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Abstract
Latent Dirichlet Allocation (LDA) is a widely adopted topic
model for industrial-grade text mining applications. Howev-
er, its performance heavily relies on the collection of large
amount of text data from users’ everyday life for model train-
ing. Such data collection risks severe privacy leakage if the
data collector is untrustworthy. To protect text data privacy
while allowing accurate model training, we investigate fed-
erated learning of LDA models. That is, the model is col-
laboratively trained between an untrustworthy data collector
and multiple users, where raw text data of each user are s-
tored locally and not uploaded to the data collector. To this
end, we propose FedLDA, a local differential privacy (LD-
P) based framework for federated learning of LDA models.
Central in FedLDA is a novel LDP mechanism called Ran-
dom Response with Priori (RRP), which provides theoretical
guarantees on both data privacy and model accuracy. We also
design techniques to reduce the communication cost between
the data collector and the users during model training. Exten-
sive experiments on three open datasets verified the effective-
ness of our solution.

1 Introduction
The Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jor-
dan 2003) model is a popular topic model for text-mining. It
has widespread adoption in applications such as text classifi-
cation, tag recommendation, opinion mining etc. (Blei, Ng,
and Jordan 2003; Steyvers et al. 2004; Airoldi et al. 2008;
Blei 2012), and has been a fundamental building block for
many commercial products. For example, LDA is used by
Microsoft (Yuan et al. 2015), Baidu (Jiang et al. 2018) and
Tencent (Yu et al. 2017) in many of their services.

Accurate LDA models rely on large amounts of text da-
ta collected from users’ everyday life for training. Reviews
of products, tags on movies, microblogs and E-mails are all
common sources for data collection. Consequently, improp-
er exploitation of these data by an untrustworthy data col-
lector can easily leak sensitive information and violate user
privacy.

To avoid malicious use of text data from an untrustworthy
data collector while allowing accurate training of the LDA
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models, we investigate LDA model training in a federated
learning setting (McMahan et al. 2017; Yang et al. 2019).
That is, the LDA model is collaboratively trained between an
untrustworthy data collector and multiple users, where the
raw text data of each individual user are locally stored and
only privacy-protected intermediate results are transmitted
to the data collector for model training. However, to realize
such federated LDA learning is non-trivial. It is challenging
to decide how and what to communicate between the data
collector and the users such that there is guarantee on both
data privacy and model accuracy.

In this paper, we propose FedLDA, the first-of-its-kind
solution to federated learning of LDA models without as-
suming any trustworthy data collector. FedLDA quantifies
and protects user privacy in the context of local differen-
tial privacy (LDP) (Evfimievski, Gehrke, and Srikant 2003),
a privacy measure naturally fit for a federated learning set-
ting with no trusted third parties. Central in FedLDA is a
novel and practical LDP mechanism that offers theoretical
guarantees for both privacy and utility (assessed by errors in
model parameters) by exploiting randomized response (R-
R) techniques (Erlingsson, Pihur, and Korolova 2014). We
also devise techniques to reduce the communication cost of
learning with FedLDA. The contributions of this work are
summarized as follows.

• This is the first work to consider LDA training in a fed-
erated setting without a trustworthy data collector, an in-
creasingly important yet largely unexplored problem in
many industrial topic mining applications.

• We propose a local differential privacy (LDP) based so-
lution to federated learning of topic models without trust-
worthy third parties. To the best of our knowledge, we are
the first to introduce LDP to federated learning and we de-
sign a novel LDP mechanism with theoretical guarantees
on both data privacy and model accuracy.

• We evaluate our solution on three open datasets. Experi-
mental results validate the effectiveness of our solution.

In the rest of this paper, we first review basics on LDA and
LDP, and then elaborate on the design and performance of
our proposed FedLDA. Finally we review related work and
conclude this work.



    
 

 
 

Figure 1: Graphical model for LDA.

2 Preliminaries
Latent Dirichlet Allocation (LDA) Model
LDA is a generative probabilistic model for clustering col-
lections of grouped discrete data such as corpus of docu-
ments. It is the most widely used topic model in commercial
products (Jiang et al. 2018). Fig. 1 shows an LDA model
for text mining. The notations are explained in Table 1. To
train an LDA model, we need to infer the posterior distri-
bution of its parameters (document-topic distribution θ and
topic-word distribution φ) from the documents. A popular
category of training algorithms is sampling methods such as
Gibbs sampling (GS) and Metropolis Hastings (MH) with
alias tables (Li et al. 2014). The collapsed Gibbs sampler it-
eratively samples new topics zij for the jth wordw in the ith
document from the following full conditional distribution

p(zij = k|·) ∝ (m
(−ij)
i,k + αk)

n
(−ij)
k,word + βword∑
w′ n

(−ij)
k,w′ + βw′

until the parameters converge, where m(−ij)
i,k is the count of

topic k in document i excluding zij , n
(−ij)
k,w is the count that

word w is assigned with topic k excluding zij .
In a federated learning setting, the words in each docu-

ments are the most private data thus should not be leaked.
Also, the parameters θ and z should be stored and updated
locally by each user because they are document-correlated
and may contain private information. The untrusted data col-
lector will keep the parameter φ, which is commonly used
in other industrial applications and it contains no private in-
formation of users. We will explain in next section how to
infer all the parameters without directly communicating the
topic-word assignments (which will expose the words of a
document) between the data collector and the users.

Local Differential Privacy (LDP)
Local Differential Privacy (LDP) (Evfimievski, Gehrke, and
Srikant 2003) is a concept for privacy-preserving data col-
lection without assuming a trusted data collector. It naturally
meets the privacy requirement of our federated learning set-
ting. An LDP mechanism adds controlled noise into users’
private data before sending them to the untrusted data collec-
tor, so that certain privacy requirement is fulfilled. Formally,
an LDP mechanism should satisfy the property below:

Definition 1 ((ε, δ)-LDP). A randomized algorithm (mech-
anism) A : X → T is (ε, δ)-locally differentially private if
for any x, x′ ∈ X and v ∈ T , we have

Pr[A(x) = v] ≤ eεPr[A(x′) = v] + δ

Table 1: Summary of symbol notations.

Symbol Description
D The collection of documents
N Number of documents
M Number of words in each document
K Number of topics
w N ×M document-word vector
V The vocabulary set
z N ×M word-topic assignment vector
φ Topic-word distribution
β Hyperparameter, φk ∼ Dirichlet(β)
θ Document-topic distribution
α Hyperparameter, θi ∼ Dirichlet(α)

One effective way to design an LDP mechanism is to
exploit the randomized response (RR) technique (Warner
1965; Erlingsson, Pihur, and Korolova 2014). The primary
idea is that a data collector collects data from users by ask-
ing binary questions to users, and each user responds a true
answer in a randomized fashion. Specifically, the user flips
a coin with a probability of head 1 − η and only reports the
true answer if the coin turns head. RR can estimate unbiased
results meanwhile satisfying ε-LDP by setting

η =
1

1 + eε
(1)

In this work, we design a novel LDP mechanism exploit-
ing RR techniques to protect user data privacy in federated
LDA learning while still achieving high model accuracy.

3 FedLDA Overview
Fig. 2 illustrates the workflow of FedLDA, our local dif-
ferential privacy based solution to federated LDA learning
with no trusted data collector. For ease of presentation, we
assume N users and each user has only one document di.
As mentioned before, in a federated learning setting, the
document-topic distribution θ and the latent variable z are
stored and updated locally, i.e., user i updates his/her own
θi, while the untrustworthy data collector aims to infer the
topic-word distribution φ. At each iteration during model
training, the inference of φ is partitioned into local sam-
pling by each individual user and global integration by the
data collector.
• Local Sampling. At iteration t, each user i will sample

new word-topic assignments for all the words in his/her
document based on the current topic-word distribution
φ(t) and his/her own document-topic distribution θ(t)i .
Then sampling methods such as GS and MH can be used
(we use the parallel implementation of GS as an approx-
imation). After finishing sampling all the topic assign-
ments, user i calculates an updating vector of φ, denoted
by U (t)

i . The updating vector U (t)
i is then perturbed to

protect privacy and then transmitted to the data collector.
Algorithm. 1 shows the details of local sampling.
• Global Integration. At iteration t, the data collector col-

lects and aggregates U (t)
i from each user and updates φ
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Figure 2: FedLDA overview.

before transmitting it to users for the next iteration. The
details of global integration can be found in Algorithm. 2.

As discussed above, each user only transmits the perturbed
updating vector U (t)

i to the data collector during model
training. Hence the design of the updating vector and its per-
turbing mechanism is crucial for the efficiency and effective-
ness of our federated topic modeling framework, as we will
explain in detail in the next two sections.

Note that although we take LDA as an instance to explain
our federated learning framework, our proposed framework
is not bounded to LDA and can be easily adapted to other
topic models with sampling-based training.

4 Design of Updating Vector
The design of the updating vectorU (t)

i mainly considers the
efficiency of our solution, particularly the communication
cost between each user and the data collector. The updating
vector is generated in two steps: (i) dense representation and
(ii) padding & sampling.

Dense Representation
In local sampling (Algorithm. 1), U (t)

i is a sparse vector
of size |V| × K. Directly sending such a large vector leads

Algorithm 1: Local sampling
input : Local word vector w[i],topic assignment

z[i],privacy parameter η, δ and φ(t)

output: Updating vector U (t)
i

1 for word-id j = 1, 2, · · · ,M do
2 Sample a new topic z[i][j] for word w[i][j] with GS

or MH;
3 Update counts of assignments ntopic,word;

4 Update θ(t)i ;
5 Calculate updating vector U (t)

i with dense
representation;

6 Pad U (t)
i to fixed length M ;

7 for each sampled tuple (w, k1, k2) in U (t)
i do

8 Perturb (w, k1, k2) by Algorithm. 3;

9 return U (t)
i

Algorithm 2: Global integration
input : Privacy parameter η, δ
output: Model parameter φ

1 Randomly initialize z and the counters;
2 for iteration t = 1, 2, 3, · · · do
3 for user-id i = 1, 2, · · · , N do
4 Collect U (t)

i from each user i by Algorithm. 1 ;
5 for topic-id k = 1, 2, · · · ,K do
6 Get n(i)

k,word from U
(t)
i ;

7 nk,word ←
∑N
i=1 n

(i)
k,word ;

8 Update φ(t) ;
9 return φ

to unacceptable communication cost during model training.
Note that the updating vector has at most M non-zero val-
ues, where M is the number of words in each document.
Hence we propose a dense representation of the updating
vector to reduce the communication cost.

Specifically, the non-zero values inU (t)
i stand for the up-

dates of word-topic assignments and each assignment can
be replaced by a tuple (w, k1, k2), meaning that the topic as-
signment of word w has been changed from topic k1 to k2.
We still use U (t)

i to denote the new updating vector and its
size is at most 3M , which is much smaller than |V|×K. Fi-
nally we can calculate the parameterφ by estimating the fre-
quency of words under each topic in U (t)

i (i.e., ntopic,word)
and then conducting a normalization, i.e.,

φtopic,word ←
ntopic,word + βword∑
w′ ntopic,w′ + βw′

Padding & Sampling
Although dense representation of the updating vector sig-
nificantly saves communication cost, the resulting length of



Algorithm 3: The RRP mechanism
input : A tuple (w, k1, k2), φ, θi
output: Perturbed tuple (w′, k1, k2)

1 Sample x ∼ Bernoulli(η);
2 if x = 0 then
3 w1 = w ;
4 else
5 Sample k′ ∼ θi ;
6 Sample w′ ∼ φk′ ;
7 if w′ ∈ Φrk′ then
8 w1 = w ;
9 else

10 w1 = w′ ;

11 return (w1, k1, k2)

each user’sU (t)
i is different, which violates the requirement

of LDP. As a compensation, we apply padding & sampling
techniques (Qin et al. 2016; Wang, Li, and Jha 2018) to align
the lengths of updating vectors and randomly sample tuples
from each vector for the perturbation and uploading later.
The padding size is set to M in our solution, as each updat-
ing vector has at most M tuples. We pad the vectors whose
sizes are smaller than M with dummy tuples. After that, we
uniformly sample l (l ≤ M ) tuples (without replacement)
from each vector for perturbation.

Notice that the original padding and sampling techniques
(Qin et al. 2016) only take one sample for aggregation,
which will cause significant accuracy drop in the trained L-
DA model (see experiments). So we relax it by sampling l
tuples. l/M is empirically set to 0.7, meaning a saving of
communication cost by 30%.

5 Perturbing Mechanism
We now present our perturbing mechanism for each tuple
(w, k1, k2) in the updating vector U (t)

i . The mechanism
should be (ε, δ)-LDP and allows accurate LDA training.

Limitation of Prior Mechanisms
A naive method to perturb w is to directly apply the kR-
R (Kairouz, Oh, and Viswanath 2014) mechanism, an LDP
mechanism for categorical values leveraging the random re-
sponse (RR) technique. However, applying the kRR mecha-
nism to our federated topic modeling has two drawbacks.

• Limited privacy level. The privacy budget ε of the kRR
mechanism should satisfy ε ≥ ln(|V| − 1) + ln(1/η− 1),
where |V| is the dictionary size and η is the same as in
Eq.(1). In many real topic modeling applications, |V| is
large (e.g., over 10, 000) and thus a large privacy budget is
necessary. Conversely, given a privacy budget, the privacy
level achieved is limited.

• Ineffective for model training. The kRR mechanism uni-
formly samples noisy items from the entire item set. In the
context of topic modeling, it means some rare words will
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Figure 3: An example of deserted sets (unshaded part of φ)
and truncated sets (shaded part of φ) when δ = 0.1. Words
are sorted in descending order by their proportions. Numbers
with rectangles refer to the same word “cat”.

also be sampled due to the uniformly sampling. Conse-
quently, many meaningless tuples will be generated which
may never appear in the sampling process before perturb-
ing. Hence it will introduce too much noise and make the
LDA model hard to converge (see experiments).

Random Response with Priori (RRP)
To overcome these drawbacks, we devise a novel perturbing
mechanism based on RR, called Randomized Response with
Priori (RRP). It has the following two advantages.
• RRP requires a privacy budget that is irrelevant to the dic-

tionary size |V|, if we assume the proportions of words
under each topic follow the Zipf’s law 1 (see Theorem. 1).

• RRP adaptively and non-uniformly samples the noisy
terms from a priori drawn from the LDA model. Accord-
ingly, the drop in model accuracy caused by the noise can
be effectively reduced.
Algorithm. 3 shows our RRP mechanism. With probabil-

ity 1 − η the word in each tuple will not be perturbed (Line
1-3). With probability η, we will first sample a topic k′ from
the document-topic distribution of that user, and then sample
a new word w′ from the topic-word distribution of topic k′
(Line 5-6). In other words, we generate a new word w′ ac-
cording to the word generation process of LDA but we use
the model under training instead. However, there are still a
large number of candidate words. So we sort the words by
their proportion in descending order and truncate the set of
words. Let Φlk′ denote the truncated set of words in topic k′
and Φrk′ denote the deserted set of words. We truncate it ac-
cording to

∑
w∈Φr

k′
φk′(w) = δ. Only if the sampled word

w′ is from Φlk′ (with probability 1 − δ) will we replace it
(Line 7-10). Finally it will output the perturbed tuple.

1https://en.wikipedia.org/wiki/Zipf%27s law
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Figure 4: Empirical validations of assumptions for The-
orem. 1: (a). Illustration of word frequencies by their
ranks in φ, which approximately follows the Zipf’s law;
(b).Comparison between RRP with different δ and kRR with
different vocabulary sizes.

Fig. 3 illustrates an example, where the numbers with
rectangles correspond to the same word “cat”. We assume
δ = 0.1 and the shaded part of each row in φ denotes the de-
serted set, while the unshaded parts are truncated sets. Sup-
pose the original word in the tuple is “dog” and we fall into
the else-branch of Algorithm. 3. And the probability that the
perturbed word is “cat” will be 0.6× 0.6 + 0.2× 0.1 = 0.38
as it lies in the deserted sets of the last three topics thus will
not be sampled from them.

Theoretical Analysis
Now we analyze the privacy protection and the error on
model parameter φ of our FedLDA. Due to limited space,
all proofs are provided as supplementary materials.

Theorem 1. By setting η = 1
δδ0eε+1 , Algorithm. 3 satisfies

(ε, 2δ)-LDP, where δ0 = δ − (δ−
1
γ + 1)−γ , γ ≥ 1 is a

constant.

It means that an untrusted data collector cannot easily dis-
tinguish the updates from any two users, thus the privacy
of each local document is protected. Note that in each iter-
ation, every user has l tuples to submit. Therefore, by the
composition property (Dwork 2006), given the total privacy
budget ε′, the privacy budget ε for one tuple should satisfy
ε = 1

l ε
′. Also note that we make the assumption in Theo-

rem. 1 that the word proportions satisfy the Zipf’s law. This
can be verified by Fig. 4a, an illustration of the frequency
of words by descending ranking under different topics. We
also show the relationship between η and ε for different δ
in our mechanism and different vocabulary size in kRR in
Fig. 4b. We observe that with the same η, the privacy budget
for our mechanism is much smaller than kRR, due to that the
vocabulary size is often very large in training LDA models.

Theorem 2. Given a fixed topic, the expected relative error
of the model parameter φw after perturbation is bounded by
O(ηk2) where k is the rank ofw by sorting φw in descending
order.

Here we estimate the aggregation of each user’s count
of words under the same topic by a direct summation. Al-
though it does not result in an unbiased estimation, we can
still bound the expected error of model parameters. From
the upper bound O(ηk2), we find that if k is small, i.e.,, the
word is very likely to be a keyword in that topic, the rela-
tive error is small and proportional to η. But if k is large, the
relative error may be large. Nevertheless, it will not largely
influence the overall performance of the model, as the pa-
rameters with large k are close to 0, and the model users only
care about parameters with top ranks, i.e., the keywords. It
should also be noticed that the error is likely to accumulate
by iterations. Considering that the LDA model performance
can be effected by many other random factors such as er-
rors from sampling algorithms which are hard to calculate,
we will evaluate the model’s final performance empirical-
ly. Our experimental results also show that the noise from
our perturbing mechanism will slightly influence the overall
performance.

6 Experiments
Experimental Setup
Datasets. We use three open datasets: Reviews 2, Email-
s 3 and Sentiments 4 (Maas et al. 2011). The dataset Re-
views consists of 500,000 reviews of fine foods from Ama-
zon with M = 50 and |V| = 2776. The dataset Email-
s contains 33,716 spam/non-spam emails with M = 150
and |V| = 3309. The dataset Sentiments has 50,000 highly
polar movie reviews with positive/negative sentiments, with
M = 150 and |V| = 22574. We use Reviews and Emails
for evaluating our LDP mechanisms. Besides, we also eval-
uate our approach in two real applications: spam filtering on
Emails and sentiment analysis on Sentiments.

Evaluation Metric. We use the perplexity to evaluate the
performance of LDA models. The perplexity on a collection
of documents D is defined as

perplexity = exp(− 1

NM
N∑
i=1

∑
w∈di

ln(
K∑
k=1

p(w|zk)p(zk|di)))

For the two real applications, we evaluate the performance
of different methods by Precision, Recall, F1 score and AUC
score, which are commonly used in binary classification
tasks.

Baselines. We compare our RRP with kRR (Kairouz, Oh,
and Viswanath 2014) and HM (Wang et al. 2019) using the
same privacy budget ε. For fair comparison, we also com-
pare with truncated kRR (t-kRR) which truncates the vocab-
ulary set with the same δ based on kRR. In the real appli-
cations, we compare FedLDA with tradition LDA that does
not have privacy-preserving techniques.

2https://www.kaggle.com/snap/amazon-fine-food-reviews
3https://www.kaggle.com/uciml/sms-spam-collection-dataset
4http://ai.stanford.edu/ amaas/data/sentiment/
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Figure 5: Experimental results on Reviews and Emails

Parameter settings. We randomly sample 1K, 5K and
3K instances respectively from Reviews, Emails and Senti-
ments for evaluation. The default ε is 7.5 for all datasets and
the default K is 20 for Reviews, 30 for Emails and 50 for
Sentiments. The two real applications are both binary clas-
sification problem and we use logistic regression to solve
the problems based on the LDA model parameters. We split
training data and test data by 4 : 1 for logistic regression and
train both data for 100 iterations with the same solver.

Quantitative Evaluation
Impact of sampling algorithms. Fig. 5a, Fig. 5b, Fig. 5c,
and Fig. 5d show the convergence using GS and MH as the
sampling algorithm. On both datasets, MH converges faster
than GS. RRP outperforms the other three baselines signifi-
cantly for both sampling algorithms and the final results are
very close to no-privacy. It can converge as fast as original

GS or MH but may fall into sub-optimal values so the final
results are slightly damaged.

Impact of ε. Fig. 5e and Fig. 5g show the impact of the
privacy budget ε. We observe that with larger ε, i.e., smaller
η and lower level of privacy protection, the perplexity de-
creases for all the methods and RRP is still the best approach
compared with baselines.

Impact of K. Fig. 5f and Fig. 5h show the impact of the
number of topics K. With larger K, the perplexity of all the
approaches decreases, which is in line with common sense.
RRP still performs the best and is also close to no-privacy.

Impact of δ. Fig. 5i and Fig. 5k show the impact of δ. We
find that with a larger δ, i.e., a larger failure probability, the
performance of t-kRR improves significantly. But for RRP,
the results change slightly, which means that RRP is robust
with δ. This is reasonable as we rank the words by frequency
and the deserted set already contains the majority of words



Table 2: Performance on real applications

LDA FedLDA 7.5 FedLDA 5.0

SF

Precision 0.868 0.781 0.736
Recall 0.708 0.767 0.760

F1 score 0.780 0.774 0.748
AUC score 0.798 0.771 0.738

SA

Precision 0.777 0.774 0.761
Recall 0.814 0.776 0.766

F1 score 0.795 0.775 0.764
AUC score 0.794 0.778 0.767

even if δ is small. In real applications, δ is expected to be
small (less than 0.1), and the performance of our approaches
is good enough in such cases.

Impact of sample ratio l/M . Fig. 5j and Fig. 5l show
the impact on l/M , which is the sample ratio in padding
and sampling process. If the ratio equals 0, it means that
we only sample one record, which is proved to be defective
in the figures. The performance will improve with a larger
sample ratio, but the improvement is less obvious with the
ratio approaching 1. This verifies that with a ratio less than
1 (e.g., 0.7), we can achieve similar results meanwhile the
communication cost can be decreased by 30%.

Summary of results. For the model performance of the
trained LDA models, RRP always outperforms the baselines
in the converged perplexity and is also performs very close
to LDA without privacy-preserving techniques. The result-
s verify that FedLDA achieves competitive model perfor-
mance while the data privacy is effectively protected at the
same time.

Application-oriented Evaluation
Table 2 shows the results on spam filtering (SF) and sen-
timent analysis (SA) applications. We implement FedLDA
with RRP ε = 7.5 and ε = 5 respectively. On spam filter-
ing, we observe that the precision of FedLDA is lower than
LDA but the recall is higher. The reductions of AUC are at
most 2.7% if ε = 7.5 (i.e., 5% of the words will be per-
turbed in each iteration) and are at most 5% if ε = 5 (i.e.,
40% of the words will be perturbed in each iteration). On
sentiment analysis, the difference is even smaller, with only
1.6% of reduction to AUC if ε = 7.5, which verifies that our
approach is still effective and will not bring large damage to
performance in real applications.

7 Related Work
Our work is related to the following categories of research.

Latent Dirichlet Allocation Models. The Latent Dirich-
let Allocation (LDA) (Blei, Ng, and Jordan 2003) model
and its extensions (Wang and McCallum 2006; Blei and
McAuliffe 2007; Liu et al. 2011) are most widely adopt-
ed topic models in industrial applications. Sampling meth-
ods such as Gibbs sampling (GS) and Metropolis Hastings
(MH) with alias tables (Li et al. 2014) are widely used for
parameter estimation in LDA due to their easy adaptation to
distributed and parallel platforms. Representative algorithm-

s like WrapLDA (Chen et al. 2016), LightLDA (Yuan et al.
2015) and LDA* (Yu et al. 2017) have shown promising per-
formance in industrial-scale applications. Our solution also
uses sampling methods such as GS and MH so as to be suit-
ed for distributed and parallel topic modeling applications.
Distributed LDA (Newman et al. 2009) is also related to our
work. The new challenges are that a federated LDA has to
deal with privacy-induced noise added to the data and can-
not split or aggregate sensitive data and results freely as in
a distributed setting. The novelty of our solution is to en-
sure the effectiveness and efficiency of (distributed) LDA in
presence of such privacy constraints.

Local Differential Privacy. Differential privacy (D-
P) (Dwork 2006) is a popular privacy-preserving tech-
nique, which perturbs the original data by delicately inject-
ing noise. Local Differential Privacy (LDP) (Evfimievski,
Gehrke, and Srikant 2003) is a more strict measurement as
the data collector is assumed to be untrustworthy. The ran-
domized response (RR) technique (Warner 1965) is one of
the most basic and representative mechanisms that satisfy
LDP (Erlingsson, Pihur, and Korolova 2014). Based on R-
R techniques, RAPPOR (Erlingsson, Pihur, and Korolova
2014; Kairouz, Bonawitz, and Ramage 2016) is proposed
for user data collection in Google Chrome. As extension-
s of tradition RR, kRR (Kairouz, Oh, and Viswanath 2014)
is designed for collecting categorical data while LDPMin-
er (Qin et al. 2016) and LoPub (Ren et al. 2018) can deal
with multidimensional data. Apart from frequency estima-
tion, some other work focuses on mean estimation for nu-
meric data with LDP (Duchi, Jordan, and Wainwright 2014;
Ding, Kulkarni, and Yekhanin 2017). A recent work (Wang
et al. 2019) proposes a hybrid mechanism that works for
both categorical and numerical data and we have also im-
plemented it in our experiments (i.e., HM) for comparison.

Federated Learning. Federated learning (FL) (McMa-
han et al. 2016; 2017) was first proposed by Google for
large-scale collaborative machine learning with privacy-
preserving mechanisms among android users. A more gen-
eral definition and taxonomy of federated machine learn-
ing is proposed in (Yang et al. 2019). The biggest chal-
lenge in FL is how to satisfy the strict privacy-preserving
requirements when training the model. Some solutions con-
sider collaborative machine learning under the secure multi-
party computation (SMC) framework (Bonawitz et al. 2017;
Cheng et al. 2019) and apply encryption protocols to sat-
isfy the privacy requirements. These solutions are special-
ly designed for gradient-based machine learning algorithm-
s and are usually computation- and communication-heavy.
Some other work (Park et al. 2016; McMahan et al. 2018)
are based on traditional DP to reduce the extra overhead but
a trusted data collector is required. To the best of our knowl-
edge, we are the first to introduce LDP in federated learning
and assume no trustworthy third party.

8 Conclusion
In this paper, we propose FedLDA, the first solution to fed-
erated LDA learning without assuming any trustworthy data
collector. We devise a novel local differential privacy mech-
anism which provides theoretical guarantees on both user



privacy and model accuracy. Extensive experiments on three
open datasets show that FedLDA can preserve the data priva-
cy of users while allowing accurate training of LDA models.
We envision our work as a first step to effective and practical
federated topic modeling in real-world applications.
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