The basic idea of the optimal priority queue-extended
(OPQ-Extended) algorithm is to partition all atomic tasks
into different groups and run the OPQ-Based algorithm
(Algorithm 3) based on the building optimal priority queue
set algorithm (Algorithm 4) for each group. Algorithm 5

illustrates the procedure. First, all atomic tasks are divided
into different groups in lines 5-7. For each atomic task, the
algorithm finds the upper bound of the interval in which ui
lies, and assigns it to the corresponding set. Then, for each
set of atomic tasks Si, we perform the OPQ-Based algorithm
(Algorithm 3) using the corresponding OPQi in lines 8-16.
Finally, we merge the decomposition plan for each set to
generate the global decomposition plan in line 17.

Algorithm 5. OPQ-Extended

Input: A large-scale task T ¼ fa1; . . . ; ang, a set of task bins
B ¼ fb1; . . . ; bmg, reliability thresholds ft1; . . . ; tng

Output: An approximate decomposition planDPT , and an
approximate decomposition cost CostT

1 Initialize u ¼ fu1; . . . ; ung, where each ui  � lnð1� tiÞ;
2 a blog uminc, b dlog umax

umin
e;

3 Initialize OPQS ¼ fOPQ0; . . . ; OPQb�1g using Algorithm 4;
4 Set S0; . . . ; Sb�1 all ;;
5 foreach ai 2 T do
6 Find the lowest j s.t. ui � 2j;
7 Assign ai into Sj�a�1;
8 foreach task set Si do
9 if i equals b� 1 then
10 DPSi  Algorithm3ðB; tmax; OPQiÞ;
11 CostSi  Algorithm3ðB; tmax; OPQiÞ;
12 else
13 DPSi  Algorithm3ðB; 1� e�2

aþiþ1
; OPQiÞ;

14 CostSi  Algorithm3ðB; 1� e�2
aþiþ1

; OPQiÞ;
15 DPT  DPT [DPSi ;
16 CostT  CostT þ CostSi ;
17 returnDPT and CostT

Example 11 (OPQ-Extended Algorithm). Back to our
running example of four atomic tasks a1; a2; a3 and a4
with their reliability thresholds to 0.5, 0.6, 0.7 and 0.86,
the optimal priority queue set OPQS ¼ fOPQ0; OPQ1g is
generated in Example 10. Based on OPQS, the four
atomic tasks are divided into two sets S0 and S1. Specifi-
cally, a1; a2 and a3; a4 are assigned to S0 and S1, respec-
tively. Algorithm 3 returns the decomposition plan
DPS0 ¼ fa1; a2g for S0 using the combination of f1� b2g
in OPQ0. Similarly, DPS0 ¼ ffa3g; fa4gg for S1 using the
combination of f1� b1g in OPQ1. Finally the global
decomposition plan is ffa1; a2g; fa3g; fa4gg with a total
cost of 0.38.

Theorem 3. The approximation ratio of Algorithm 5 is
2dlog umax

umin
elogn.

Proof. For any atomic task a 2 Si, the transformed thresh-
old of a should be in the range of ½2aþi; 2aþiþ1Þ. We define
Cost½2aþi;2aþiþ1Þ as the cost incurred by the algorithm when
making assignments for all the atomic tasks in Si. Let
OPT2aþiþ1 be the minimum cost when the transformed

TABLE 4
The Optimal Priority Queue OPQ0 (t ¼ 0:632)

Comb f1� b3g f1� b2g f1� b1g
UC 0.08 0.09 0.1
LCM 3 2 1

TABLE 5
The Optimal Priority Queue OPQ1 (t ¼ 0:86)

Comb f1� b1g
UC 0.1
LCM 1
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threshold is homogeneously 2aþiþ1. Following Theorem 2,
we immediately have Cost½2aþi;2aþiþ1Þ � logn 	OPT2aþiþ1 .
Note that adopting the decomposition plan of OPT2aþi
twice can be regarded as a feasible decomposition plan
for the atomic tasks with the homogeneous transformed
threshold of 2aþiþ1. This indicates that OPT2aþiþ1 �
2OPT2aþi . When we use OPT½2aþi;2aþiþ1Þ to describe the
minimum cost where the transformed thresholds of
atomic tasks in Si are heterogeneously in the range of
½2aþi; 2aþiþ1Þ, we have OPT2aþi � OPT½2aþi;2aþiþ1Þ. Sum-
ming up over i, the cost incurred by the algorithm Cost is
no greater than 2dlog umax

umin
elognOPT , where OPT is the

optimal solution, because i ¼ 0; . . . ; dlog umax
umin
e � 1. tu

Computational Complexity Analysis: In Algorithm 5, there
are at most dlog umax

umin
e iterations. Thus for each iteration, the

time complexity is Oðdlog umax
umin
eðlognþ aþ gÞÞ, where a is

the cost to find the optimal priority queue and g is the cost
to make assignment for Si.

7 EXPERIMENTAL STUDY

This section presents the performance evaluation. All
experiments are conducted on an Intel(R) Core(TM) i7
3.40 GHz PC with 4 GB main memory and Microsoft Win-
dows 7 OS. All the algorithms are implemented and com-
piled using Microsoft’s Visual C++ 2010.

Our empirical studies are conducted on two real datasets
gathered by running tasks on Amazon MTurk. The first
dataset is gathered from the jelly-beans-in-a-jar experiments
(labelled as “Jelly”) and the second is from the micro-expres-
sion identification experiments (labelled as “SMIC”). The
detailed settings of the two experiments are presented in
Section 2. We set the default value of maximum cardinality
(jBj) to 20, and the number of atomic tasks to 10,000. In
homogenous scenarios, the reliability threshold t is set to
0.9 for all atomic tasks. In heterogeneous scenarios, the
default reliability thresholds are generated according to the
Normal distribution with parameters m and s set to 0.9 and
0.03, respectively. The experiments with reliability thresh-
olds generated according to heavy tailed and uniform distri-
butions are also conducted. As the results are similar, we
omit them due to the limited space.

In the following evaluations, Baseline, Greedy, and OPQ-
Based represent the baseline algorithm, the greedy algo-
rithm, and the optimal-priority-queue-based algorithm,
respectively. OPQ-Extended is the extended OPQ-Based
algorithm for heterogeneous scenarios. We mainly evaluate
the effectiveness and the efficiency of the algorithms.

7.1 Evaluations in the Homogeneous Scenario

This subsection presents the performance of the three algo-
rithms in the homogeneous scenario.

Varying t. Fig. 6a and 6b report the decomposition cost
with various reliability thresholds. The decomposition costs
of all the three algorithms decrease with a lower reliability
threshold t, because fewer crowd workers (and thus task
bins) are needed to satisfy the lower reliability requirement.
Fig. 6c and 6d show the running time of the three algorithms
with the same sets of reliability thresholds. The running
time of OPQ-Based is insensitive to the reliability threshold,
while those of baseline and Greedy drop dramatically with

low reliability thresholds. This is because OPQ-Based finds
the optimal combination using the optimal-priority-queue
structure in advance.

Varying jBj. Fig. 6e and 6f show the decomposition cost
when the maximum cardinality jBj varies from 1 to 20.
With the increase of the maximum cardinality jBj, all algo-
rithms tend to gain lower cost, as they can choose from
more kinds of task bins. We also see that the decomposition
cost of Baseline is significantly affected by jBj. This is reason-
able since Baseline obtains the solution via the randomized
rounding method, which is easily affected by a random
noise when jBj is small. Conversely, the other two algo-
rithms are less sensitive to jBj, especially when jBj � 6.
Then we test the efficiency of the proposed algorithms with
the same set of jBj. The results are shown in Fig. 6g and 6h.
OPQ-Based outperforms the others due to the optimal prior-
ity queue data structure design.

Scalability. We first study the decomposition cost of the
three algorithms, by setting the number of atomic tasks, i.e.,
parameter #, from 1,000 to 10,000. Fig. 6i and 6j compare
the decomposition cost of the three algorithms. As expected,
when the # of atomic tasks increases from 1,000 to 100,000,
the decomposition cost of the three algorithms all increases.
This is because more atomic tasks lead to more crowd work-
ers and thus more total cost. OPQ-Based has the smallest
decomposition cost on the two datasets. This is because
OPQ-Based first finds the optimal combinations for an
atomic task and provides the decomposition plan in terms
of the optimal combinations. This also verifies the better
approximation ratio of OPQ-Based in practice. Greedy is
more effective than Baseline in some cases. This is because
Baseline utilizes a randomized rounding method, which
may not be effective in certain cases. Fig. 6k and 6l plot the
running time of the three algorithms with the same set of
atomic task quantities. OPQ-Based is the fastest, and Baseline
is much slower than OPQ-Based but faster than Greedy. This
is because OPQ-Based pre-computes the optimal combina-
tions for an atomic task while Greedy adopts the iterative
strategy based on the local optimal solutions.

Conclusion. OPQ-Based is both more effective and efficient
than the other two. Baseline is the least effective and Greedy
is the least efficient.

7.2 Evaluations in the Heterogeneous Scenario

This subsection presents the performance of the algorithms
for the heterogeneous scenario, where different atomic tasks
may have different reliability thresholds. We generate the
reliability thresholds following the Normal distribution. As
with the evaluations for the homogeneous scenario, the
experimental results on Jelly and SMIC are similar in the
heterogenous scenario. Hence we only present the results
on the “Jelly” dataset in the heterogenous scenario.

Varying Standard Deviation s. Fig. 7a and 7b show the per-
formance by varying the standard deviation s of the reliabil-
ity thresholds. With increasing s, the decomposition costs of
the three algorithms decrease. However, the change is not
monotonous. It depends on two factors. First, as s increases,
the number of distinct reliability thresholds increases. Yet
the decomposition cost with more distinct reliability thresh-
olds might not be greater than that with fewer distinct reli-
ability thresholds. The decomposition cost depends on the
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values of the reliability thresholds rather than the number of
distinct reliability thresholds. Thus, the change of decom-
position cost is not monotonous. Second, as s increases,
the likelihood of larger reliability thresholds also
increases. The increase of the reliability threshold is
lnð1� DtÞ, where Dt is the increase ratio of the reliability
threshold t. Thus, the trend of decomposition cost must
decrease when the standard deviation of reliability thresh-
olds increases. Fig. 7b shows that the running time of the
three algorithms increases when s increases. Due to the
increase of s, the number of distinct reliability thresholds
increases. Hence, the three algorithms need more search
space to find their approximate optimal solutions. Particu-
larly, the running time of OPQ-Extended increases notably
because it has to build a priority queue for each type of
reliability threshold. With more distinct reliability thresh-
olds, OPQ-Extended needs more running time.

Varying mean m. Fig. 7c and 7d show the results by vary-
ing the mean m of reliability thresholds. With decreasing m,

the decomposition cost of the three algorithms decreases. In
most cases, OPQ-Extended has the lowest decomposition
cost. This makes sense because OPQ-Extended first discovers
the optimal combination for an atomic task and provides
the decomposition plan based on the optimal combination.

Scalability. We study the scalability of the proposed algo-
rithms in Fig. 8a and 8b over both the Jelly and SMICdatasets,
by varying the parameter# from 1,000 to 100,000. The over-
all tendency resembles the cases in homogeneous scenarios.
But with larger number of the atomic tasks,OPQ-Based takes
longer running time compared to that in homogeneous sce-
narios. This is because OPQ-Based has to construct optimal
priority queues for various distinct reliability threshold val-
ues in heterogeneous scenarios.

Conclusion. In the heterogeneous scenarios, when the
number of distinct reliability thresholds increases, the three
algorithms spend more running time. When the number of
lower reliability thresholds increases, the decomposition
cost will decrease.

Fig. 6. Results of homogeneous scenarios.

Fig. 7. Results of heterogeneous scenarios.
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8 RELATED WORK

Human computation has been practiced for centuries. Spe-
cifically, whenever a “human” serves to “compute”, a
human computation is observed. This leads to a history of
Human Computation even longer than that of electronic
computer. However, with the emergence of Internet web
service, especially the one that facilitates online labor
recruiting and managing like Amazon MTurk and oDesk,
human computation starts to experience a new age where
the source of human is broadened to a vast pool of crowds,
instead of designated exerts or employees. This type of out-
sourcing to crowds, i.e., crowdsourcing, is now receiving
countless success in many areas such as fund raising, logis-
tics, monitoring and so on. The practice introduced in this
paper is within the collection of data-driven applications,
where database services and data mining services adopt
online crowds as a Human Processing Unit (HPU) to tackle
human intrinsic tasks [14], [15], [16].

In data-driven applications, human cognitive abilities are
mainly exploited in two types: voting among many options,
and providing contents according to certain requirements.
Most basic queries in database [7] and data mining [27], [28]
can be decomposed into simple voting as human tasks: max
discovery [2], [3], task assignment[29], [30], [31], [32], [33],
filtering [4], [34] and jury selection [35], [36], [37], join [5],
[18], entity resolution [5], [38], and data cleaning [39] into
two-option (Yes or No)or multiple voting (connecting same
entities). Meanwhile, to break the close world assumption
in traditional databases, human are enrolled to provide
extraneous information to answer complex queries, such as
item enumeration [40].

Moreover, several recent works have also been devel-
oped to optimize the performance of crowdsourcing plat-
forms for different aspects [19], [22]. In particular, [19]
proposes a difficulty control framework for the tasks based
on majority voting aggregation rules. CrowdForge [22] is a
prototype to decompose complex task like article writing,
science journalism to small tasks. Note that most of the
aforementioned work focus on higher-level query transfor-
mation from a specific type of task into the form of task bins
and the corresponding aggregation rules, but our paper is
the first work that focuses on providing a comprehensive
instruction to build the in-effect “query optimizer” module
in crowd-powered databases.

9 CONCLUSION

In this paper, we propose a general crowdsourcing task
decomposition problem, called the Smart Large-scAle task

DEcomposer Problem, which is proven to be NP-hard. To
solve the SLADE Problem, we study it in homogeneous and
heterogeneous scenarios, respectively. In particular, we pro-
pose a series of efficient approximation algorithms using the
greedy strategy and the optimal priority queue data struc-
ture to discover near-optimal solutions. Finally, we verify
the effectiveness and efficiency of the proposed algorithms
through extensive empirical studies over representative
crowdsourcing platforms.
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