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Ridesharing platforms, as typical applications of spatial crowdsourcing, are becoming more and more
popular in the era of mobile internet and sharing economy. One of the most fundamental issues on
ridesharing platforms is to assign orders to drivers, which can be naturally modeled as online bipartite
matching problem. However, conventional online matching algorithms usually lack data privacy protec-
tion mechanisms. This has become a serious issue since the spatiotemporal data of passengers is often
sensitive. New policies such as EU’s General Data Protection Regulation (GDPR) also enforce protection of
sensitive data, which further exacerbate the privacy issues. To deal with the problems, in this paper we
propose a framework based on differential privacy (DP) techniques to preserve the privacy of individuals
on ridesharing platforms. Specifically, we devise a novel approach to perturb locations in online minimum
bipartite matching problem and theoretically show that the performance of the perturbed matching algo-
rithm has the same magnitude with the unperturbed one. Experiments conducted on real datasets have
also shown the effectiveness of proposed framework.
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1. Introduction

With the emergence of mobile Internet and sharing economy,
spatial crowdsourcing is becoming more and more popular in re-
cent years. In spatial crowdsourcing, the platform assigns orders of
requesters to crowd workers. For example, Gigwalk [1] and Gmis-
sion [2] recruit crowd workers to take pictures or check informa-
tion at a specific location. OpenStreetMap [3] mobilizes voluntary
crowd workers to edit world map together and Waze [4], another
digital map application, uses crowd workers to collect real-time
traffic information. Ridesharing platforms, such as the real-time
taxi-calling service Uber [5], are one of the most typical applica-
tions of spatial crowdsourcing, where passengers dynamically ap-
pear and need to be assigned to drivers in minutes. We refer to
such problem that requires instant response as online assignment. It
can be naturally modeled as online bipartite graph matching prob-
lem with objectives like minimizing the total waiting time of pas-
sengers. It is essential to various services on ridesharing platforms
such as on-demand taxi-hailing [6,7] and route planning [8,9]. Un-
fortunately, online matching often requires the personal locations
of passengers or drivers, which may result in privacy leaks. The
privacy issue is one of the most concerned problems in the era of
Internet. Millions of personal information and sensitive data are in
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danger of exposure every day. To deal with the problem, new poli-
cies such as the EU’s General Data Protection Regulation (GDPR)
have been put forward to enforce protection of sensitive data. Any-
one who violates the law will be in face of huge fines. Therefore,
traditional online matching algorithms that ignore protecting the
privacy of individuals will be in challenge.

To deal with the privacy issue in spatial crowdsourcing, espe-
cially on ridesharing platforms, an alternative is to design privacy-
preserving mechanisms for the task assignment problem, to make
the locations of individuals indistinguishable. However, such mech-
anisms can lead to inaccurate data, resulting in poor performance
of matching algorithms. Existing research on privacy preserving fo-
cuses on decreasing the level of privacy leaks, but ignores the er-
rors that the noise brings to the utility, which may result in a great
increasement of cost for platforms.

As an improvement, this paper studies the influence of privacy
preserving mechanisms on the cost of online minimum bipartite
matching (OMBM) algorithms, which is essential to task assign-
ment on ridesharing platforms. Our contributions are as follows:

1. Privacy preserving framework for OMBM. To our best knowl-
edge, we are the first to address privacy protection on
OMBM problem.

2. Theoretical performance guarantee. We first prove that
the loss of cost caused by the noise can be bounded
(Theorem 1), which means that the performance of the
privacy-preserving mechanism on OMBM problem is guar-
anteed.
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3. Experimental verification. We conduct experiments on real
datasets and verify the effectiveness of our proposed meth-
ods.

The rest of this paper is organized as follows. In Section 2 we
introduce the background on privacy preserving and minimum bi-
partite matching problem. In Section 3 we introduce the proposed
framework. In Section 4 we make theoretical analysis of our meth-
ods. In Section 5 we evaluate our methods with experiments on
real datasets. Related works are shown in Section 6. Finally, we
conclude this paper in Section 7.

2. Preliminaries

In this section, we first introduce the background on GEO-
Indistinguishablity (GEO-I) [10], a notion of location privacy. Then
we review the formal definition of Online Minimum Bipartite
Matching (OMBM) problem.

2.1. Background on GEO-Indistinguishablity

Based on Differential Privacy (DP), GEO-I is a probabilistic
model, making all input data indistinguishable. From the perspec-
tive of an attacker, it is impossible to distinguish any two indi-
viduals’ actual locations by distribution of their reported locations.
A mechanism K satisfying e-GEO-I outputs similar distribution for
any actual location within radius r, where € indicates the protect-
ing level. The raw input X is actual locations of requesters. Z, the
output of K, are locations reported to the assignment platform. Par-
ticularly, nobody but the requester and the worker has direct ac-
cess to the actual location. In this setting, neither the platform nor
malicious attackers can acquire requesters’ actual location. The for-
mal definition of GEO-I is as below:

Definition 1 (e-GEO-Indistinguishablity[10]). A mechanism K satis-
fies e-Geo-indistinguishablility iff. Vx,x' € X such that d(x, x') < r:

dp(K(x),K(x")) < ed(x,x)

For simplification, we take the Euclidean distance between x
and X’ as d(x, x'). dp(K(x),K(x')) measures the distance between
distributions produced by x and x’ (i.e. distinguishablity between x
and x). For example, in [10], it is the multiplicative distance.

Laplace Mechanism naturally satisfying e-GEO-I, by injecting
random noise into each original location[10]. In Laplace Mecha-
nism, the reported location zy which is perturbed from the original
location xq satisfies planar Laplace distribution. When the original
locations are xy and x; respectively, the mechanism ensures that
the probability of distinguishing different original locations is at
most proportional to a multiplicative factor e€¢®X) and as a re-
sult, xo and x{, are almost indistinguishable to the attacker. We re-
fer to the probability density function of the noise as planar Lapla-
cian centerer at Xg.

62
de (X0, 20) = Eefed(xo'zn)

2 . . . .
,where 5= is a normalization factor and zy is the output.

2.2. Online minimum bipartite matching

In this part, we review the formal definition of on online min-
imum bipartite matching problem and then illustrate the problem
by an instance of taxi-calling.

Definition 2 (OMBM Problem [11]). Given a set of service
providers W with specific initial locations, a set of requesters T,
which appear dynamically, and a distance function dis(., .) in 2D
space. The OMBM problem is to find a matching M, with minimum
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Fig. 1. Locations of Clients and Service providers.

total distance Cost(M) = X; ¢ 1 w « wdis(t, w), between the matched
pairs such that the matching M satisfies the following two con-
straints:

(a) Real-time constraint: When a task appears, the platform
must immediately assign a service provider to the requester
before the arrival of next requester.

(b) Invariable constraint: Once a service provider is allocated to
a requester, the allocation cannot be revoked.

The real-time constraint is reasonable, for the requester is less
willing to wait and expects to be assigned to a worker as soon as
she/he arrives. We further illustrate this problem by an example.

Example 1. We take the real-time taxi-calling service as an exam-
ple. Suppose there are three service providers (wy, wy, ws) in the
taxi dispatching platform and three tasks (t, t;, t3) appear in a cer-
tain order. The locations of service providers and requesters on the 2D
plane are shown in Fig. 1. In the offline scenario, optimal matching
pairs are {(t1, wy), (t3, wq), (t3, w3)} with minimum total traveling
distance +/13 +2 ~ 5.61. In an online scenario, each requester must
be assigned to a service provider as soon as she/he arrives. The sim-
plest way of matching, the greedy strategy, is to assign the nearest un-
matched service provider to the requester. With task arrival order (tq,
ty, t3), the matching pairs of greedy strategy is (t1, wy), (tz, W), (t3,
ws), making the total travel distance equal to +/2 + /17 + 2 ~ 7.53.

3. Privacy preserving framework for OMBM

In this section, we propose a framework for unilateral privacy
protection for OMBM problem. In this framework, any possible
matching algorithms can be applied.

Specifically, we take three steps to conduct private matching.
Firstly, the client injects noise to her/his original location and then
reports the perturbed location to an untrusted third-party plat-
form. Secondly the platform executes an online matching algo-
rithm and assigns an unmatched service provider to the client
based on the perturbed locations. Finally, the service provider es-
tablishes a direct connection with the client and provides service
for the requester. More specifically, the requesters can inform the
drivers their actual locations, and then the drivers will pick them
up, while the platform only has access to the perturbed locations
[12]. The following example in Fig. 2 shows the process of privacy
preserving matching.

Example 2. When a client t(4,1) arrives, she/he firstly adds noise to
her/his original location and gets the perturbed location (5,3). Then
the client reports the perturbed location to the untrusted platform and
the platform assigns w; to t according to a matching algorithm. As a
result, the travel distance is ~/17, while without noise, the platform
assigns wy to t and the minimum travel distance is 2.
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Fig. 2. Process of privacy preserving matching.

From Example 2, we can learn that the platform executes algo-
rithm on inaccurate locations of clients, so the platform may select
a further service provider and the total travel distance of match-
ing is larger than that without privacy mechanisms. However, in
Section 4 we will show that the distance loss of privacy preserving
is limited.

Existing online matching algorithms can be divided into two
groups. One group conducts matching on the original metric space
and the other runs on HST metric space. In our framework, all
of these online algorithms can be private. Algorithm 1 explicitly

Algorithm 1 Private Matching.

Input: Service providers W,Clients T
Output: a matching M
Init M =¢
for each newly arrived client t; € T do
Drawn noise d from some distribution.
Report perturbed location z; = (xt,, yt,) +d
Run online algorithm on z; and W and get a matching pair
(tiv Wi)
M=Mu{(t;, w)}
W =W\ (w;)
end for
return M

describes how to apply privacy-preserving mechanisms to exist-
ing online bipartite minimum matching algorithms. We can choose
the distribution of noise d, such as the Gaussian noise and the
Laplacian noise, which are commonly used in DP. In this paper,
we adopt Laplacian noise, and describe how to generate it in the
part of experiments. Next, we will make theoretical analysis of our
framework.

4. Theoretical analysis

In this section, we first review Competitive Ratio (CR) of OMBM
problem and then we calculate CR of private matching, which
shows that even if the locations are perturbed, CR of existing al-
gorithms for OMBM problem does not change in magnitude.

4.1. Definitions

The arrival order of clients influences the matching result and
the total utility. To evaluate the performance of an online algo-
rithm with different arrival order, two arrival models, namely ad-
versarial model (the worst-case analysis) and random order model
(the average-case analysis) have been proposed. In [11], the au-
thors show that an online algorithm with bad performance in ad-
versarial model still works in practice, as the worst case rarely
happens, so we adopt the random order model to analyze the per-
formance of private matching.

The Competitve ratio of an online algorithm is the ratio between
the cost of that algorithm and the optimal cost in offline scenario,
which can indicate the performance of an algorithm. We formally
define CR in the random order model as follows:

Definition 3 (CR in the Random Order Model).

E[Cost(I)]
OPT(I)

where G(T, W) is an arbitrary bipartite graph. The weight of an edge
in G(T, W) is the distance between two objects in T and W. I is an
instance of bipartite graph. E[Cost(I)] is the expected total travel dis-
tance of an algorithm over all possible arrival orders of T. OPT(I) is the
offline optimal total cost.

CRgo =
RO~ vew)

4.2. Main results

In this subsection, we prove that the performance of existing
algorithms under the privacy preserving framework will not be
largely violated by the noise. In other words, existing online min-
imum bipartite algorithms still work under the framework of pri-
vacy preserving in theory. Our main results will be given after the
following lemma.

Lemma 1. Given D = (x,y) with x ~ Lap(0, A) and y ~ Lap(0, A), we
have the inequality E[|D|] < 2A.

Here the two components of D are drawn from Laplacian distribu-
tion, centered at zero, and independent. A is the scale parameter. And
E[|D|] is the expected vector magnitude.

Proof.

400 p+oo 2 2
IE[|D|]:/ / v "4;;5’ e~ X+ dxdy

+00  p+oo x2 +y2 + 2Xy 7(x+y)
< 4/ / T dxdy

=4 x

N[ >

=2\
O
By the lemma, we get the expected distance with noise drawn
from Laplacian distribution, which measures the effect of noise.

E[Cost(I')]

Theorem 1. ]E[COst(l)] <

<, where n is a constant.

Remark 1. The theorem shows that, in OMBM problem, the ex-
pected total distance between perturbed unilateral locations, is at
most 7 times worse than that on original locations. The assump-
tion of expected distance is reasonable in real life, because the
clients are unlikely to appear very close to workers meanwhile a
client will not be assigned to a worker that is too far away from
her.

Proof. Let | denote any instance of OMBM problem and let I’
denote the instance in the view of the platform. ¢/ denotes a
virtual client whose location is the perturbed location reported by
t;. From the perspective of the platform, the purpose is to assign
service providers to these virtual clients with minimum total dis-
tance. u(t;) is the service provider matched to t;.

According to the property of the metric space, we have the tri-
angular inequality:

dis(t], u(t))) < dis(t], t;) + dis(t;, u(t;))
We can calculate the upper bound of E[Cost (I')] by the inequality:
E[Cost(I')] = E[ Zdis(t{, u(t)))]

i
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< Y Eldis(t]. t;) + dis(t;, u(t;))]
= D Eldis(t], t)]+ Y Eldis(t;, u(t;)] M

Then we can calculate the private CR as follows.
_ E[Cost(I')] E[Y"; dis(t], u(t)))]
~ E[Cost()] — E[Y_;dis(tj, u(t;)]
Y. Eldis(t], )] + 32 Eldis (6, u(t;))]
> Eldis(ty, u(t))]
G, 2
G o

O

Here ¢, is the upper bound of the mathcing distance, while ¢
is the lower bound. Since in practice the real matching distance is
within a certain range, ¢, and ¢; are both constants.

Eventually, we have proved our main results.

5. Experimental results

In this section, we study the performance of four representative
algorithms (two on original metric space and two on HST metric
space) on OMBM problem, all with or without the privacy preserv-
ing framework. The good performance also verifies the theory in
Section 4.

5.1. Experimental settings

Real Dataset We use the taxi-calling data on ShenZhou real-time
taxi-calling platform [13], in four weeks in May 2015 in Beijing, as
the real dataset. It contains 15,802 taxi-calling requests and 1263
private taxis. We take the private taxis as service providers. To sat-
isfy online settings, we assume that once a task is finished, the
taxi and the requester in the task disappear from the platform.
So when a taxi finishes a request and re-appears on the platform,
she/he will be regarded as a new service provider. A taxi serves
10-15 requests a day in the dataset, making it in average 15,364
service providers each day. The number of requesters and service
providers is roughly equal in our setting. Specifically, we divide
24 hours of a day into four time periods, 12AM-6AM, 6AM-12PM,
12PM-6PM, 6PM-12AM, and conduct experiments on each period.
In this four periods, the number of taxis in early morning is rel-
atively small and the data size of the 12PM-6PM time period is
more than 5 times that of the 12AM-6AM time period. In order
to evaluate the performance of algorithms under different levels of
privacy protection, we choose typical values of €, where ¢ ¢ {0.1,
0.4, 0.7, 1.0}. As analyzed in the lemma in Section 4, we add one-
dimensional Laplace noise to two components of the requesters’
coordinate respectively to get the perturbed locations. The experi-
mental settings are inspired by [14,15].

Compared Algorithms A metric space can be denoted as (V, d),
where V is a set and d is a function of V x V — [0, co). The metric
space satisfies three properties: (1) d(u,v) =0 iff. u=v(u,veV),
(2)d(u,v) =d(v,u), and (3) d(u, w) +d(w,v) < d(u, v). In this pa-
per, we take the Euclidean Space as the original metric space. HST
metric space is also commonly applied. An HST metric space (V/,
dr) provides several properties to make better theoretical guaran-
tees [16]. For example, if an HST metric space (V/, dr) is converted
from the original (V, d), it guarantees E[dr (u, v)] >O(log|V|)d (u, v).
Algorithms executed on HST metric space with appropriate metric
space projection are similar to those on original metric space. We
run the following algorithms including optimal solution in offline
scenario and implement each algorithm varying privacy budgets

and time period. The details of compared algorithms are shown as
follow.

(1) Optimal Algorithm. If we remove the real-time constraint of
the OMBM problem, every requester can tolerate infinity
waiting time. Under this condition, an offline algorithm, such
as Hungarian algorithm, can be directly executed on the ar-
rival of last request. Obviously, the result of such offline al-
gorithm is better than any online algorithm. Therefore we
take the cost of offline minimum bipartite matching as the
optimal cost.

(2) Algorithms executed on HST Metric Space. HST-Greedy and
HST-Reassignment are proved to have upper bound on total
distance in random model and we take them as the baseline
in HST metric pace.

(3) Algorithms executed on Original Metric Space. Greedy has
been shown to be the closest to the optimal solution,
which has better performance than HST-Greedy and HST-
Reassignment in practice [11]. We take deterministic Greedy
and randomized Greedy as the baselines on original metric
space.

5.2. Experimental results

The results of algorithms are shown in the following figures.
The figures in each line (e.g Fig(a), Fig(b), and Fig(c)) show the cost
of optimal algorithm, algorithms executed on original metric space
and algorithms executed on HST metric space with the same level
of privacy protection. The figures in each column (e.g Fig. 3(a),
Fig. 4(a), Fig. 5(a) and Fig. 6(a)) show the cost of a certain type
of algorithm with different privacy budget.

The maximum cost ratio in our experiments is 3.64, which
means the total distance under privacy preserving framework is
at most 3.64 times of that without privacy-preserving approaches.
Impact on different baseline algorithms From the figures in each line,
the cost of different algorithms has a similar trend, both in per-
turbed locations and original locations, which means that the loss
of cost caused by privacy-preserving method is slightly influenced
by the algorithm itself, but largely influenced by the dataset. The
observation of the trend also confirms our theoretical derivation
in Chapter 4, i.e. the loss of cost is determined by the noise on
the dataset. The number of requests and service providers varies
over time, but the cost ratio of the privacy-preserving algorithm
and the non privacy-preserving algorithm are almost the same. Im-
pact on privacy budgets We observe that with the privacy budget
decreasing, the cost of the private algorithm gradually approaches
the cost of non-private algorithms. When € is 0.4, the cost ratios
of each algorithm in different periods are close to 1. That is, under
the privacy protection framework, the performance of the OMBM
algorithm is almost unaffected, which demonstrates the effective-
ness of our framework.

6. Related work

In this section, we review literatures from two fields, online
task assignment and location privacy.

Online task assignment. Online task assignment is one of the key
issues in spatial crowdsourcing [17-19]. Apart from minimizing the
cost, maximizing matching number is another important issue in
online assignment. Based on the two important issues, some works
[12,20-27] focus on online matching problems with more specific
constraints.

In [12], the authors discuss online assignment with the dis-
tance constraint that a service provider can only match requesters
within a certain distance. An extension of online assignment is in-
troduced in [20], where service providers master various skills and
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the platform assigned them to different types of tasks. In [21,22],
the crowdworkers are restricted by the capacity constraint, which
allows a worker to serve limited times. With only the real-time
constraint, our work focuses on the basic online assignment prob-
lem, which is more fundamental and general. In terms of algo-
rithms analyzing, it has been proved in [23] that the competitive
ratio of online algorithms, in random model, is at least O(Hy),
where H, is the nth Harmonic number. Our work can apply all
these algorithms in privacy protection framework and the corre-
sponding competitive ratio can also be calculated.

Location privacy. Spatiotemporal data applications such as spa-
tiotemporal crowdsourcing [11,12], route planning [28-30] and spa-
tial keyword search [31-33], all need to protect location privacy.
Privacy-preserving techniques can be used in these applications.
For example, many spatial crowdsourcing applications require indi-
viduals’ personal information [34-36]. To protect location privacy,
existing research has proposed many techniques, such as cloak-
ing [37], perturbation (by adding noise) [12,38,39] and encryption
[40,41]. We adopt perturbation methods like GEO-I in this paper.

Compared with GEO-I, cloaking [37] needs assumption of ad-
versary's prior knowledge. However, GEO-I provides stronger pri-
vacy guarantee regardless of adversary’s knowledge while cloaking
is sensitive to the prior assumption. In some work based on en-
cryption [40], the approaches often lack efficiency, for it usually
takes time in both encryption and decryption. In contrast, pertur-
bation is easy to implement in practice without spending too much
time.

Local difference privacy (LDP). Although location privacy has the
similar guarantee to LDP [42], their objectives are different. LDP
focuses on reconstructing the statistical information from individ-
uals’ reported data such as mean value or variance, while our work
based on GEO-I directly uses individuals’ data rather than statistics.
Since in online assignment, statistics are not so important, GEO-I is
more suitable to location privacy protection.

7. Conclusion

This paper proposes a privacy-preserving framework for online
task assignment on ridesharing platforms and proves that the loss
of cost caused by protecting privacy is limited. The competitive ra-
tio of existing algorithms for OMBM problem is proved to be of the
same magnitude with the original one. Moreover, we conduct ex-
periments on a real dataset and verify that the total cost is at most
3.64 times larger than the original algorithm. We theoretically and
experimentally prove that existing algorithms for OMBM problem
still work under privacy protection, which enable third-party plat-
forms successfully perform online task assignments while the pri-
vacy of individuals is preserved.
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