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ABSTRACT
Topic modeling has been widely applied in a variety of industrial ap-
plications. Training a high-quality model usually requires massive
amount of in-domain data, in order to provide comprehensive co-
occurrence information for the model to learn. However, industrial
data such as medical or financial records are often proprietary or
sensitive, which precludes uploading to data centers. Hence training
topic models in industrial scenarios using conventional approaches
faces a dilemma: a party (i.e., a company or institute) has to either
tolerate data scarcity or sacrifice data privacy. In this paper, we
propose a novel framework named Federated Topic Modeling (FTM),
in which multiple parties collaboratively train a high-quality topic
model by simultaneously alleviating data scarcity and maintaining
immune to privacy adversaries. FTM is inspired by federated learn-
ing and consists of novel techniques such as private Metropolis
Hastings, topic-wise normalization and heterogeneous model inte-
gration. We conduct a series of quantitative evaluations to verify
the effectiveness of FTM and deploy FTM in an Automatic Speech
Recognition (ASR) system to demonstrate its utility in real-life
applications. Experimental results verify FTM’s superiority over
conventional topic modeling.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies → Topic modeling;
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1 INTRODUCTION
Topic modeling has been successfully used in many industrial ap-
plications, from military analysis [41], to web search log mining
[8, 23, 24], to medical informatics [1, 26, 36]. As training a high-
quality topic model for a specific application typically requires
comprehensive in-domain data to provide sufficient co-occurrence
information, relying on data collected from a single party will be
faced with the challenge of data scarcity. Meanwhile, since these
data are typically proprietary and sensitive, regulations such as
the newly enforced European Union General Data Protection Reg-
ulation (GDPR) [7, 42, 43] may preclude uploading them to data
centers and being utilized in a centralized approach. These two crit-
ical problems poses new challenges to conventional topic modeling,
which we refer to as the state-of-the-art distributed architectures
[35, 54, 55] for training topic models on computer clusters within a
data center.

To solve the above problems, a new topic modeling paradigm
simultaneously alleviating data scarcity and protecting data pri-
vacy is urgently needed in industry. However, the huge discrepancy
between the scenario of conventional topic modeling and that stud-
ied in this paper results in three challenging research issues. First,
how to protect the privacy of training data of each party from
adversaries. Privacy is typically neglected in conventional topic
modeling and anyone who is able to access computing nodes or
monitor network communication can easily get a glimpse of the
data of each party. Such practice is increasingly forbidden by new
data regulations. Second, how to reduce the communication cost
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between computing nodes. Conventional topic modeling such as
those deployed upon MapReduce [55] or ParameterServer [54] usu-
ally has demanding requirement of communication efficiency that
is only satisfied by a data-center-grade network. However, in the
present problem, different parties may be located in different data
centers and connected by low bandwidth. Hence, it is infeasible to
allow computing nodes to frequently communicate with each as
before. Third, how to handle the variety of data and models across
different parties. Conventional topic modeling relies upon the as-
sumption that different computing nodes store independent and
identically distributed (i.i.d.) data and trains the same topic model.
However, this requirement can hardly be met in the present prob-
lem where each party usually stores highly unbalanced data and
trains heterogeneous topic models (i.e., topic models with different
regularity).

Inspired by the concept of federated computation, which refers
to a distributed architecture that a master coordinates a fleet of
parties to compute aggregated statistics of private data [20, 33], we
propose a new framework named Federated Topic Modeling (FTM)
that solved the aforementioned problems in a principled approach.
As shown in Figure 1, FTM is composed of two computational
components: party computation and master computation. Party
computation provides a flexible mechanism for balancing model
utility and data privacy. It seamlessly integrates differential privacy
with Markov Chain Monte Carlo (MCMC) [16] for both private and
efficient parameter inference. The local model of each party is en-
crypted by a topic-wise normalization mechanism and transmitted
to the master without leakage of critical information of the training
data sets. Master computation is responsible for integrating the
transmitted local models into a global one and formalizing neces-
sary information for meta learning in the next iteration. Notably,
master computation circumvents the rigid requirements such as fre-
quent network communication and training the same topic model
on every party, in order to achieve significantly lower communi-
cation cost and handle data that are not i.i.d.. We systematically
evaluate FTM in terms of quantitative metrics such as likelihood
and communication cost as well as real-life applications such as
automatic speech recognition (ASR) [53]. The contributions of this
paper are summarized as follows:

• To the best of our knowledge, FTM is the first framework
that is specifically designed for large-scale distributed topic
modeling with a guarantee of privacy protection.

• FTM pioneers in new topic modeling paradigms such as
allowing heterogeneous topic models to be trained on data
that are not i.i.d. across different parties.

• FTM delicately avoids the demanding network communi-
cation that plagues conventional topic modeling, making it
the first topic modeling framework applicable in federated
scenarios.

• Quantitative evaluations and real-life applications such as
ASR demonstrate the necessity and effectiveness of FTM.

The rest of the paper is organized as follows. We review the
related work in Section 2. Then we discuss the technical details of
FTM in Section 3. We present the experimental results in Section 4
and finally conclude the paper in Section 5.

2 RELATEDWORK
The present work is related to a broad range of literature. We review
the most related works in the fields of topic modeling, federated
learning and differential privacy respectively.

2.1 Topic Modeling
Topic modeling has been intensively studied and widely used for
the last decade. Latent Dirichlet Allocation (LDA) [4] plays the most
important role among all kinds of topic models. In the meantime,
various extensions of LDA have been proposed in order to satisfy
specific needs in different domains and applications. For example,
Topic-over-time (TOT) [45] captures the changes of latent topic over
times by jointly modeling the timestamps with word occurrence
patterns. Supervised LDA [32] makes use of the labelled documents
to guide the inference of the topics. Sentence LDA [2] incorporates
the structure of the text during the model training and inference
processes by restricting all the words in the same sentence sharing
the same topic.

The recent advancement of this field focuses on training topic
models such as LDA on clusters by distributed computing [35, 51, 54,
55], and LightLDA [54] maintains the state-of-the-art performance
in terms of model quality. We consider these works as conventional
topic modeling and the issue of privacy is typically neglected in
them. A recent work [39] proposes a technique to privatize the pa-
rameters of variational inference, however, this technique is based
upon a single computing node and is not straightforward to ap-
ply in a distributed computing. Although privacy and distributed
computing are two critical factors determining the applicability of
topic models in industry, they have been studied independently in
existing work and how to integrate them in a unified framework is
still an open problem.

2.2 Federated Learning
Manymachine learning tasks have been achieving significant progress
recently years with the development of machine learning tech-
niques, such as deep neural networks, and the increasing amount
of labeled data. However, high-quality labeled data are precious,
which take huge human resources and time to collect and to anno-
tate. Moreover, in many practical applications, the accessible data
are very limited, making the learning difficult. To address the small
data problem, some researchers focus on developing machine learn-
ing algorithms that can leverage the knowledge from a domain with
rich data to help the learning in the target domain with limited data
or even without labeled data, i.e., transfer learning [37]. The other
proposed solution to address the small data problem is trying to
join the fragmented small data from multi-party, i.e. collaborative
machine learning. However, both of these solutions do not consider
the data privacy and security, while personal information privacy
and security have become a insurmountable concern before the
wide applications of these techniques. Many countries enforce or
plan to publish laws and regulations to protect the personal infor-
mation privacy and security. For example, GDPR aims to protect
the security and privacy of user, giving the right to user for ripping
their personal information from companies.
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Figure 1: The Federated Topic Modeling Framework: Party Computation ( 1○ Private MCMC Sampling and 2○ Topic-wise Nor-
malization) and Master Computation ( 3○ Integrating Local Topic Models and 4○ Composing New Local Topic Models)

To deal the the contradiction between the need of massive data
for learning and the regulations to protect the data privacy and secu-
rity, researchers propose privacy-preserving collaborative learning
paradigm, federated learning [33, 50]. Recently, federated learning
is combined with various machine learning algorithms such as neu-
ral networks [33], SVMs [6], Logistic regression [18]. According
to how the data across parties are utilized in federated learning,
algorithms can be categorized into three types [50]:

(1) Horizontal federated learning: data on different parties
have the same feature space, and the samples on different
parties are different. Samples are learned as virtually joint
together across parties with protection of privacy and secu-
rity.

(2) Vertical federated learning: data on different parties share
the same sample ID space, and their feature spaces are differ-
ent. The data are virtually joint in feature dimension through
vertical federated learning, i.e., the feature of samples in each
party are extended with features from other parties.

(3) Federated transfer learning: the sample ID spaces and
features spaces of data in different parties are different. Fed-
erated transfer learning leverages the knowledge from a
labeled party to help the party without labeled data.

The typical scenario of horizontal federated learning is the learn-
ing applications on mobile devices, such as language modeling [21],
and keyword spotting [28]. Data in mobile devices are highly per-
sonal and thus sensitive, while in federated learning data are only
operated locally, without transferring outside the party. To some
extents, the privacy and security can be guaranteed by accessing
the data locally. However, transferring parameters or gradients
may also leak sensitive information [34, 44, 48]. To achieve higher
privacy and security level, [5] improve the the horizontal federated
learning algorithm by introducing the secure aggregation protocol.
In addition, due to the probabilistic property of differential privacy
[11], differentially privacy is widely used in federated learning for
protecting the transaction of models or data [3, 15, 19, 22, 38, 46].
In vertical federated learning [10] and federated transfer learning

[31], homomorphic encryption (HE) [40] are used, as HE does not
inject noise to the transferred data. However, HE-based methods
bring extra encryption computation costs and larger communica-
tion cost due to the ciphertext. Secure multi-party computation [52]
methods are also used for collaborative learning, but the number
of participants in this protocol are limited. In our work, we use
horizontal federated learning techniques with differentially private
protection on data privacy.

2.3 Differential Privacy
Differential privacy provides a quantitative definition on data and
model that is compatible with many machine learning algorithms,
which relieve the paradox of privacy-preserving learning that grapes
helpful information from a population but learns nothing about
any individual. The formal definition of differential privacy is as
following: A randomized algorithm M(X) is considered as (ε,δ )-
differentially private if

Pr (M(X ∈ S)) ≤ eεPr (M(X′ ∈ S)) + δ (1)

for all S ⊂ Range(M), and for all adjacent datasets X,X′. Here dif-
ferential privacy leaves the definition of adjacent open to different
settings. It means that one can infer privacy information from the
output of that randomized algorithm M(X) with a negligible prob-
ability, where X can be regarded as any subset from a population.
One can sniff individual information through enough many queries
to elaborately constructed populations. Therefore, the difference
of output of an algorithm with different X is critical to the indi-
vidual privacy protection. In differential privacy, it is measured as
sensitivity. Researchers develop many tools to guarantee a certain
level of privacy under a given sensitivity, such as the Gaussian
mechanism, and Laplace Mechanism. Laplace mechanism [12] is
a common method for obtaining ϵ-differential privacy. The main
idea is to add Laplace noise to the revealed data with the amount of
noise controlled by ϵ . Specifically, the L1 sensitivity ∆h for function
h is defined as:

∆h = maxX ,X ′ | |h(X ) − h(X
′

)| |1 (2)
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for all datasets X , X
′

differing in at most one element. The Laplace
mechanism adds noise via:

ML(X ,h, ϵ) = h(X ) + (Y1,Y2, ...,Yd ),

Yj ∼ Laplace(∆h/ϵ),∀j ∈ {1, 2, ...,d},
(3)

where d is the dimensionality of h. The ML(X ,h, ϵ) mechanism is
ϵ-differentially private.

Composition theorems [12] deal with the case when we com-
bine several differentially private blocks together for more sophis-
ticated algorithms and differential privacy satisfies sequential com-
position and parallel composition. Sequential composition: suppose
Mj (X), j = 1, · · · , l , are (εj )-differentially private, then the combi-
nation of these algorithms X → (M1(X), · · · ,Ml (X)) is (

∑
j εj )-

differentially private. In a special case, when all theMj are homoge-
neous, the combination yields (kε,kδ )-differentially private. Parallel
composition: let Xi be arbitrary disjoint subsets of the input X, and
Mj (Xj ), j = 1, · · · , l , are (εj )-differentially private, then the com-
bination of these algorithms X → (M1(X1), · · · ,Ml (Xl)) satisfies
(maxj εj )-differentially private. Besides composition of differen-
tially private mechanisms, DP is also immune to any deterministic
post-processing [13], which means we can take further operations
over the privatized data, achieving the identical differential privacy
budget.

3 FEDERATED TOPIC MODELING
FRAMEWORK

The recent multitude of successful applications of topic modeling
have almost relied on Latent Dirichlet Allocation (LDA) and variants
of MCMC as the parameter inference algorithm [29, 54]. Thus, it is
natural that we describe FTM by starting from LDA and MCMC.
The techniques discussed in this section pave the way for designing
similar algorithms for other topic models. In order to facilitate the
discussion thereafter, we list the notations that will be used in this
paper in Table 1. We first discuss the party computation in Section
3.1. Then we discuss how the master computation works in Section
3.2 and finally present the whole workflow of FTM in Section 3.3.

3.1 Party Computation
Each party is the workhorse for training its local topic model. We
now discuss several novel mechanisms of party computation to
protect the privacy of data stored on each party. We start with
describing a private Gibbs sampling algorithm in Section 3.1.1 and
then adapt it to a private Metropolis Hastings algorithm that enjoys
much higher efficiency in Section 3.1.2. Finally, we discuss how to
avoid revealing the original word distribution of the local model in
Section 3.1.3.

3.1.1 Private Gibbs Sampling. Gibbs sampling is widely used for
parameter inference of topic models [17, 25, 45]. Let the words w
be the training data from a party and z be the latent topics assigned
to w. According to the generative assumption of LDA [4], the joint
probability is as follows:

P(w, z,Θ,Φ|α , β) = P(Θ|α)P(Φ|β)P(z|Θ)P(w|z,Φ) (4)

where Θ are the topic distributions of documents, Φ are the word
distributions of topics, α and β are hyperparameters that are usually
fixed to constant values [17]. The Gibbs update of a topic zdi that

Table 1: Notations for FTM

Notation Meaning
D the size of documents
K the number of topics
V the size of vocabulary
Φ the word distributions of topics
ϕk the word distribution of topic k
Θ topic distributions of documents
θd topic distributions of document d
w the words vector of a document
wdi ith word in document d
z the topic assignment vector of a document
zdi the topic assignment of ith in document d
z−di the topic assignment vector of document

d except the ith word
k a topic index
α Dirichlet prior vector for θ
β Dirichlet prior vector for φ

CDK
dk the number of words assigned to topic

k in document d
CKW
kw the number of wordw assigned to topic k

CKW
k · an array with each element indicating the number

of the corresponding word assigned to topic k
M global topic model
M∗ updated global topic model
Mp party p’s local topic model

corresponds to the ith wordw in document d is defined as follows:
P(zdi |z−di ,w,α , β) ∝ P(zdi |θd )P(wdi |zdi ,Φ) (5)

where z−di are the latent topics except the one assigned for the
ith word in d . In Eq. 5, only the P(wdi |zdi ,Φ) component needs
to access the original data. Hence, we integrate out θd and the
partially collapsed Gibbs update is as follows:

P(zdi |z−di ,w,α , β) ∝
(CDK

dzdi
+ α)∑

k ′(C
DK
dk ′ + α)

P(wdi |zdi ,Φ) (6)

where CDK
dzdi

is the number of words assigned to topic zdi in docu-
ment d . Due to conjugacy of β and Φ, the update formula for ϕk is
as follows:

P(ϕk |w, z, β) ∼ Dirichlet(CKW
k · + β) (7)

where CKW
kw is the number ofw assigned to topic k and CKW

k · is an
array with one element indicating the number of the corresponding
word assigned to topic k . We write P(w |zdi ,Φ) in the exponential
family form:

P(wdi |zdi ,Φ) = ϕzdiwdi = exp(
∑
w ′

ndiw ′ logϕzdiw ′) (8)

where ndiw ′ = I[w ′ = wdi ]. Since the sampling algorithm inter-
acts with the corpus only by the sufficient statistics for conditional
probability exp(

∑
w ′ ndiw ′ logϕzdiw ′), we privatize the sufficient

statistics (i.e., ndiw ′ ) via the Laplace mechanism, resulting in priva-
tized counts n̂diw ′ :
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n̂diw ′ = ndiw ′ + Y (9)
We apply the “include/exclude” version of differential privacy, in
which differing by a single entry refers to the inclusion or exclusion
of that entry in the corpus. Since each counter ndiw ′ is a sum of
indicator vectors, it has L1 sensitivity of 1. We have:

Y ∼ Laplace(1/ε) (10)
The above formula means randomly drawing a sample from the
Laplace distribution with the location parameter 0 and scale pa-
rameter 1/ε . Note that we only need to compute the privatized
count n̂diw ′ once and it works as a proxy of the original coun in
the following sampling algorithms. Hence, no original data is ex-
posed to the sampling algorithm. According to [47] and [13], it is
easy to prove that such mechanism is ε-differentially private. After
applying the Laplace mechanism, n̂di · is no longer sparse and the
complexity of Gibbs sampling via Eq.6 increases from O(K) per
word to O(KV ) per word, where K is the number of topics and
V is the size of the vocabulary. It is easy to see that the private
Gibbs sampling algorithm is unrealistically inefficient for real-life
applications in which data sets are voluminous.

ALGORITHM 1: Private Metropolis Hastings
input : local training data
output : local topic model Mp
if it is the first global iteration then

for each document d in local training data do
for each wordwi in d do

privatize ndi · according to Eq.9 and threshold by
τ

end
end
randomly assign a topic to each word in local corpus

else
build a word-topic alias table based on the new local
model from the master

sample a topic for each word in local corpus according
to the above word-topic alias table

for each local iteration do
build a doc-topic alias table according to Eq.11
build a word-topic alias table according to Eq.14
for each document d in local corpus do

for each wordwdi in d do
propose a topic za with the doc-topic alias
table;

update zi according to za and Eq.13;
propose a topic zb with the word-topic alias
table;

update zi according to zb and Eq.16;
end

end
sample Φ according to Eq.7

end
compose local model Mp according to CKW

k ·

3.1.2 Private Metropolis Hastings. To improve the efficiency of
MCMC sampling and make it applicable on massive dataset, we
resort to private Metropolis-Hastings (MH), which is depicted in
Algorithm 1.

Being the same as traditional MH, the private MH algorithm has
two deliberately designed proposals for proposing a topic candidate
for a word. The first proposal is the doc-topic proposal:

Ωz
d =

(CDK
dz + α)∑

k ′(C
DK
dk ′ + α)

(11)

where Ωz
d can be straightforwardly interpreted as the “strength” of

the relation between z and d .
For doc-topic proposal, the acceptance probability of topic tran-

sition from z to z′ is:

min{1,
P(z′ |z−di ,w,α , β)Ωz

d

P(z |z−di ,w,α , β)Ωz′
d

} (12)

By replacing the component P(z′ |z−di ,w,α , β) and P(z |z−di ,w,α , β)
with Eq.6, the above acceptance probability is updated as follows:

min{1,
(ĈDK

dz′ + α)P̂(w |z′,Φ)(CDK
dz + α)

(ĈDK
dz + α)P̂(w |z,Φ)(CDK

dz′ + α)
} (13)

where the hat notation means that the statistics ofwdi is removed
from the corresponding value.
The second one is word-topic proposal, which is defined as:

Ωz
w =

CKW
zw + β∑

w ′(CKW
zw ′ + β)

(14)

where Ωz
w can be straightforwardly interpreted as the “strength”

of relation between topic z andw .
For word-topic proposal, the acceptance probability of topic

transition from z to z′ is:

min{1,
P(z′ |z−di ,w,α , β)Ωz

w

P(z |z−di ,w,α , β)Ωz′
w

} (15)

By replacing the component P(z′ |z−di ,w,α , β) and P(z |z−di ,w,α , β)
with Eq.6, the above acceptance probability is updated as follows:

min{1,
(ĈDK

dz′ + α)P̂(w |z′,Φ)(CKW
zw + β)(

∑
w ′(CKW

z′w ′ + β))

(ĈDK
dz + α)P̂(w |z,Φ)(CKW

z′w + β)(
∑
w ′(CKW

zw ′ + β))
} (16)

where the hat notation means that the statistics ofwdi is removed
from the corresponding value.

The strategies of improving the sampling efficiency of private
MH are twofold:

(1) Improving the sampling efficiency of the proposals of Eq.11
and Eq.14. To achieve this goal, we build a doc-topic alias
table and a word-topic alias table for the two proposals re-
spectively according to the alias method in [54]. The key
idea of the alias method is the construction of the alias table,
which is illustrated by an example in Figure 2. During the
construction process, the algorithm keeps moving “overfull”
entries (entry one in the example) to the “underfull” entries
(entry four in the example) in the table to make all the entries
“exactly full”. At the meantime, it guarantees each entry has
at most two kinds of entry index. With alias method, the
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Figure 2: A Toy Example of Building Alias Table

Figure 3: A Toy Example of Topic-wise Normalization. Hy-
perparameters are neglected in this example for simplicity.

original non-uniform sampling process is transformed into
a uniform one and the time complexity of sampling a topic
from a proposal is reduced from O(K) per word to O(1) per
word. When sampling a new topic for a word, the doc-topic
proposal and word-topic proposal are sequentially applied
to achieve high mixing rate.

(2) Reducing the computational cost of calculating the accep-
tance probabilities of Eq.13 and Eq.16. The bottle neck of cal-
culating Eq.13 and Eq.16 lies in the component P(w |zdi ,Φ).
We utilize a threshold τ to sparsify the vector n̂di ·. As n̂diwi
represents the count information, we clap n̂diwi to zero if
n̂diwi ≤ τ .

By collectively applying the above two strategies, the amortized
time complexity of sampling a topic for a word by private MH can
be reduced to O( V

2eτ ε ). According to [12], applying a deterministic
post-processing to a ε-differentially private mechanism is still ε-
differentially private. Therefore, the above operation does not affect
the privacy guarantee.

3.1.3 Topic-wise Normalization. The local model (i.e., the result
of Algorithm 1) of a party p can be represented as a word-topic
matrix Mp , in which each cell stores the frequency count of the

corresponding word and topic. The information in Mp should be
transmitted to the master through network communication. As
shown in Figure 3, transmitting Mp exposes word distribution
of the training data on p, since some important information may
be recovered by Mp and deliberately designed language models.
To solve this problem, we conduct topic-wise normalization and
obtain the normalized word-topic matrix M̂p , which is transmitted
to the master. As Mp and M̂p result in exactly the same alias
tables used in Algorithm 1, M̂p can be considered as the result of a
lossless encryption mechanism, which protects the original word
distribution of the training data on p.

3.2 Master Computation
The duties of the master are twofold: integrating the local models
from different parties and composing a new local model for each
party. We first discuss how to integrate heterogeneous local topic
models in Section 3.2.1. Then we discuss the approach of composing
new local topic model for each party in Section 3.2.2. It is worth
noting that master computation effectively handles topic models
with different regularities and therefore is suitable for scenarios
where data are not i.i.d. across parties.

3.2.1 Integrating Local Topic Models. Since the data of different
parties are not necessarily i.i.d., the local models from different
parties may contain different amounts of topics. The master is
responsible for integrating these heterogeneous topic models. In
order to compose a global modelM∗ based on the topics in local
models, we rely on Weighted Jaccard Similarity to calculate the
similarity between topics and merge the similar ones. The similarity
between two topics zi and zj is defined as:

ρ(zi , zj ) =

∑m
l=1 min(pziwl

, p
zj
wl

)∑m
l=1 max(pziwl

, p
zj
wl

) +
∑T
m+1 p

zi
wl
+
∑T
l=m+1 p

zj
wl

=

∑m
l=1 min(pziwl

, p
zj
wl

)∑T
l=1 p

zi
wl
+
∑T
l=1 p

zj
wl

−
∑m
l=1 min(pziwl

, p
zj
wl

)

(17)

where Pzi = (pziw1 ,p
zi
w2 , · · · ,p

zi
wm ,p

zi
wm+1 , · · · ,p

zi
wL ) and

Pzj = (p
zj
w1 ,p

zj
w2 , · · · ,p

zj
wm ,p

zj
wm+1 , · · · ,p

zj
wL )

are vectors representing the top-L words distribution of topic zi
and topic zj .m (0 ≤ m ≤ L) indicates the count of common words
in their top-L words. Two topics are considered as redundant if the
similarity ρ(zi , zj ) is beyond the threshold ξ .

Based on above similarity metric, we detail the mechanism of
integrating local models in Algorithm 2. The algorithm first con-
catenates two topic models (Line 2). Then it finds the redundant
topic sets based on the Union-Find [14] algorithm (Line 2 ∼ 11).
For example, if (z1, z2) and (z2, z3) are considered as redundant
based on Eq. 17, {z1, z2, z3} will be taken as a disjoint topic set.
For each topic set, we then merge the topics in the set to get the
representative distribution (Line 12 ∼ 16) by adding each topic dis-
tribution sequentially and do the normalization (In this case, the
normalized distribution w1 ®z1+w2 ®z2+w3 ®z3

w1+w2+w3
is chosen with ®z1 , ®z2 and

®z3 removed fromMB .). Since the data of different parties are highly
unbalanced, we assign different weightwi to the topics based on
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the data amount ni of different parties. Finally, we can obtain the
global topic modelM∗ (Line 18).

ALGORITHM 2: Integrating Local Topic Models
input :global topic model M, local topic model Mp .
output :updated global topic Model M∗.
begin

concatenate M andMp into MB ;
redundant topics R = {}

for each topic zi in MB do
for each topic zj (j > i) in MB do

calculate ρ(zi , zj ) with Eq. (17);
if ρ(zi , zj ) ≥ ξ then

Add (zi , zj ) into R

end
end

end
for each set s in Union-Find(R) do

for each topic zsi (i > 1) in s do
addwsi ®zsi to ®zs1, remove ®zsi from MB ;

end
normalize distribution ®zsi ;

end
M∗ =MB

end
return M∗;

3.2.2 Composing New Local Topic Models. Since the global topic
modelM∗ is large and comprehensive, some topics in M∗ is irrel-
evant to the data of certain parties. Hence, it is unnecessary to
push all the information in M∗ to each individual party. In order
to effectively reduce the communication cost, we compose a new
local model that is compact enough to be pushed to the correspond-
ing party. In order to take full advantages of the global model to
facilitate local training, we employ meta-learning 1 [30] to trans-
fer meta-level knowledge (i.e., the topics of M∗) as high-quality
initialization for next-iteration local training. Specifically, we scan
each topic zp in M̂p , choose the most similar topic z from the global
topic modelM∗, replace zp with z in the new local topic modelM

′

p
and push it to p. The algorithm of composing new local models is
presented in Algorithm 3.

3.3 FTMWorkflow
The workflow of FTM is presented in Algorithm 4. For each global
iteration, during the party computation stage, each party trains a
local topic model according to Algorithm 1 and pushes the local
topic model to the master. During the master computation stage, the
master sequentially merges all local topic models, maintains a global
topic model M∗ according to Algorithm 2, composes and pushes
new local models for each party according to Algorithm 3. The
whole process repeats for a predefined number of global iterations.

1Meta-learning, also named learning to learn, is previously utilized in supervised
learning scenario. Meta-learning normally includes learning at two levels: higher-level
learning to gain meta-knowledge and lower-level learning for new tasks directed by
meta-knowledge[30].

ALGORITHM 3: Composing New Local Topic Models

input :global topic model M∗, local topic model M̂p

output :new local topic modelM
′

p .
begin

for each topic zp in M̂p do
z = argmaxz∈M∗ ρ(z, zp );
if ρ(z, zp ) ≥ ξ then

replace zp with z intoM
′

p ;
end
remove z fromM∗;

end
end
returnM

′

p ;

We will show later that few global iterations are sufficient to obtain
a good global topic modelM∗. The low synchronization frequency
improves FTM’s robustness to low bandwidth and network failures,
which are more common in wide area networks than in data centers.

ALGORITHM 4: FTM Workflow
for each global iteration do

for each client p do
train local topic model according to Algorithm 1
push local topic model M̂p to master

end
integrate local topic models and obtain the global topic
modelM∗ according to Algorithm 2
for each client p do

compose new local topic models for p push new
local topic modelM

′

p to p
end

end
return the global topic modelM∗

4 EXPERIMENTS
In this section, we evaluate the performance of FTM in terms of
both quantitative metrics and applications. In Section 4.1, we de-
scribe the experimental setup. In Section 4.2, we demonstrate the
effectiveness of FTM in alleviating data scarcity. In Section 4.3, we
demonstrate the utility of FTM in terms of different parameter set-
tings. In Section 4.4, we gauge the communication cost of FTM.
Finally, we show the necessity and the promising performance of
FTM through a real-life application of ASR in Section 4.5.

4.1 Experimental Setup
We assume that there are three parities denoted by P1, P2 and P3,
whose data are neither balanced nor i.i.d.. Specifically, P1, P2 and
P3 stores 29723, 59445 and 89169 documents respectively. A corpus
containing another 29700 documents is used as the testing data.
These baselines are trained through the LightLDA2 toolkit and the

2https://github.com/Microsoft/LightLDA
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Figure 4: Performance of Data Scarcity Alleviation

number of topics has been tuned for each party to make them strong
baselines.

4.2 Data Scarcity Alleviation
One major motivation of FTM is to alleviate the data scarcity prob-
lem faced by each individual party. Hence, one important question
is whether the model trained by FTM is better than those trained by
a single party relying on its own data. Figure 4 shows the compari-
son of FTM and different parties’ topic models in terms of the log
likelihood of testing data. We observe that harnessing more data
usually results in better topic models. By collectively utilizing data
from all parties, FTM achieves the highest likelihood. For example,
FTM-11 (i.e., FTM with ε = 11 and τ = 0.2) demonstrate the log
likelihood of −2.74 × 107 while the best topic model trained by a
single party is the one from P3 and only achieves a log likelihood
of −3.03 × 107. Similar results can be observed with many other
settings of ε and τ . We skip them due to space limitation. The re-
sult indicates that FTM is effective to alleviate data scarcity and
generate high-quality topic models that cannot be obtained based
upon a single party’s data.

4.3 Privacy Protection
The performance of FTM with different ε reflects the utility of FTM
after different levels of privacy protection. In Figure 5, we show
the performance of FTM with regard to different ε (i.e., the scale
parameter for Laplace distribution) and τ (i.e., the threshold for
sparsifying vector n̂di ·). As ε increases, FTMusually achieves higher
likelihood on the testing data. For example, FTM with ε = 8 and
τ = 0.2 achieves a log likelihood of −4.59×107. When ε increases to
11, FTM achieves a log likelihood of −2.74×107. This observation is
quite straightforward since ε determines how much “noise” we add
to the training data. In contrast, the effect of τ is more complicated,
since it simultaneously affects the “noise” and the original data.
When the “noise” is relatively moderate (e.g., ε = 11), a slightly
higher τ (e.g., τ = 0.2) will clap most of the noisy elements in n̂di ·
to zero and results in models with higher likelihood on testing data.
Empirically, τ = 0.2 demonstrates fairly good performance with
moderate noise and we utilize it by default.

Figure 5: Performance of Privacy Protection

Figure 6: Likelihood versus Communication

4.4 Communication Cost
Figure 6 presents the communication costs of conventional topic
modeling and FTM with different ε . The baselines conventional
topic modeling is a LightLDA model trained on a dataset consist-
ing of the training data from P1, P2 and P3. We observe that FTM
converges quickly within several rounds of communication while
conventional topic modeling demonstrates much slower speed of
convergence. FTM with higher ε demonstrates superior perfor-
mance in terms of model quality and communication efficiency.
When ε is lower than 9, the final model of FTM is slightly worse
than conventional topic modeling. Conventional topic modeling
usually needs more than 300 rounds of communications to achieve
the likelihood that can be achieved by FTM in less than 5 rounds.
These results verify the superiority of FTM in low-bandwidth en-
vironment. Another interesting observation is that introducing
moderate noise is beneficial for improve the quality of the model
under training. When ε is set to a value larger than 8, the models
trained by FTM achieves higher likelihood than that trained by
conventional topic modeling on original data.
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Figure 7: The Pipeline of Applying Topic Model in ASR

4.5 FTM in Automatic Speech Recognition
Topic models are known for effectively improving the performance
of Automatic Speech Recognition (ASR) systems through providing
richer contextual information for the language model (LM) com-
ponent in ASR [9, 49]. Specifically, topic models are utilized to
calculate the probability of seeing a word given the context:

PTM (w |C) =
∑
z

P(w |z)P(z |C) (18)

where z is the latent topic, P(w |z) is word probability given the
topic and P(z |C) is topic probability given the contextC . Comparing
with the traditional backoff n-gram language models, such topic-
based approach is able to predict word probability based on much
longer history and richer semantic information. In practice, we
conduct a linear interpolation between the traditional backoff n-
gram language model and that produced by Eq. 18 to generate the
adapted language model P(w |C):

P(w |C) = λPTM (w |C) + (1 − λ)PLM (w |C) (19)

where PLM (w |C) is the probability given by the traditional backoff
n-gram language model and λ is a trade-off parameter. The pipeline
of applying topic models in ASR is illustrated in Figure 7.

The premise of the above approach is to train a high-quality
topic model. However, since the transcripts of audio recordings
are private and highly sensitive, it is impossible to train a compre-
hensive topic model by conventional approach and we resort to
FTM to solve this problem. In our experiment, three parties are
involved. Party P1 has the transcript corresponding to 100-hour
audio recording, P2 and P3 have the transcripts of 50-hour audio
recording respectively. We train topic models for each party with
the conventional topic modeling and train FTM model according
to those discussed in Section 3.

As a testbed, an full-fledged ASR system is trained using the
Kaldi toolkit 3. We investigate whether introducing topic infor-
mation into the language model component of the ASR system
can improve its performance. The topic information is utilized in
the same way as the Re-Decoding mechanism described in [49].
The performances the ASR system with different language model
3http://kaldi-asr.org/

components are evaluated by the standard metric Word Error Rate
(WER) [27]. The lower the WER, the better the performance of
the ASR system. A data set of 10-hour audio recordings is used for
testing. The experimental results are shown in Table 2. We observe
that all topic models are effective in reducing WER but the models
trained on larger data are of higher quality. Even with the pertur-
bation caused by privacy protection, FTM still achieves the best
performance in term of reducing WER, since harnessing compre-
hensive data significantly increases the quality of topic model. This
application-oriented evaluation verifies our assumption that FTM
can solve problems that plague real-life applications and improve
their performance to a level that can not be achieved before.

Table 2: Introducing Topic Models into ASR

Models WER
ASR without Topic Model 33.183%

ASR with Topic Model trained on P1 31.401%
ASR with Topic Model trained on P2 32.324%
ASR with Topic Model trained on P3 33.035%

ASR with FTM-11 30.063%

5 CONCLUSION
In this paper, we propose a novel framework named Federated Topic
Modeling (FTM) to solve two critical problems faced by industrial
topic modeling: data scarcity and data privacy. By seamlessly com-
bining techniques such as differential privacy, MCMC sampling
and meta learning, FTM significantly alleviates the problem of data
scarcity while providing a principled approach for protecting data
privacy. With the federated architecture in FTM, a master and a
series of parties work collectively to train high-quality topic models
with low communication cost. Our quantitative experiments show
that FTM has significant promise, as high-quality topic models can
be trained in federated setting. Empirical evaluation of FTM on
automatic speech recognition show that that it truly solves some
real-life problems that have not been successfully handled before.
Future work involves implementing more topic models based upon
FTM.
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