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Abstract— Metric embeddings have been widely used in ap-
proximate algorithms to guarantee the effectiveness of geometric
problems. Among the metric embedding techniques, Hierarchi-
cally Separated Tree (HST) is one of the most prevalent data
structures, which maps the points of the original metric space
into a tree-based metric space. A few selected applications of the
HST include clustering, task assignment, trip planning, privacy
preservation, information routing in wireless sensor networks,
etc. Despite the popularity in ensuring the effectiveness, the
HST-based solutions can be inefficient in large-scale datasets,
since the state-of-the-art construction method has high time and
space complexity (O(n3) and O(n2) in the worst-case). Moreover,
existing studies overlook the insertion of new points in real ap-
plications (deletions can be trivially supported), which can cause
the reconstruction of the whole HST. To address these limitations,
we focus on designing an efficient index for embedding arbitrary
metric spaces by tree metric spaces. Specifically, for construction,
we design a dynamic programming-based method, which signifi-
cantly reduces the time and space complexity to O(n2) and O(n)
respectively. For insertion of new points, we propose a new data
structure, called Hierarchically Separated Forest (HSF), i.e., a
collection of HSTs. An HSF can efficiently support insertion of
new points with a tight theoretical guarantee (O(logn)). Finally,
extensive experiments demonstrate the superior performance of
our proposed algorithms with respect to the effectiveness and the
running time. For instance, compared with the state-of-the-art
algorithms, our construction method is up to 29.8× faster and
our insertion method is up to 491× faster.

Index Terms—metric embedding, hierarchically separated tree

I. INTRODUCTION

With the development of GPS and mobile devices, geomet-
ric data management [1], [2] and geometric applications [3]
become increasingly important. In the real-world applications,
some of the fundamental problems (e.g., trip planning, task
assignment, facility location planning) are hard (e.g., NP-hard
problems or online problems), where efficient approximate
solutions are often more desired than inefficient exact so-
lutions. To design geometric approximate algorithms, metric
embedding has been a simple but powerful technique [4]–[6].

Specifically, by metric embedding, one maps the geometric
data from the original space into a simpler or more special
space (e.g., from graphs to trees, from high-dimensional spaces
to low-dimensional spaces). Then we only need to solve
the same problem on this simple embedding space, because
metric embedding techniques theoretically guarantee that the
distance of any two points on the embedding space is closed
to the distance of the corresponding points on the original
space [7]. Formally speaking, distortion [7] is used to denote

the maximum stretch of distances between the embedding
space and the original space.

Hierarchically Separated Tree (HST), which was first intro-
duced by Bartal in FOCS’96 [8], is one of the most prevalent
choices for the embedding space. This is because the distortion
of an HST is theoretically guaranteed. Specifically, Bartal
proved that the lower bound of the guarantee was Ω(log n) in
[8] and the distortion guarantee was O(log n log logn) in [9],
where n is the number of data points. This series of theoretical
work culminated in the breakthrough of Fakcharoenphol, Rao
and Talwar [10], who proposed the state-of-the-art algorithm
to construct an HST with a tight guarantee O(log n).

In practice, many existing studies construct the HST as an
index of the geometric data by the algorithm in [10] and
design approximation algorithms for their applications via
the HST. For instance, a few selected applications include
clustering [11], [12], task assignment [13]–[15], trip plan-
ning [16], [17], privacy preservation [18], [19], information
routing in wireless sensor networks [20], [21], distributed
query processing [22], temporal data mining [23], facility
location planning [24], [25].

Despite the popularity in the real-world problems, much
less attention has been paid to find an efficient construction
method. Specifically, the STOC’03 paper [10] and its long
version [26] claimed that their construction algorithm could
be implemented in O(n3) time and a more careful implemen-
tation could be made to run in O(n2) time, where O(n2) is the
optimal time complexity in the worst-case. However, no details
of the O(n2)-time construction have ever been given and we
have proved their implementation takes at least O(n3) time in
this paper. In terms of the average-case time complexity, an
O(n2 log n)-time algorithm has been given in [27]. Moreover,
the space complexity was not discussed in these studies [10],
[26], [27]. Thus, it still remains elusive to construct an HST
with optimal time and space complexity (in the worst-case).

Moreover, existing studies usually assume the geometric
data is static and predefined, and hence do not provide
solutions for handling insertions (deletions can be trivially
supported). The assumption may be impractical. For instance,
in a wireless sensor network, an HST is constructed from the
sensors’ locations for information routing [21], where a new
sensor may also be added in the network. Another example
is that an HST is constructed by the workers’ locations in
spatial crowdsourcing [13], where a new worker can appear
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anywhere at anytime. Though insertions can be supported by
reconstructing the HST, this method is inflexible in practice.

In this paper, we study the Embedding Arbitrary metrics
by Tree metrics (EAT) problem. The EAT problem embeds
an arbitrary metric space into a tree metric that minimizes the
distortion. To improve the efficiency of construction, we apply
dynamic programming to reduce the time complexity to O(n2)
and propose a compressing strategy to reduce the space cost
to O(n). Since O(n2) is the optimal time complexity, we also
design a pruning strategy to accelerate the running time. To
flexibly support insertion, we propose a new data structure,
called Hierarchically Separated Forest (HSF), which consists
of multiple HSTs based on the disjoint point sets. Thus, when
a few points are inserted, only one of the HSTs needs to be
updated, and hence reconstructing the whole tree is avoided.

Our main contributions are summarized as follows.
• Our construction method significantly improves the time

and space complexity (from O(n3) and O(n2) to O(n2)
and O(n) respectively), which is optimal.

• We propose Hierarchically Separated Forest to flexibly
support insertions and prove that it has a tight theoretical
guarantee (O(log n)) in the distortion.

• Extensive experiments show that our construction method
is up to 29.8× faster than the state-of-the-art method
while saving up to 94.7% spaces, and our insertion
method outperforms the baseline in terms of effectiveness
and running time (e.g., by up to 491× faster).

The rest of our paper is organized as follows. We first intro-
duce the EAT problem in Sec. II and then present the state-of-
the-art construction method in Sec. III. We next elaborate on
our construction algorithms in Sec. IV and insertion algorithm
in Sec. V. Finally, we conduct experiments in Sec. VI, review
related studies in Sec. VII and conclude in Sec. VIII.

II. PROBLEM STATEMENT

In this section, we introduce the basic concepts in Sec. II-A
and the problem definition in Sec. II-B.

A. Preliminaries

Definition 1 (Metric Space [7]): A metric space (“metric”
for short) is denoted by S = (V,D), where V is a set of points
and D : V × V → [0,+∞) is a distance function satisfying
the following conditions for any points x, y, z ∈ V:

(1) Identity of indiscernibles: D(x, y) = 0⇔ x = y;
(2) Symmetry: D(x, y) = D(y, x);
(3) Triangle inequality: D(x, y) +D(y, z) ≥ D(x, z).

The metric spaces are ubiquitous in real-world applications,
e.g., Euclidean spaces and Manhattan distance. The points V
of the metric space S can represent a set of data objects
or spatial locations, and the distance function D(·, ·) can be
either Euclidean distance or Manhattan distance. We use n to
denote the number of points in V . Though D(·, ·) is named as
a distance function, it can be replaced with other function
in practice, e.g., the travel time between two locations or
similarity between two objects.

Definition 2 (Tree Metric [8]): A tree-based metric (“tree
metric” for short) ST = (VT ,DT ) represents a tree-based
metric space with positive edge weight, where the distance
DT (·, ·) between any two points is the sum of the edge weights
along their shortest path.

In this paper, we focus on the tree metric, since it is widely-
used as the “simpler” metric space in metric embedding [4],
[7]–[10], [20], [26]. The basic concepts in metric embedding
techniques are formally defined as follows.

Definition 3 (Embedding, Stretch and Distortion [8]): Given
two metric spaces S = (V,D) and ST = (VT ,DT ), a mapping
f : V → VT is called an embedding if the following condition
is satisfied for any two points x, y ∈ V:

D(x, y) ≤ DT (f(x), f(y)). (1)

In this embedding, the stretch of the distance between any
two points x, y ∈ V is defined as

stretch(x, y) =
DT (f(x), f(y))

D(x, y)
. (2)

Accordingly, the distortion of this embedding is the maximum
of all the stretches, i.e.,

distortion = max
x∈V,y∈V−{x}

DT (f(x), f(y))

D(x, y)
(3)

Here, we call the input metric space S as the original metric.
According to Equation (3), the distortion represents the upper
bound of the stretches and it takes at least O(n2) time (i.e.,
enumerating the pairwise stretches) to calculate the distortion.
In practice, a smaller distortion is usually more desired.
B. Problem Definition

Based on the aforementioned, we present the Embedding
Arbitrary metrics by Tree metrics (EAT) problem as follows.

Definition 4 (EAT Problem [8]): Given an original metric
S = (V,D), we aim to embed S into a tree metric ST =
(VT ,DT ) by a mapping f : V → VT that minimizes the
distortion of the embedding in Equation (3).

Then we illustrate the EAT problem through a toy example.
Example 1: In Fig. 1a, there are six points x1-x6 in an

Euclidean space (i.e., original metric). The EAT problem aims
to construct a tree metric to minimize the distortion. Fig. 1b
illustrates a feasible solution since the distance for any two
points on the tree is no shorter than their Euclidean distance.
For example, for points x4 and x6, the distance on the tree is
DT (x4, x6) = 1 + 2 + 4 + 8 + 8 + 4 + 2 + 1 = 30 and the Eu-
clidean distance is D(x4, x6) =

√
(5− 8)2 + (4− 7)2 = 4.24

(< 30). By Equation (2), we can calculate the stretch of the
distance between x4 and x6 as DT (x4,x6)

D(x4,x6)
= 7.07. Similarly,

we also enumerate the other stretches. By Equation (3), the
distortion of the embedding is the maximum stretch among
these values, i.e., DT (x4,x6)

D(x4,x6)
= 7.07. Fig. 1c is also a feasible

solution with the same distortion. Indeed, Fig. 1b and Fig. 1c
illustrate the standard HST in [10] (see Sec. III) and the
compact HST proposed by our paper in Sec. IV.

We next present the hardness results of the EAT problem
in Theorem 1, which has been proved by pioneer work [8].
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(a) An instance of the Euclidean space (b) The standard 2-HST [10] (c) The compact 2-HST (our paper)
Fig. 1: A toy example of the EAT problem, where the construction parameters are π = {x1, · · · , x6} and β = 0.5

Theorem 1: The EAT problem is NP-hard. The distortion of
any deterministic algorithm is Ω(n) when the original metric
space is the n-cycle (i.e., Theorem 6 in [8]).

Due to the hardness results, existing studies [8]–[10], [26]
(and our paper) focus on the approximation solutions instead
of optimal solutions. For instance, the distortions of the HSTs
as shown in Fig. 1 are not minimum. Moreover, they usually
focus on designing randomized algorithms instead of the
deterministic approaches. To analyze the theoretical guarantees
of the randomized algorithms, pioneer work [8] first introduces
probabilistic approximation, which is a standard evaluation in
the studies on metric embedding [4], [6]–[10], [20], [26].

Definition 5 (Probabilistic Approximation [8]): ] The tree
metric ST is said to be ρ-probabilistically approximates the
original metric S if there is a probability distribution over ST
such that for any two points x, y ∈ V , E[DT (f(x), f(y))] ≤
ρ×D(x, y), where E[·] denotes the expectation.

To obtain the tight guarantee of the expected distortion,
Hierarchically Separated Tree (HST) is the most prevalent
solution, which will be elaborated in the next section.

III. HIERARCHICALLY SEPARATED TREE AND EXISTING
CONSTRUCTION METHOD

In this section, we present the definition of the HST in
Sec. III-A and the existing construction method in Sec. III-B.
A. Hierarchically Separated Tree (HST)

HST was first defined by Bartal in [8] as follows.
Definition 6 (HST/k-HST): A hierarchically separated tree

(HST) is a rooted weighted tree (with a user-defined parameter
k and a height H) that satisfies the following properties:
(1) For any integer i = 1, · · · ,H, the edges between ith level

and (i+ 1)th level have the same weight;
(2) For any integer i = 2, · · · ,H, the edge weight between ith

level and (i+1)th level equals to the edge weight between
(i− 1)th level and ith level divided by the parameter k;

(3) An HST has exactly n leaves and each of them represents
a unique point of the original metric space.

According to the first property, any node u at the same
level has the same edge weight to its children (denoted by
chi(u)). In the second property, a constant parameter k (≥ 2)
affects the edge weight on the HST and different values of k
can lead to different structures of the HST. Thus, the HST is

also known as k-HST. In general, k = 2 (i.e., 2-HST) is the
most prevalent in existing studies. The third property of HST
defines the distance function DT (·, ·) on the HST. Specifically,
let path(u, v) denote the path between the leaf u and the leaf
v on the HST and the distance from u to v can be calculated
as DT (u, v) =

∑
e∈path(u,v)W(e), where W(e) denotes the

weight of edge e on the HST. The path from u to v consists
of two parts, the path from u to their lowest common ancestor
(denoted by lca(u, v)) and the path from lca(u, v) to v.

The expected distortion (“distortion for short”) of an k-
HST is O(k logk n) [10], [26]. Since k is often a constant in
practice, we also use O(log n) to denote the distortion of an
HST in the following. Though HST has a tight guarantee [10],
[26], its construction still takes high complexity.

B. Existing Construction Method

In Algorithm 1, we review the construction method in [10],
[26]. Algorithm 1 is not only the textbook algorithm (e.g., see
Chapter 8 in [5], Chapter 15 in [6], Chapter 18 in [4], and
Chapter 6 in [21]), but still widely used as the construction
procedure in recent studies (e.g., [11], [16]–[19], [25]). Al-
though Blelloch et al. [27] also propose a construction method
(denoted by SeqFRT) with the guarantee of O(log n), we use
Algorithm 1 as our baseline due to these reasons: (1) Our
paper focuses on the worst-case complexity of the sequential
algorithms and they both have the same time complexity in
the worst-case. (2) Without parallelization, SeqFRT is always
less efficient than Algorithm 1 in our datasets (please refer to
Appendix D in our full paper [28] for the experimental results).

Basic Idea. The construction procedure is based on hierarchi-
cal partitions of the points in the original metric. Specifically,
at each level, we use n circular ranges {B(x, r) | ∀x ∈ V} to
partition the original metric, where x denotes the center point
and r denotes the radius. Each node of the HST represents a
subset of points that are within the same circular ranges. We
also randomly generate a permutation π of all the center points
to determine the rank of the ranges. For example, the ith point
in π (denoted by π[i]) has higher rank than the (i+ 1)th point
in π (denoted by π[i+ 1]). Thus, when a point is in multiple
circular ranges at the same time, we classify the point in the
range with the highest rank of the center point. Moreover, the
circular ranges at the same level have the same length in their
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Algorithm 1: The state-of-the-art construction method
[10], [26] (denoted by BASE)

input : the original metric S = (V,D)
output: a k-HST metric T

1 Choose a random permutation π of the n points in V;
2 Choose β ∈ [1/k, 1] uniformly at random;
3 Diameter of the metric S is ∆← maxx,y∈V D(x, y);
4 Height of the HST T is H ← dlogk (∆ + 1)e+ 1;
5 Root of the HST is rt← V , radius r1 ← kH · β;
6 The set of nodes at the first level is U1 ← {rt} ;
7 for level i← 2 to H+ 1 do
8 radius ri ← ri−1/k, the set of nodes Ui ← ∅;
9 for j ← 1 to n do

10 foreach node u ∈ Ui−1 do
11 A node v ← the set of unmarked points in

u within the circular range B(π[j], ri);
12 if v is a non-empty set then
13 Add v to the children of u with weight

kH−i+2 · β and mark the points in v;
14 Add v to the set of nodes Ui;

15 return T is created by the nodes in U1, · · · , UH+1;

radii. The radius will decrease by a factor of k (i.e., k-HST) at
the next level. The partition will stop when the radius is below
1. As a common assumption is that the distance between any
two points is no shorter than 1 (e.g., by normalization), each
leaf must correspond to a single point.
Algorithm Details. Algorithm 1 illustrates the detailed pro-
cedure. In lines 1-2, we randomly sample a permutation π of
the n points and a parameter β. In lines 3-4, we calculate
the diameter ∆ and the height H. In line 5, the root of the
HST represents the whole set V , i.e., a partition with radius
r1 = kH · β > ∆. In line 6, we use Ui to denote the set
of nodes on the HST at the ith level, and hence U1 only
contains the root of the tree. Lines 7-14 are the process of the
hierarchical partition. At the ith level, the radius ri decreases
in line 8. We next iterate each center point π[j] and partition
the subspace consisting of the points in node u ∈ Ui−1 (lines
9-10). If some of the unmarked points in u are within the
circular range B(π[j], ri), we create a node v to represent
these points in line 11. We also add node v to the children
of u, mark these points, and update the node set Ui in lines
13-14. Overall, Algorithm 1 is a randomized algorithm due to
the usage of the random parameters like π and β.

Example 2: Back to our example in Fig. 1. We assume
k = 2, β = 0.5 and π = {x1, · · · , x6}. In lines 3-6, we can
calculate that ∆ = D(x2, x6) = 8.6, H = 5, r1 = 16 and
U1 = {u1} (u1 is the root). In lines 7-14, we construct the
other nodes in Fig. 1b. For instance, when the level i is 3,
the radius r3 is 4 (line 8). In line 10, we iterate each node
in the set U2 = {u2}. For example, when u2 is iterated and
j = 1, we check which points in u2 are in the range B(π[1], r3)
(i.e., a circular range centered at π[1] = x1 with the radius
r3 = 4). In this example, only x6 is not in this range (since

(a) Each point xi locates at 2i in a line metric

(b) The constructed 2-HST of the line metric
Fig. 2: A worst-case of the complexity analysis

D(x6, x1) = 7.2 > 4). Thus, we create an internal node u3 to
represent the other points x1-x5 at the third level in Fig. 1b.
Eventually, we can construct a 2-HST as shown in Fig. 1b.
Complexity Analysis. We first present an instance to show
Algorithm 1 takes at least O(n3) time and O(n2) space in
the worst-case. Fig. 2a illustrates the original metric of the
instance, where each point xi locates at 2i in a line. In this
instance, when π = {x1, x2, · · · , xn} and β = 0.5, the
height of the 2-HST is O(n) (see Fig. 2b). Specifically, at the
ith level, the points {x1, · · · , xn−i+1} are within the same
circular range centered at π[1] = x1. The point xn−i+2 is
within the circular range centered at π[n − i + 1] = xn−i+1.
The other points are within the circular range centered at itself.
Thus, for any singleton node contained xi, line 11 needs to be
checked for at least i times from the (n − i + 3)th level and
nth level (there are totally i− 2 levels). Overall, line 11 must
have been checked for at least

∑n
i=1 i(i− 2) = O(n3) times.

Moreover, as shown in Fig. 2b, the output HST has a height
of n and there are k nodes in the kth level of the tree.

Rigorously speaking, when the distance function D takes
O(1) time and ∆ ≤ 2O(n), the time complexity of Algorithm 1
is O(n3) and the space cost of the constructed HST is O(n2).

IV. EFFICIENT CONSTRUCTION METHOD

Since existing method has a relatively high complexity, we
propose a more efficient construction method in this section.
which improves the time complexity to O(n2) and reduces
the memory cost of the output tree to O(n). Specifically, we
first introduce our idea of dynamic programming to improve
the time complexity (Sec. IV-A). Next, we elaborate our
compressing strategy to reduce the memory cost in Sec. IV-B.
Finally, we present the complete algorithm and discuss how to
break the assumption (∆ ≤ 2O(n)) in Sec. IV-C. The improved
complexity is optimal, because any tree metric needs at least
O(n) space to store the n points and at least O(n2) time to
calculate the distortion or scan the input (e.g., when the input
is given by a graph with an O(n2) distance matrix).
A. Dynamic Programming

Main Idea. Essentially, the baseline needs to test whether any
point in V is within O(n2) circular ranges {B(π[j], ri) | 1 ≤
j ≤ n, 1 ≤ i ≤ H+1}. Since the radius ri+1 is shorter than the
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TABLE I: The values of cen[x][i] in Example 1
(a) cen[x][i] after step (1)
i 1 2 3 4 5 6
x1 - - - - - 1
x2 - - - 1 - 2
x3 - - 1 - - 3
x4 - 2 1 - - 4
x5 - 3 1 - - 5
x6 2 1 - - - 6

(b) cen[x][i] after step (2)
i 1 2 3 4 5 6
x1 1 1 1 1 1 1
x2 1 1 1 1 2 2
x3 1 1 1 3 3 3
x4 1 1 1 4 4 4
x5 1 1 1 5 5 5
x6 1 1 6 6 6 6

radius ri in Algorithm 1, a point within B(π[j], ri+1) implies
that it is also within the ranges B(π[j], ri), · · · ,B(π[j], r1).
Thus, our main idea is to (1) find the smallest circular range
centered at π[j] with the shortest radius rLj

to cover each
point x ∈ V , and (2) apply dynamic programming (DP) to
obtain the same partitions as in Algorithm 1.
Naive DP. At the ith level of Algorithm 1, we assume that a
point x is partitioned by the circular range whose center point
is ranked with cen[x][i] in π. Then we can pre-process the
array cen[x][i] in O(n2) time based on two cases: the leaf
level and the other levels.

At the leaf level (i = H + 1), cen[x][H + 1] equals to the
rank of x in π since each leaf node represents a single point
(i.e., the correct circular range can be only centered at x).

At the other levels (i ≤ H), we first enumerate each point
x ∈ V and then process cen[x][1 . . .H] by these two steps.

(1) Initialization. For each center point π[1], ..., π[x’s rank],
we find the smallest circular range centered at π[j] that still
covers x. Here, x’s rank is the rank of the point x in the per-
mutation π. In other words, we determine the shortest radius in
r1, · · · , rH+1 such that it is longer than the distance between
π[j] and x, We can then calculate the level (denoted by Lj)
of this radius by Equation (4) (because rLj ≥ D(π[j], x)).

Lj = H+ 1− dlogk

(
D(π[j], x)/β

)
e (4)

Finally, we set cen[x][Lj ] as j if it is still undefined. Other-
wise, we know point x has been covered by a circular range
whose center point has a higher rank than π[j] (i.e., we have
gotten the correct value).

(2) Naive DP. Since some element in cen[x][·] may be still
undefined, we update cen[x][i] by the following DP equation
for i = H+ 1, · · · , 1 (i.e., by a reverse order).

cen[x][i] = min{cen[x][i], cen[x][i+ 1]} (5)

The reasons are as follows: (1) the radius of the (i + 1)th
level is shorter than the radius of the ith level (i.e., at the
ith level, the point x can be covered by the circular range
B(π[cen[x][i + 1]], ri)) (2) x belongs to the circular range
that has a center point with the higher rank in π (i.e., we use
a min operator in Equation (5)).

Example 3: Table Ia and Table Ib illustrate the array cen[·][·]
in Example 1 after the steps of initialization and Naive DP,
respectively. In Table Ia, when iterating x3 from the point
set V , we need to iterate j from 1 to 3 since the rank of
x3 in π is 3. Since D(π[1], x3) = D(x1, x3) = 2.24 and
D(π[2], x3) = 2.24, L1 = 5 + 1 − dlog2 2.24/0.5e = 3 and
L2 = 3 by Equation (4). Thus, when j = 1, we set cen[x3][L1]

as 1. When j = 2, we do not replace cen[x3][L2] with 2 since
cen[x3][3] has been defined. After the step of initialization, we
update cen[x3][1 . . . 6] by Equation (5) and can easily obtain
the fourth row of Table Ib.

Improved DP. At the ith level, we only use one column of this
array, i.e., cen[·][i]. Thus, if this column can be dynamically
obtained from the previous column (e.g., cen[·][i − 1]), we
will only need O(n) space (instead of O(n2) space) to store
cen. Here, we utilize the fact that the radii of the circular
ranges are monotonically decreasing with the increase of level.
Specifically, at the ith level, if a point x is still in the smaller
circular range centered at point π[cen[x][i−1]], then we have
cen[x][i] = cen[x][i − 1]. Otherwise, cen[x][i] needs to be
updated, e.g., we keep enumerating the center points from
π[cen[x][i− 1] + 1] to π[n] until finding the first center point
whose circular range with radius ri can cover x. In summary,
cen[x][i] is updated from cen[x][i− 1] by Equation (6).

cen[x][i] = (6){
cen[x][i− 1], if D(x, π[cen[x][i− 1]]) ≤ ri
minimum j > cen[x][i− 1] s.t. D(x, π[j]) ≤ ri, otherwise

Example 4: By the naive DP, we obtain Table Ib row by
row in Example 3. By the improved DP, we illustrate how to
obtain Table Ib column by column. Specifically, the column
cen[x][1] is initialized with 1, since D(x, π[1]) ≤ r1 for each
point x. When level i = 2, cen[x][2] is still 1 since the distance
between π[1] = x1 to any point x is no longer than the radius
r2 = 8. When i = 3, only x6 is not in the circular range of
π[1] with radius r3 = 4 anymore. Thus, we update cen[x6][3]
by Equation (6). Specifically, we enumerate j from 2 to 6 and
pick the minimum integer j (=6) such that D(x6, π[j]) < r3.
In other words, x6 belongs to the circular range of π[6] at the
third level. For other points, cen[x][3] is still 1. Similarly, we
can obtain the same array as shown in Table Ib.

Since we only need the ith column to update the (i+ 1)th
column, we only need an O(n) array (denoted by cen[x]) to
maintain the right circular range for each point.

B. Compressing Strategy

Preliminary. An HST takes O(n2) space, since it has many
redundant nodes (e.g., at least 85% of the nodes are redundant
in our experiments), which are defined as follows.

Definition 7 (Redundant Node): An internal node of the HST
is redundant if (1) the node is not the root node, and (2) the
node has only one child node.
The redundant nodes are produced since the standard HST
(see Definition 6) restricts the edge weight at each level.
However, the EAT problem itself has no restriction on the tree
metric, and hence these nodes are unnecessary for obtaining
the theoretical results. In the following, we define the compact
HST based on the definition of the standard HST.

Definition 8 (Compact HST): A compact HST is a rooted
weighted tree that satisfies the following properties:

(1) The compact HST has no redundant nodes;
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Algorithm 2: Our construction method HST+DPO
1 Randomly sample a permutation π and β ∈ [1/k, 1];
2 ∆← maxy∈V D(π[1], y), H ← dlogk (∆ + 1)e+ 1;
3 Root rt← V , radius r1 ← kH ·β, node set U1 ← {rt};
4 cen[1 . . . n]← {1, 1, · · · , 1}; // Initialization
5 for level i← 2 to H+ 1 do
6 Radius ri ← ri−1/k, the set of nodes Ui ← ∅;
7 foreach point x in V do // Improved DP
8 Update cen[x] by Equation (6);

9 foreach node u in Ui−1 do
10 vec← vec ∪ {(cen[x], x, u) | point x ∈ u};
11 Counting-sort vec by the cen in each triple;
12 foreach continuous interval in vec such that each

point x was contained in the same node u do
13 A node v ← the points of this interval;
14 Add v to the children of u with weight

kH−i+2 · β and add v to the set of nodes Ui;

15 foreach redundant u ∈ Ui−1 do // Compress
16 w0 ← edge weight between u and par(u);
17 In the children of par(u), replace u with u’s

child node with edge weight w0 + kH−i+2 · β;

18 return T is created by the nodes in U1, · · · , UH+2;

(2) For any integer i = 2, · · · ,H, the edge weight between
ith level and (i+1)th level is smaller than the edge weight
between (i− 1)th level and ith level;

(3) The compact HST has exactly n leaves and each of them
represents a different point in the original metric space.

In a compact HST, the degree of any internal node (except the
root) is at least 2 and the number of leaves is n. Thus, the
space cost of a compact HST is O(n).
Main Idea. To construct a compact HST, we can first construct
a standard HST and then compress it. However, an O(n2)
space is still needed to store the standard HST before com-
pression. To break the memory bottleneck, our main idea is
to keep merging the redundant nodes during the construction
procedure. For instance, if we want to merge node u and its
child node v, we can replace u to v in the parent node of
u (denoted by par(u)), and then update the edge weight of
(v,par(u)) by the sum of following two parts: the edge weight
between u and par(u) and the edge weight between v and u.

Example 5: As shown in Fig. 1b, the nodes u1 and u2 are
not redundant based on Definition 7. However, after the nodes
at the 4th level are created, u4 becomes redundant since it has
only one child node u9. To remove the redundancy, we replace
u4 with u9 as a child of u2 and the edge weight becomes
8 + 4 = 12, where 8 is the edge weight between u4 and
par(u4) = u2 and 4 is the edge weight between u9 and u4.
C. Algorithm Details

Details. Algorithm 2 illustrates our construction algorithm.
Lines 1-3 are similar to the lines 1-6 of Algorithm 1. The
only difference is that we set ∆ as maxy∈V D(π[1], y) in-
stead of maxx,y∈V D(x, y) because of our pruning strategy

in Lemma 1. Next, we initialize cen[·] with 1 in line 4 and
update cen[x] by Equation (6) in lines 7-8. In lines 9-14, we
construct the ith level of the HST based on cen[·]. Specifically,
in lines 9-10, we create a vector of triples (denoted by vec),
where each triple contains point x, the node u (contained x)
at the (i− 1)th level, and cen[x]. In line 11, we sort vec by
the counting-short based on the cen[x] (between 1 and n) in
each triple. After that, the points, which are partitioned by the
same circular range, will appear closely in the sorted vector.
Moreover, since counting-sort is a stable sorting algorithm, we
also separate these triples into multiple intervals such that the
points (x) of these triples are contained in the same internal
node (u) at the (i−1)th level. In lines 12-14, we create a node
v for each of these intervals and add v to the children of u
with the same edge weight as the baseline. In lines 15-17, we
remove the redundant nodes in Ui−1 based on our compressing
strategy. Eventually, we construct a compact HST.

Example 6: Back to Example 1. In line 2, We can calculate
that ∆ = maxy∈V D(π[1], y) = 7.2. Thus, the height H is
dlog2 7.2e + 1 = 4, which is lower than the height (5) by
Algorithm 1. The values of cen[·] at levels 2-5 correspond to
the columns 3-6 (i = 3, ..., 6) of Table Ib. Accordingly, we can
construct the nodes of the ith level in Fig. 1c. For example,
when i = 3, we create a vector vec = {(1, x1, u2), (1, x2, u2),
(3, x3, u2), (4, x4, u2), (5, x5, u2),(6, x6, u3)} in lines 9-10.
After the counting-sort in line 11, we obtain the fol-
lowing five intervals: {(1, x1, u2), (1, x2, u2)}, {(3, x3, u2)},
{(4, x4, u2)}, {(5, x5, u2)}, and {(6, x6, u3)}. As shown in
Fig. 1c, the first four intervals correspond to the internal nodes
u4-u7, which are the children of u2. For the last interval, we
create a (virtual) node u′3, which is the only child of u3. Then
u3 becomes redundant and we will compress u3 and u′3 in lines
16-17. Eventually, we construct the compact HST in Fig. 1c.

Pruning. To further speed up the running time, we also apply
the following pruning strategies in Algorithm 2.

Lemma 1: Our pruning strategies include

(1) In line 2, we can safely set ∆ with maxy∈V D(π[1], y)
instead of maxx,y∈V D(x, y).

(2) In line 8, we can safely skip any integer j such that
cen[π[j]] is larger than the rank of x in π.

Proof: For the first strategy, when the center point is π[1],
the radius r1 with our pruning strategy is long enough to cover
all the points at the first level. Thus, the tree constructed with
the pruning strategy (denoted by T ∗) is indeed a subtree of
the HST T constructed without pruning. Moreover, any path
between the leaves will not traverse the nodes between the
root of T and the root of the subtree T ∗. Thus, T ∗ has the
same distance function as T .

For the second strategy, the radius ri decreases with the
increase of level in the construction methods. As cen[π[j]] is
larger than the rank of x, it means the distance between x and
π[j] must be larger than ri. Hence we safely skip j.

Correctness and Approximation. We next prove the correct-
ness and theoretical guarantee of Algorithm 2 by Theorem 2.
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Theorem 2: Algorithm 2 always outputs a feasible tree
metric and the distortion guarantee of Algorithm 2 is O(log n).

Proof: We first prove our DP strategy does not change the
distance function by proving the value of cen[·] at each level
is exactly the same as in Algorithm 1. In line 8, Algorithm 2
tries each center point from cen[x] to the rank of x in π.
Thus, if Algorithm 1 uses any center point in this range,
Algorithm 2 can also find the correct one. Then, we only need
to prove that the center point in Algorithm 1 cannot be any
point before cen[x] in the permutation π. It is true for the first
level since the circular range centered at π(1) can cover all
the points at this level. For the other levels, we suppose to the
contrary, i.e., there exists one such π(j) < cen[x] such that
the D(x, π(j)) is shorter than the radius ri. Thus, the value of
cen[x] at the (i− 1)th level should be no larger than j since
D(x, π(j)) should also be shorter than the radius ri−1 (> ri).
By Equation (6), the value of cen[x] at the ith level cannot
be larger than j, which is contradicted to the assumption.

We next prove our compressing strategy does not change
the distance function. The compact HST is converted from a
standard HST by merging the redundant nodes. When merging
the redundant nodes, we also adding the weight of the removed
edge to the remained edge. As a result, the total sum of the
edge weight is not changed. Since the distance function of
a tree metric is defined as the total sum of the edge weight
(Definition 2), the distance function also remains the same.

Since all these strategies (including Lemma 1) will not
change the distance function, Algorithm 2 always outputs a
feasible tree metric (i.e., the compact HST) and its distortion
guarantee is same as the distortion guarantee of the standard
HST (i.e., O(log n) [10]) based on Definition 5.

Complexity Analysis. Specifically, when ∆ ≤ 2O(n), there
are O(n) levels in line 5. In each iteration, the algorithm may
update cen in lines 7-8. Since the value of cen[x] is between
1 and n for each point x, the array cen is updated at most
O(n2) times in all these levels. Thus, lines 5-6 take O(n2)
time in all the O(n) levels. Besides, in each level, iterations
9-10, line 11, iterations 12-14 and iterations 15-17 take O(n)
time. Thus, the time complexity is improved from O(n3) to
O(n2). Moreover, the space consumption of the output tree
reduces from O(n2) to O(n), because the size of a compact
HST is O(n) and cen[·] also takes O(n) space.

Extension. Finally, we discuss how to extend Algorithm 2
when the value of ∆ is unbounded in Theorem 3.

Theorem 3: When ∆ is unbounded, we can extend Algo-
rithm 2 as follows to keep the time and space complexity:

(1) Let I = {i|kH−iβ ≤ D(x, y) ≤ kH−i+1β,∀x, y ∈ V};
(2) We iterate each level i from I in a descending order;
(3) For each level, the edge weight kH−j+2β is changed into∑i
j=i′+1 (kH−j+2β), where i′ denotes the previously iterated

level and the initial value of i′ is 1.
Proof: We first prove that the extension does not change

the distance function of a compact HST. Since the extension
only iterates the levels in I instead of all the values between 1
and H+ 1, we only need to prove that we can safely skip the

levels outside I . WLOG, we assume any level L ∈ (i′, i) and
prove L can be safely skipped by our extension. Specifically,
we know D(x, π[cen[x]]) ≤ ri′ at the i′th level, where ri′ =
kH−i

′+1β. Since L is not in the set I , D(x, π[cen[x]]) will
be smaller than rL, where rL = kH−L+1β. Otherwise, there
will be at least one integer between i′ and i in I , which is
contradicted to the definition of i′. Accordingly, every point
will be partitioned by the same center point cen[·] between
level i′+ 1 and level i−1. Therefore, the node set UL will be
the same as previous node set UL−1. Based on the definition
of redundant nodes, these nodes are also redundant. Therefore,
we use

∑i−1
j=i′+1 (kH−j+2β) to denote the accumulated edge

weight in line 17. After adding the edge weight of the ith level
(kH−i+2β), the distance function will remain the same.

We next prove the time complexity is still O(n2) and the
space cost is O(n). Since the size of I is O(n) (which will be
proved in Lemma 2), it takes O(n2) time and O(n) space to
calculate I (e.g., by hash). Besides, we still iterate O(n) levels
and

∑i
j=i′+1 (kH−j+2β) can be calculated in O(1) time (by

the sum formula of a geometric series). Therefore, the time
complexity is still O(n2) and the space cost is still O(n).

Lemma 2: The size of the set I in Theorem 3 is O(n).
Proof: Our proof is based on the fact from [4] in Section

26.6.2(b) of Chapter 26 (Finite Metric Spaces and Partitions).
Fact 1: Let S = (V,D) be a n-point metric space, and

consider the set J = {j|2j ≤ D(x, y) ≤ 2j+1, for x, y ∈ V}.
We have |J | = O(n) [4].

First, we rewrite the definition of I: I = {i|H + logk β −
logk D(x, y) ≤ i ≤ H + 1 + logk β − logk D(x, y),∀x, y ∈
V}. Accordingly, the difference between i’s lower bound H+
logk β − logk D(x, y) and i’s upper bound H+ 1 + logk β −
logk D(x, y) is 1. If we define an integer set P = {dH +
logk β − logk D(x, y)e | ∀x, y ∈ V}, we can derive that |I| ≤
2|P | (since I ⊆ P ∪ {p+ 1 | p ∈ P}).

Next, we prove |P | = O(n). We rewrite the definition of
J : J = {j|j logk 2 ≤ logk D(x, y) ≤ (j + 1) logk 2,∀x, y ∈
V}. Since the difference between logk D(x, y)’s lower bound
j logk 2 and its upper bound (j + 1) logk 2 is logk 2 ≤ 1 (the
parameter k ≥ 2), we can infer that |P | ≤ 2|J | (since P ⊆
{dH + logk β − j logk 2e | j ∈ J} ∪ {dH + logk β − (j +
1) logk 2e | j ∈ J}).

Finally, since |J | = O(n), we can prove |I| = O(n).

V. EFFICIENT INSERTION METHOD
In this section, we introduce a data structure called hierar-

chically separated forest (HSF) in Sec. V-A. Then we present
our insertion algorithm by HSF in Sec. V-B. Deletion can be
easily supported (see Appendix A in our full paper [28]).
A. Hierarchically Separated Forest

To support insertions, our baseline is to reconstruct an HST
after the new points are inserted. We have this assumption be-
cause the partitions (O(n) circular ranges) at each level (O(n)
level) can be changed at lot. For example, after deleting the
original points and inserting the new points, the permutation
π might be changed a lot. Since the construction procedure
highly depends on the permutation π, each point can be
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partitioned by a different circular range at each level. To keep
the O(log n) guarantee, we assume the HST is reconstructed.
Thus, this baseline takes O(n2) time for each insertion.

To improve efficiency, our main idea is to maintain a forest,
which consists of multiple HSTs constructed by disjoint point
sets. As existing studies usually assume that there are a large
number of predefined points in the original metric, we always
hold still the HST (e.g., T1) constructed by these predefined
points and only update the other HSTs (e.g., T2, · · · , Tc)
constructed by the newly inserted points. Thus, when querying
the distance between any two points on HST Ti, the result
can be directly calculated by the function DTi

. Differently,
when querying the distance between two points on the different
HSTs (e.g., Ti and Tj), we can project the point on Tj into
one point (e.g., its nearest neighbor) on Ti, and then calculate
the distance. Specifically, we first define the hierarchically
separated forest (HSF) as follows.

Definition 9 (HSF): A hierarchically separated forest (k-
HSF) F is a set of c disjoint k-HSTs (T1, · · · , Tc) such that
(1) The HST T1 is constructed by the predefined points V1;
(2) The other k-HSTs T2, · · · , Tc are constructed by the newly

inserted points (e.g., V2, · · · ,Vc), which may be deleted.
(3) The HSF also maintains the nearest neighbors in the

point sets V1, · · · ,Vi−1 for each point x ∈ Vi, where
i = 2, · · · , c. The nearest neighbor is denoted by NN[x][i]
and the corresponding distance is denoted by NND[x][i].

(4) The distance function of the forest is defined as follows:

∀x, y ∈ V, DF (x, y) = (7){
DTi(x, y) if both x, y ∈ Vi
DTi(x,NN[y][i]) + NND[y][i] if x ∈ Vi, y ∈ Vj (i < j)

Approximation Analysis. By the data structure of k-HSF, we
can still obtain a tight guarantee in the distortion (O(log n)).

Theorem 4: The distortion guarantee of the k-HSF is still
O(k logk n) = O(log n) by Equation (7).

Proof: Since n is the total number of points, the size of
any set Vi is smaller than n. Let x, y be any two points and
we prove the theorem from the following two cases.

(1) If both x and y are located in the same k-HST Ti, the
distortion guarantee is O(k logk |Vi|) ≤ O(k logk n).

(2) If points x and y are located in different k-HSTs (e.g., Ti
and Tj where i < j), the distance function becomes the second
case in Equation (7). As NN[y][i] is the nearest neighbor of y
in the point set Vi, we know that D(y,NN[y][i]) ≤ D(x, y),
i.e., NND[y][i] ≤ D(x, y). Thus, the distortion guarantee
defined in Definition 5 is derived as follows.

E
[
DTi(x,NN[y][i]) + NND[y][i]

]
D(x, y)

≤
O(k logk |Vi|) ·

(
D(x, y) +D(y,NN[y][i])

)
+D(x, y)

D(x, y)

≤ O(k logk |Vi|) +
O(k logk |Vi|) · D(y,NN[y][i])

D(x, y) + o(1)

≤ O(k logk |Vi|) +
O(k logk |Vi|) · D(x, y)

D(x, y) + o(1) ≤ O(k logk n)

Algorithm 3: Our insertion method HST+HSF
input : a k-HSF F and the inserting points V+

1 i∗ ← arg maxi=2,··· ,m |Vi|, Vi∗ ← Vi∗ ∪ V+;
2 Ti∗ ← re-construct the HST based on Vi∗ ;
3 Update NN[x][·], NND[x][·] for any point x ∈ Vi∗ ;
4 foreach point x ∈ Vj where j > i∗ do
5 Update NN[x][i] and NND[x][i] if the nearest

neighbor of x is from the inserted points V+;

Space Complexity. The space consumption of the HSF in-
cludes the space cost of these HSTs and the memory usage
of the stored nearest neighbors. Let m denote the maximum
number of points in the HSTs T2, · · · , Tc. Therefore, the space
complexity of the HSF is O(n+mc2). Specifically, the space
cost of the (compact) HSTs is O(n) and the memory usage of
the nearest neighbors is O(m + · · · + (c − 1)m) = O(mc2).
In practice, we can set a small constant value for parameter
c (e.g., < 10) and hence the space complexity becomes to
O(n+m) = O(n).

B. Efficient Insertion Method

Basic Idea. When inserting some new points, our basic idea
is to select the HST from T2, · · · , Tc with the least points and
re-construct it based on the new points and its original points.
We also maintain the nearest neighbors of the other points.
Algorithm Details. Algorithm 3 illustrates the detailed pro-
cedure. In lines 1-2, we select the HST Ti∗ with the least
points and insert the new points V+ into this HST by re-
constructing the HST Ti∗ . In lines 3-5, we maintain the nearest
neighbors NN and the corresponding distance NND for the
HSTs Ti∗ , · · · , Tc.

Example 7: Back to Example 1. We assume the six points
x1-x6 are predefined (i.e., V1 = {x1, · · · , x6}) and hence the
(compact) HST T1 is illustrated in Fig. 1c. We also assume
an HSF consists of two HSTs, where T2 is currently empty.
To insert a point x7 = (3, 6), we first add it into point set
V2 (line 1) and construct the HST T2 based on V2. In line
3, we find the nearest neighbor of x7 in the point set V1,
i.e., NN[x7][1] = x4, NND[x7][1] = D(x4, x7) = 2.82. When
querying the distance between x1 and x7 on HSF, the result
is DT1(x1,NN[x7][1]) + NND[x7][i] = DT1(x1, x4) + 2.82 =
16.82 by Equation (7).
Time Complexity. Lines 1-2 take O(m2) to construct the HST
by our DP-based method. Lines 3-5 take O(cm · |V+|) =
O(m|V+|) time to update the nearest neighbors. Thus, the
time complexity of Algorithm 3 is O(m2 +m|V+|).

VI. EXPERIMENTS

In this section, we conduct experiments on construction in
Sec. VI-A and experiments on insertion in Sec. VI-B. Finally,
we summarize the major experimental findings in Sec. VI-C.
A. Experiments on Construction

1) Experimental Setup: Datasets. As many existing studies
construct the HSTs from a 2D Euclidean space [13], [14], [16],
[19], [20], we select four real datasets on the 2D Euclidean
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TABLE II: Real datasets in 2-dimensional Euclidean space
Source Foursquare Didi Chuxing
Dataset NYC Tokyo Chengdu Haikou
n 42,981 67,123 227,447 319,419
k 2,3,4,5,6

TABLE III: Synthetic datasets under different distributions
Parameters Values
S 10-dimensional Euclidean space

Range [0, 107] for each dimension
n and k 100k and 2
Uniform mean : [0.1, 0.3, 0.5, 0.7, 0.9] (×107)
Normal µ : [0.1, 0.3, 0.5, 0.7, 0.9] (×107), σ : 0.2× 107

Exponential 1/λ : [0.1, 0.3, 0.5, 0.7, 0.9] (×107)

space in Table II. The first two datasets, NYC and Tokyo [29],
contain all the check-in locations in New York and Tokyo
respectively, which are collected in Foursquare [30]. The other
two datasets, Chengdu and Haikou [31], contain the origins
and destinations of the car-hailing orders in Chengdu and
Haikou, which are collected by Didi Chuxing [32]. These real
datasets are widely used in existing studies [33]–[38].

We generate synthetic datasets to test the performance
on multi-dimensional data under different distributions. As
shown in Table III, we generate 100k points in 10-dimension
Euclidean space and set the range of each dimension as
[0, 107] based on the real datasets. Similar to [39], in each
dimension, we generate the values of these points under the
Uniform, Normal and Exponential distributions (denoted by
Uni, Nor and Exp respectively). We do not vary the number
of dimensions, since the number of dimensions mainly affects
the time cost to calculate the Euclidean distance, which is the
same across all the compared algorithms.

We conduct scalability tests when n is varied in [105, 3.2×
106] and k is 2. The n points are randomly generated in a 2D
Euclidean space, where the range of each coordinate is [0, 107].

Compared Algorithms. We compare our method HST+DPO
(Algorithm 2) with the state-of-the-art method BASE (Algo-
rithm 1). We also implement the naive version of Algorithm 2,
called HST+DP, which does not use the compressing strategy
and pruning strategy in Sec. IV. It only uses the naive DP
(instead of improved DP) strategy in Sec. IV-A.

Metrics. All the algorithms are evaluated in terms of running
time and memory usage. Since their output HSTs have the
same distortions in each test case, we omit the results of their
distortions due to the space limitation.

Implementation. All algorithms are implemented in C++ and
the experiments are conducted on a server with 24 Intel
2.30GHz processors and 128GB memory. The average results
of 30 times repeated experiments are reported.

2) Experimental Results: Results on real datasets. The
first row of Fig. 3 shows the experimental results on NYC and
Tokyo. In Fig. 3a and Fig. 3c, we observe that HST+DPO is
the most efficient. For instance, HST+DPO is up to 24.7×
faster than BASE. It is also notably faster than HST+DP
due to our pruning strategy. As for memory cost, HST+DPO
is much more efficient than BASE and HST+DP is slightly
less efficient than the baseline. The result is reasonable since

HST+DP consumes an extra O(n2) space than the baseline
and HST+DPO applies our compressing strategy. Specifically,
HST+DPO has 78.3%-89.6% and 80.8%-90.7% lower mem-
ory cost than BASE and HST+DP, respectively. Besides, we
also observe that the time cost and memory usage of BASE
notably decrease with the increase of k while the results of
HST+DPO are relatively stable. This is because (1) the height
of the HST decreases with the increase of k and (2) BASE is
more sensitive to the height than HST+DPO. In both datasets,
the heights of the HSTs (i.e., the number of iterations in line 7
in Algorithm 1) are between 11 and 27, which can be O(n) in
the worst-case. This explains the reason that the improvement
of the running time by HST+DPO is not as large as n.

The second row of Fig. 3 shows the experimental results on
Chengdu and Haikou. In terms of running time, HST+DPO
is the most efficient and HST+DP is the runner-up, as shown
in Fig. 3e and Fig. 3g. HST+DP and HST+DPO outperform
the baseline BASE by up to 4.4× and 16.6× lower time cost,
respectively. As for memory usage, HST+DPO is the most
efficient, which needs up to 82.4% and 88.1% less memory
spaces than BASE in Chengdu and Haikou, respectively.
This is because 89% of the nodes in the standard HST are
redundant. HST+DP takes a bit more spaces (<40MB) than
BASE due to the usage of the array cen[·][·].
Results on synthetic datasets. Fig. 4a-Fig. 4f show the
results on the synthetic datasets of Uniform, Exponential and
Normal distributions. Overall, HST+DPO is always the most
efficient in terms of both running time and memory usage.
HST+DP is faster than BASE while it needs more spaces than
BASE. Specifically, under the Uniform distribution, HST+DP
and HST+DPO are 8.6×-9.3× and 26.3×-28.8× faster than
BASE, respectively. Moreover, at least 93.8% of the space
cost of the baseline can be reduced by HST+DPO. Under
the Exponential distribution, HST+DPO is up to 29.8× faster
than BASE and it also reduces 94.7% of the memory cost
of the baseline. Under the Normal distribution, HST+DP and
HST+DPO need at least 8× and 25× shorter time than BASE.
As for memory usage, HST+DPO needs less than 6% of the
space cost of BASE, because it safely removes 95% of the
nodes (i.e., redundant nodes) in the standard HSTs by BASE.

Results on scalability tests. Fig. 4g and Fig. 4h present the
results of the scalability tests. Since BASE and HST+DP
sometimes cannot be terminated in 7 days, we only show
partial results of BASE and HST+DP. We can observe our
algorithm HST+DPO is the most efficient in terms of both
running time and memory usage. For example, HST+DPO is
up to 43.8× faster than the baseline BASE and it needs 11.4×
less spaces than HST+DP.

B. Experiments on Insertion

1) Experimental Setup: Datasets. We use the aforemen-
tioned real and synthetic datasets, where default settings are
marked by bold in Table II and Table III. In each test case,
we randomly sample 80% of the total points as the predefined
points and fix the number of insertions as 10. We sample 1%-
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Fig. 3: Results of construction on real datasets of NYC, Tokyo, Chengdu and Haikou
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Fig. 4: Results of construction on synthetic datasets and scalability tests

3% of the remaining points to be inserted for each time and
all the remaining points will be inserted at the last time.
Compared Algorithms. We compare our method HST+HSF
with the baseline of reconstructing the HST (denoted by
reHST). They both use HST+DPO to construct an HST. The
parameter c in HST+HSF is set to 5.
Metrics. We evaluate these algorithms in terms of distortion,
running time and memory usage, where distortion is calculated
based on the newly inserted points (i.e., the maximum stretch
of the distances between the newly inserted points and the
current points), running time is the time cost for each insertion,
and memory usage is the space cost of the embedding.

The implementation is same as the previous experiments.
2) Experimental Results: Fig. 5 and Fig. 6 illustrate the

experimental results. Since we fix the number of insertions as
10, x = 1, · · · , 10 in the horizontal axis denotes the number of
insertions. Due to space limitation, we omit the experimental
results on NYC and Chengdu, which have similar patterns with
the results on Tokyo and Haikou, respectively.
Results on real datasets. The first column of Fig. 5 presents
the results of Tokyo. In terms of distortion, our algorithm
HST+HSF always outperforms the baseline reHST. For ex-
ample, the distortion of HST+HSF is up to 3.4× smaller than
reHST. In Fig. 5a, there are fluctuations in the results since
the inserted points are sampled in a purely random way. As for
running time, HST+HSF is 146×-310× faster than reHST.
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Fig. 5: Results of insertion on real datasets

The baseline will be notably inefficient when insertions are
frequently occurred. As for memory usage, HST+HSF needs
at most 0.5MB more spaces than reHST due to the cost of
extra arrays (e.g., NN and NND).

The last column of Fig. 5 illustrates the results of Haikou.
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Fig. 6: Results of insertion on synthetic datasets under Uniform, Exponential and Normal distributions

In Fig. 5b, our algorithm is much more effective, since the
distortions of HST+HSF are constantly smaller than the
distortions of reHST. In terms of running time, HST+HSF
is still notably better than reHST. For example, HST+HSF
is up to 317× faster than reHST. As for memory usage, both
algorithms are efficient (e.g., less than 26MB). Similar to the
previous results, HST+HSF consumes slightly more spaces.

Results on synthetic datasets. Fig. 6 illustrates the results
on synthetic datasets under Uniform (first row), Exponential
(second row) and Normal distribution (last row), respectively.
Under all these three distributions, our algorithm HST+HSF
always outperforms the baseline reHST in terms of effective-
ness (i.e., distortion). As for running time, HST+HSF is up to
391×, 308× and 491× faster than reHST in Fig. 6b, Fig. 6e
and Fig. 6h, respectively. In terms of memory usage, both
algorithms consume less than 6.5MB, since they both apply
our optimization techniques in the construction of HSTs. Our
algorithm HST+HSF needs more spaces since it maintains
extra arrays like NN and NND.

C. Experimental Summary

We summarize our experimental findings as follows.
In the experiments of construction, our method HST+DPO

is always the most efficient. For example, HST+DPO is up
to 24.7× and 29.8× faster than the state-of-the-art method
BASE in the real datasets and synthetic datasets, respectively.
Moreover, 85% of the baseline’s spaces can be saved by
HST+DPO. The comparisons with HST+DP demonstrate
that our optimization techniques (e.g., improved DP strategy,
compressing strategy and pruning strategy) are effective.

In the experiments of insertion, our proposed algorithm
HST+HSF outperforms the baseline reHST in terms of ef-
fectiveness (e.g., by up to 3.4× better). HST+HSF is more
efficient than reHST by up to 491× shorter running time.

VII. RELATED WORK

Metric Embedding was first proposed in the 1980s. Specif-
ically, Johnson and Lindenstrauss [40] focus on embedding
metric spaces into a Hilbert space. Alon et al. [41] study
the embeddings into a spanning tree. Among these metric
embeddings, Hierarchically Separated Tree (HST) is one of
the most prevalent data structure, which was first proposed by
Bartal [8]. To minimize the distortion of the HST, existing
studies [7]–[10], [20], [26], [42] mainly focus on improving
the theoretical guarantees of the (expected) distortion.

Specifically, Bartal [9] proved that the expected distortion of
the HST is O(k log n log logn). Konjevod et al. [42] further
improved the guarantee to O(log ∆), where ∆ denotes the
diameter of the original metric space. Gao et al. [20] studies
how to minimize the communication cost of this method in a
sensor network. Indyk [7] converted a quadtree into the HST
with an approximation ratio of O(log4 n). Among the existing
studies, Fakcharoenphol et al. [10], [26] proposed the state-of-
the-art construction method (i.e., Algorithm 1) with the tight
distortion guarantee (O(log n)). Blelloch et al. [27] propose a
parallel construction method with the same guarantee.

Although HST has been widely used in many existing
studies, much less attention has been paid in the efficiency.
For instance, the construction method in [10], [26] takes
high complexity (e.g., O(n3) time) in the worst-case and
the construction method in [27] takes O(n2 log n) time in
the average-case. However, their complexities are not optimal
(e.g., O(n2) time in the worst-case). Moreover, existing studies
usually assumed the geometric data was static and hence they
did not provide flexible solutions to the insertion operation.

VIII. CONCLUSION

In this paper, we study the Embedding Arbitrary metrics
by Tree metrics (EAT) problem and focus on improving
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the efficiency of a well-known index called Hierarchically
Separated Tree (HST). Specifically, the state-of-the-art method
still requires high time complexity (O(n3)) and space cost
(O(n2)) to construct an HST. Moreover, existing studies have
no efficient support in insertions, which can be occurred in real
applications. To address these limitations, we have proposed
a new construction method with the optimal time and space
complexity. It improves the time complexity from O(n3) to
O(n2) and reduces the space cost from O(n2) to O(n). To
flexibly support insertion, we have introduced a new data
structure called Hierarchically Separated Forest (HSF), i.e.,
a collection of HSTs. Based on an HSF, we have designed
an efficient insertion algorithm with a tight guarantee in the
distortion (O(log n)). Finally, we have conducted extensive
experiments on both real and synthetic datasets. The ex-
perimental results validate the superior performance of our
methods in the effectiveness and running time.
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