
A Differentially Private Task Planning Framework
for Spatial Crowdsourcing

Qian Tao †, Yongxin Tong †, Shuyuan Li †, Yuxiang Zeng ‡, Zimu Zhou #, Ke Xu †

†BDBC, SKLSDE Lab and IRI, Beihang University, China
‡The Hong Kong University of Science and Technology, Hong Kong SAR, China

#Singapore Management University, Singapore
†{qiantao, yxtong, lishuyuan, kexu}@buaa.edu.cn, ‡yzengal@cse.ust.hk, #zimuzhou@smu.edu.sg

Abstract—Spatial crowdsourcing has stimulated various new
applications such as taxi calling and food delivery. A key
enabler for these spatial crowdsourcing based applications is
to plan routes for crowd workers to execute tasks given di-
verse requirements of workers and the spatial crowdsourcing
platform. Despite extensive studies on task planning in spatial
crowdsourcing, few have accounted for the location privacy of
tasks, which may be misused by an untrustworthy platform.
In this paper, we explore efficient task planning for workers
while protecting the locations of tasks. Specifically, we define
the Privacy-Preserving Task Planning (PPTP) problem, which
aims at both total revenue maximization of the platform and
differential privacy of task locations. We first apply the Laplacian
mechanism to protect location privacy, and analyze its impact on
the total revenue. Then we propose an effective and efficient task
planning algorithm for the PPTP problem. Extensive experiments
on both synthetic and real datasets validate the advantages of
our algorithm in terms of total revenue and time cost.

Index Terms—Spatial Crowdsourcing, Privacy Preserving,
Task Planning

I. INTRODUCTION

Spatial crowdsourcing, a prevailing category of crowdsourc-
ing where tasks are spatiotemporal [1], [2], has triggered a
wide range of novel applications such as taxi calling [3], food
delivery [4], and so on. In spatial crowdsourcing applications,
crowd workers must reach specific locations under certain
time constraints to complete tasks. A common example is
on-demand taxi calling services where taxi drivers (workers)
should arrive at the pickup locations in time and reach the
given destination to complete a taxi calling request (task).

A core functionality that enables such spatial crowdsourcing
applications is task planning, which makes a route plan for
each worker to perform a sequence of tasks with different
optimization objectives e.g. maximizing the total revenue of
the platform [5], minimizing the total traveling distance of
workers [6] etc. and the planning can be either static [7] or
dynamic [8].

Despite recent efforts on task planning for spatial crowd-
sourcing [7], [9], [10], [8], [5], they are still impractical for
widespread real-world adoption, due to their ignorance on data
privacy protection. In particular, location privacy is critical in
spatial crowdsourcing applications since location information
can reveal movement patterns or habits of individuals [11],
[12]. Yet the spatial crowdsourcing platform may not always

be trustworthy and there is a trend to enforce data privacy by
new regulations e.g. General Data Protection Regulation1.

In this paper, we study the Privacy-Preserving Task
Planning (PPTP) problem in spatial crowdsourcing. It aims to
not only maximize the total revenue as in previous studies [5],
[6], but also protect the privacy of task locations. Although
solutions to location privacy in spatial crowdsourcing exist
[13], [14], [15], directly applying them to PPTP impairs the
effectiveness (i.e. total revenue maximization) of task plan-
ning. This is because location privacy protection mechanisms
typically add noises to the locations [16], and it is challenging
to precisely calculate the utility of a route composed of
obfuscated locations. To this end, we protect location privacy
of tasks in the context of Geo-Indistinguishability [17], a
differential privacy metric for locations. We analyze the impact
of ensuring geo-indistinguishability on the total revenue of task
planning, and devise an effective and efficient algorithm that
approximately maximizes the total revenue under the location
privacy constraint. The main contributions of this paper are as
follows.
• We formulate the PPTP problem and propose an

Efficient Private Task Planning (EPTP) solution frame-
work, which consists of a privacy mechanism to ensure
geo-indistinguishability and a task planning algorithm to
maximize total revenue.

• We quantify the impact of a geo-indistinguishable privacy
mechanism on the effectiveness (i.e. revenue maximiza-
tion) of any task planning algorithm.

• On basis of the theoretical analysis, we design a novel
task planning algorithm on obfuscated locations to ap-
proximately maximize the total revenue at low time cost.

• Extensive experiments on both synthetic and real datasets
validate the effectiveness and efficiency of our methods.

In the rest of this paper, we define the PPTP problem
in Sec. II, introduce our privacy-preserving task planning
framework is in Sec. III, and present the evaluations in Sec. IV.
Sec. V reviews related work and we conclude in Sec. VI.

II. PRELIMINARIES

In this section, we formally define the Privacy-Preserving
Task Planning (PPTP) problem and present the analysis model

1https://gdpr-info.eu/

9

2021 22nd IEEE International Conference on Mobile Data Management (MDM)

DOI 10.1109/MDM52706.2021.00015

20
21

 2
2n

d
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ob

ile
 D

at
a

M
an

ag
em

en
t (

M
D

M
) |

 9
78

-1
-6

65
4-

28
45

-3
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

D
M

52
70

6.
20

21
.0

00
15

978-1-6654-2845-3/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:28:30 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Summary of major notations.

Notation Description
t A crowd task
loct The location of the task t
relt The release time of the task t
expt The expiration time of the task t
revt The revenue of t
εt The privacy budget of t
R Radius that a task can be accomplished
w A crowd worker

sLocw The initial location of w
dLocw The destination of w
cLocw The current location of w
relw The release time of w
expw The expiration time of w

to assess the effectiveness of task planning under the location
privacy constraint. Major notations are listed in Table I.

A. Problem Definition

Definition 1 (Task). A task t from a requester is a quintuple
(loct, relt, expt, revt, εt), where loct, relt, and expt are the
location, release time and expiration time of t. revt is the
revenue contributed to the spatial crowdsourcing platform if t
is accomplished, and εt represents the privacy budget of t.

We consider the online setting for task planning [7], [8], [5],
i.e. the appearance of a task t is unknown before its release
time relt. A task t is completed if a worker w arrives at a
circle range centered at loct with a radius R before the task’s
expiration time expt. The radius R is predefined and unified
in this paper, which depends on the applications. The privacy
budget is specified by the requester.

Definition 2 (Worker). A worker w is a quadruple w =
(sLocw, dLocw, relw, expw), where w can be observed after
the release time relw with initial location sLocw, and must
arrive at the destination dLocw before expiration time expw.

In many spatial crowdsourcing applications, workers tend to
move constantly. For convenience, we use cLocw to represent
the current location of w. A worker can complete a task t if
he/she reaches t’s location in the circle range centered at loct
with radius R within t’s valid time interval [relt, expt], and
will increase a revenue revt for the platform. Furthermore, we
use dis(., .) to denote the distance between two locations, and
assume workers move at a unit speed.

Definition 3 (Task Plan). A task plan (plan for short) pw for
a worker w is a sequence of locations 〈l1, l2, ..., l|pw|〉 that
w should visit in order starting from his/her current location
cLocw. A plan pw is valid if w can arrive at the destination
dLocw before his/her expiration time expw, i.e.

curT + dis(cLocw, l1) +

|pw|−1∑
i=1

dis(li, li+1) ≤ expw,

where curT is the current time.

Suppose P is the set of plans for all workers, i.e. P =
{pw|w ∈W}. Further define the accomplished tasks of a plan
pw, denoted by AT (pw), as tasks completed by w if w follows
the plan pw. For simplicity, we use AT (P) as the set of tasks
accomplished by all plans in P , i.e. AT (P) = ∪p∈PAT (p).
We assume plans are generated by a task planning algorithm
and are guaranteed to be valid.

In this work, we are interested in making plans for workers
while protecting location privacy of tasks. Particularly, the
location privacy is protected by a privacy mechanism that
achieves geo-indistinguishability.

Definition 4 (Privacy Mechanism). Given an exact location
space L and an obfuscated location space L′, a privacy
mechanism M is a probability function that maps each exact
location x in L into an obfuscated location x′ in L′ with some
probability. Specifically, the probability of mapping x ∈ L into
x′ ∈ L′ is denoted as Pr(x, x′).

Definition 5 (Geo-Indistinguishability [17]). A privacy mech-
anism M is said to satisfy ε-Geo-Indistinguishability if for
any x1, x2 ∈ L and x′ ∈ L′,

Pr(x1, x
′)

Pr(x2, x′)
≤ eε·dis(x1,x2). (1)

Geo-indistinguishability is extended from differential pri-
vacy [18] and is a widely used metric for location privacy
[19], [13], [20].

Now we can formally define the Privacy-Preserving Task
Planning (PPTP) problem.

Definition 6 (Privacy-Preserving Task Planning Problem).
Given a set of workers W and a set of tasks T which appear
dynamically, the problem is to design a privacy mechanism
M for tasks, and make plans P for workers such that:
• The mechanism M takes as input the location loct of a

task t, outputs the obfuscated location loc′t, and satisfies
geo-indistinguishability.

• Plans are made on the obfuscated locations of tasks, and
the total revenue of the accomplished tasks is maximized.

Rev(P) =
∑

t∈AT (P)

revt (2)

We illustrate the PPTP problem via the following example.

Example 1. Suppose currently there are 2 workers and 3 tasks.
Their release time and expire time are shown in Table II and
their corresponding locations are shown in Fig. 1. Suppose
t1 locates at (1.5, 4) and is perturbed to (2, 4) by a privacy
mechanism (see the blue arrow in Fig. 1). For simplicity
we omit the exact locations of other tasks. The platform
can only observe the obfuscated locations of the tasks, i.e.
loc′t1 , loc

′
t2 and loc′t3 , after their release time. Further set

the radius R as 1 and assume t1 is assigned to w1. Since
dis(t1, t

′
1) = 0.5 ≤ 1, w1 can accomplish the task by reaching

the obfuscated location (2, 4).

10

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:28:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Initial locations of tasks and workers.

TABLE II: Information of tasks and workers.

Task/Worker Release time Expire time Revenue
t1 1 5.5 2
t2 2 4.5 3
w1 2 7.8 -
w2 3 7.5 -
t3 4 8 2

B. Analysis Model

Before introducing our solution to the PPTP problem, we
present the analysis model to assess the effectiveness of task
planning in the privacy-preserving setting. Specifically, we
define a new competitive ratio (CR) as follows.

Definition 7 (Competitive Ratio (CR)). Suppose ALG is
the algorithm of interest which is based on the obfuscated
locations and OPT the optimal algorithm based on the exact
locations of tasks. The competitive ratio of ALG is the ratio
between the expected revenue on the distribution of the privacy
mechanism and the revenue obtained by OPT , i.e.

CRp(ALG) = min
I∈I

EM[Rev(ALG(I))]

Rev(OPT (I))
(3)

where I is the space of all instances, and ALG(I) and
OPT (I) are the plans generated by ALG and OPT .

We argue the above defined CR is more suited to study
the effectiveness of privacy-preserving task planning algo-
rithms than prior definitions [21], [5], [22]. This is because
previous CR definitions [21], [5], [22] are all based on the
exact locations. However, when algorithms are executed on
obfuscated locations, as in privacy-preserving task planning,
it may produce an extremely bad plan compared with that
produced by the optimal algorithm with the exact locations.
This makes the CR arbitrarily bad since we can always find
a bad enough case in the probability function of a privacy
mechanism. Hence the expected revenue on the distribution
of the privacy mechanism is more reasonable.

Fig. 2: Framework overview.

III. EFFICIENT PRIVATE TASK PLANNING FRAMEWORK

This section presents our Efficient Private Task Planning
(EPTP) framework. We start with its overview, followed by the
detailed algorithms and analysis on privacy and effectiveness.

A. Framework Overview

Fig. 2 illustrates the overview of the EPTP framework. It
works as follows.
• The platform collects information about workers and

tasks. Task locations are obfuscated by the privacy mech-
anism before submitting to the platform.

• The platform executes the task planning algorithm based
on the obfuscated locations to make plans for workers.

• Workers finish the assigned tasks according to the plans.
To solve the PPTP problem, the EPTP framework applies a
privacy mechanism to guarantee the geo-indistinguishability
of task locations. The framework then utilizes an efficient and
effective task planning algorithm executed on obfuscated tasks
locations to generate valid plans with high total revenue.

B. Privacy Mechanism and Analysis

We first present an εt-geo-indistinguishable privacy mech-
anism for task t with privacy budget εt and then analyze its
impact on task planning.

Since the task locations are in 2D coordinates, hereinafter
we will focus on the mechanisms that the exact space and
the obfuscated space are both Euclidean spaces. Given a
location loct with privacy budget εt, previous work [17]
has shown that the planar Laplacian distribution satisfies
geo-indistinguishability. The mechanism maps loct ∈ X to
loc′t ∈ X with probability

Pr(loct, loc
′
t) =

ε2t
2π
· e−εt·dis(loct,loc

′
t). (4)

We also utilize the planar Laplacian distribution to guarantee
the geo-indistinguishability as in [23], [13], [24]. However, we
are more interested in how the mechanism affects the revenue
of task plans, as explained below.

The planar Laplacian distribution determines the probability
to map the exact task location into the obfuscated one. Note
that the platform only sees the obfuscated locations. To analyze
the effect of the privacy mechanism on task planning, we
examine the posterior probability of the exact task location
given its obfuscated location, which is given by Lemma 1:

11

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:28:30 UTC from IEEE Xplore. Restrictions apply.

Lemma 1. Given an obfuscated location loc′t of a task, the
probability distribution of t’s exact location loct also follows
the Laplacian distribution, i.e.

Pr[loct|loc′t] = Pr(loct, loc
′
t) =

ε2t
2π
· e−εt·dis(loct,loc

′
t). (5)

Proof. Suppose the exact and obfuscated locations are derived
from the Euclidean space X . By the Bayesian formula,

Pr[loct|loc′t] =
Pr[loct] · Pr[loc′t|loct]∫
x∈X Pr[x]Pr[loc

′
t|x]

. (6)

Assume the exact location appears uniformly in X , i.e. Pr[x] =
Pr[y] for any x, y ∈ X . Hence we can remove the probability
Pr[loct] and Pr[x] in Eq. 6 by reduction, i.e.

Pr[loct|loc′t] =
Pr[loc′t|loct]∫
x∈X Pr[loc

′
t|x]

. (7)

Note that Pr[loc′t|loct] is exactly the probability that the
privacy mechanism maps loct into loc′t, i.e. Pr[loc′t|loct] =
Pr(loct, loc

′
t). Similarly,

∫
x∈X Pr[loc

′
t|x] =

∫
x∈X Pr(x, loc

′
t)

=
∫
x∈X Pr(loc

′
t, x) = 1. Substituting the above deduction into

Eq. 7, Pr[loct|loc′t] = Pr(loct, loc
′
t).

After obtaining the posterior probability, we analyze the
probability to complete a task. This is because workers should
arrive within the range centered at the exact task location loct
with radius R to accomplish the task t, and if an obfuscated
location is given, the task may not be accomplished. The
probability that a task can be accomplished is given by
Lemma 2:

Lemma 2. Suppose a worker w is planned to arrive at
an obfuscated location loc′t of the task t and t will be
accomplished if loc′t is in the range of the exact location loct
with radius R. Then t will be accomplished with a probability
1− (1 + εtRe

−εtR).

Proof. w will reach the obfuscated location loc′t, and t can
be accomplished if the distance between loct and loc′t is no
greater than R. Hence the probability of the task t being
accomplished equals to the probability that the exact location
loct locates within the range centered at the obfuscated loca-
tion loc′t with radius R. Previous work [17] has shown that the
probability is 1 − (1 + εtRe

−εtR). We restate the conclusion
with a detailed deduction.

Use an equal form of the planar Laplacian distribution, i.e.
the polar Laplacian distribution [17], to prove the theorem.
Given d ∈ [0,∞], θ ∈ [0, 2π), the distance between loct, loc′t,
the angle between the line formed by loct, loc

′
t and the

horizontal axis, the polar Laplacian distribution is defined as

Lap(d, θ) =
ε2t
2π
r · e−εtr. (8)

From Lemma 1, the probability can be calculated by

Pr[t is accomplished] = Pr[dis(loct, loc
′
t) ≤ R|loc′t]

=

∫ 2π

0

∫ R

0

ε2t
2π
r · e−εtrdrdθ

=

∫ R

0

ε2t r · e−εtrdr = −εt
∫ R

0

rde−εtr

= 1− (1 + εtR)e
−εtR. (9)

Lemma 2 shows how the privacy mechanism influences task
completion. The following theorem further states the effect of
the privacy mechanism on the PPTP problem.

Theorem 1. Suppose the locations of the tasks are perturbed
independently. Given a task planning algorithm ALG executed
on the exact locations with competitive ratio δ, then ALG
executed on the obfuscated locations by the Laplacian mecha-
nism M has a competitive ratio (1− (1 + εminR)e

−εminR)δ,
where εmin is the minimum privacy budget among all tasks,
i.e. εmin = mint∈T εt.

Proof. For each instance I ∈ I,

EM[Rev(ALG(I))]

Rev(OPT (I))
=

EM[Rev(ALG(I))]

Rev(ALG(I))

Rev(ALG(I))

Rev(OPT (I))
(10)

≥ δEM[Rev(ALG(I))]

Rev(ALG(I))
.

Since the locations are obfuscated independently, the result if
a task t contributes to the total revenue is only determined
by the random process of the mechanism. Use α to represent
1− (1 + εminR)e

−εminR, then

EM[Rev(ALG(I))] =
∑

t∈ALG(I)

EM[Revt] (11)

=
∑

t∈ALG(I)

(1− (1 + εtR)e
−εtR)Revt ≥

∑
t∈ALG(I)

αRevt

= α
∑

t∈ALG(I)

Revt = αRev(ALG(I))

where the second line in Eq. 11 is because the function f(x) =
1+x
ex monotonically decreases as x ≥ 0.

Theorem 1 shows how the competitive ratio of a general
task planning algorithm is affected under the privacy mecha-
nism. Next, we introduce an efficient task planning algorithm.

C. Task Planning Algorithm

After tasks with obfuscated locations are submitted to the
platform, a task planning algorithm is invoked. Similar to [5],
we use a dynamic insertion approach to make plans for work-
ers. Specifically, we account for the long-term effect when
planning for a single worker and apply dynamic programming
to improve the efficiency of the algorithm.

Alg. 1 illustrates the dynamic insertion approach. Two sets,
Wact and Tavai, are first initialized as the set of the workers

12

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:28:30 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Dynamic Insertion Architecture
input : A set of dynamically arriving workers W , a

set of dynamically arriving tasks T
output: Plans pw for w ∈W

1 Initialize Wact and Tavai as ∅;
2 while a worker w ∈W or a task t ∈ T arriving do
3 if a worker w arrives then
4 pw ← TaskPlanSingleWorker(Tavai, w);
5 Wact ←Wact ∪ {w};
6 else a task t arrives
7 wbest, pbest ← InsertTask(Wact, t);
8 Update wbest’s plan with pbest;

who have arrived in the platform and the set of available
tasks respectively (line 1). Whenever a worker w appears, the
algorithm invokes the TaskP lanSingleWorker function to
makes plans for w from the available task set Tavai (lines 3-5).
Whenever a task t appears, function InsertTask is executed
to insert t into the existing plan of a worker that has arrived in
the platform (i.e. wbest ∈Wact) with minimum extra distance,
while keeping the order of other tasks unchanged (lines 6-8).
The details of the two functions are as below.

1) Task Planning for a Single Worker: When making
plans for a newly appeared worker, we choose tasks greedily.
Previous work [5] utilizes the strategy of the average revenue
based on the empty moving distance to determine the priority
of the available tasks. However, this strategy ignores the long-
term effect caused by the corresponding insertion. Instead, we
consider both the current average revenue and the long-term
effect by the following two definitions.

Definition 8 (Revenue per Empty Moving Distance (REMD)
[5]). Given an available task t and a newly appeared worker
w, the REMD between w and t is defined as

RE(w, t) =
revt

dis(cLocw, loc′t)
. (12)

A task with larger REMD has a higher priority when making
plan for a newly appeared worker.

As for the long-term effect, we have the following:
• If the task t has a smaller spare time (i.e. expt−curT), it

should be assigned a higher priority because it will expire
with a higher probability.

• If the task t locates nearer to w’s destination dLocw, it
should be assigned a lower priority since the task can
be accomplished more efficiently later (i.e. accomplished
when the worker heads to the destination along the way).

To measure such long-term effect, we define the spare time
per heading destination distance:

Definition 9 (Spare Time per Heading Destination Distance
(STHDD)). Given a worker w and the current time curT , the
STHDD between w and t is defined as

ST (w, t) =
expt − curT

dis(loc′t, dLocw)
. (13)

Algorithm 2: TaskPlanSingleWorker
input : Worker w, the set of available tasks Tavai
output: Plan pw of the worker w

1 pw ← ∅;
2 Sort t in Tavai according to Rev(w,t)

ST (w,t) in descending
order;

3 foreach task t ∈ Tavai do
4 if appending t to pw does not violate the

expiration time of t and w then
5 Append loc′t to pw;

6 if pw = ∅ then
7 pw ← 〈dLocw〉;
8 return pw;

Unlike REMD, a task with larger STHDD means a lower
priority because it can be completed more efficiently later.

Alg. 2 shows the task planning algorithm for a single worker
by considering the two aspects above. The algorithm first sorts
the available tasks in Tavai by the ratio of the Revenue per
Empty Moving Distance to the Spare Time per Heading Desti-
nation Distance, i.e. RE(w,t)

ST (w,t) (line 1). Tasks are then appended
to the plan pw in such an order as long as the task does not
violate the expiration time of t and w. If no task is assigned to
w, w moves to his/her destination, i.e. pw = 〈dLocw〉 (lines
6-7). We further illustrate TaskP lanSingleWorker via the
following example.

TABLE III: REMD and STHDD of t1 and t2 for w1.

Task REMD STHDD REMD/STHDD
t1 0.63 1.57 0.40
t2 1.5 0.83 1.81

Example 2. At time 2, the worker w1 appears and there
are two available tasks t1, t2, i.e. Tavai = {t1, t2}. Then
the values of REMD, STHDD, and their ratios are shown
in Table III. For instance, the REMD of t1 can be obtained
by revt1

dis(cLocw1
,loc′t1

) = 0.63. Based on the ratio between
REMD and STHDD, we append t2 and t1 one by one,
determine if the tasks violate the expiration time, and make
plan pw1

= {loc′t2 , loc
′
t1 , dLocw1

}.

2) Dynamic Programming based Insertion: Previous work
[5] applies an O(nm3) algorithm to make plans. In this sub-
section, we propose a Dynamic Programming based technique
to quickly find the best insertion location.

We first introduce some notations. Given a worker w with
his/her unaccomplished plan pw = 〈l1, l2, ..., lmw

〉, we denote
Dw[i] as the traveling time along pw from w’s current location
cLocw to the i-th location li. The last location in pw is also
the destination of w, i.e. lmw = dLocw. For i = 1, ...,mw,
Ew[i] represents the extra traveling time caused by inserting

13

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:28:30 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: InsertTask
input : The active worker set Wact and a task t
output: The chosen worker wbest and updated plan

pwbest

1 wbest ← None, bestComPos← −1,minCost←∞;
2 foreach wa ∈Wact do
3 Compute MDwa

[.] and Ewa
[.] by Eq. 14 and

Eq. 15;
4 foreach insertion position k in pw do
5 if Ewa [k] ≤ min{MDwa [k],minCost} then
6 minCost← Ewa [k];
7 bestComPos← k;
8 wbest ← wa;

9 Insert t into the k-th location of wbest’s plan pwbest
;

return wbest,pwbest
;

a task t∗ before the i-th location li, i.e.

Ew[i] = (14){
dis(cLocw, loc

′
t∗) + dis(loc′t∗ , li)− dis(cLocw, li), i = 1

dis(li−1, loc
′
t∗) + dis(loc′t∗ , li)− dis(li−1, li), 2 ≤ i ≤ mw.

Basic Idea. If we insert the task t∗ before the location lk in
the plan pw, then (i) for 1 ≤ i < k, the traveling time from
cLocw to li, i.e. Dw[i], remains unchanged; (ii) for k ≤ i ≤
mw, the distance from cLocw to li will increase by Ew[k].
The observation indicates that while finding the best insertion
position of a task t∗ on a plan pw, only Ew[k] relates to the
task t∗, while other variables can be pre-calculated.

Specifically, we use an array of variables to represent the
maximum tolerant extra traveling time if we insert a task t∗

at each position in the plan pw, and use these variables to
determine the validity of an insertion position. Let MDw[k] be
the maximum tolerant extra traveling time if a task is inserted
before lk and it guarantees that all tasks in pw do not expire.
Then the value MDw[k] is either the maximum tolerant extra
traveling time for the task at lk (denoted by ek), formally ek−
Dw[k], or the maximum tolerant extra traveling time for tasks
in {lk+1, lk+2, ..., lmw

}. Hence, we can calculate MDw[k] by

MDw[k] =

{
expw −Dw[mw], k = mw

min(ek −Dw[k],MDw[k + 1]), 1 ≤ k < mw.
(15)

After calculating MDw[k] for 1 ≤ k ≤ mw, we can confirm
if an insertion before tk of a task t∗ is valid (i.e. does not
cause expiration) by judging if Ew[k] ≤ MDw[k]. To this
end, we can find the best insertion location by iterating k from
mw to 1, calculating MDw[k] and Ew[k], and comparing if
Ew[k] ≤MDw[k].
Algorithm Details. Alg. 3 shows the InsertTask function
based on dynamic programming. To find the best insertion
position, for each worker wa ∈ Wact we first compute the
arrays Ewa [.] and MDwa [.] in line 3 based on Eq. 14 and
Eq. 15 respectively. Then for each insertion position i, we

Fig. 3: Locations of workers and tasks at time 4.

TABLE IV: Ew1 [.] and MDw1 [.] in pw1 .

Index 1 2
Insertion Location Before loct2 Before dLocw1

Dw1 [i] 5.41 7.65
Ew1 [i] 3.06 1.41

MDw1 [i] 0.09 0.15

compare the values of Ewa
[i] and MDwa

[i] to see if the plan
after insertion is valid and has a minimum extra distance (line
5), and update the current best insertion location (lines 6-8).
The following example illustrates the dynamic programming
based solution.

Example 3. At time t = 4, t3 arrives in the platform. The
locations of the tasks and workers are shown in Fig. 3. At this
time, w1 arrives at (1, 3) and has accomplished t2. Her current
plan is pw1 = {loc′t1 , dLocw1}. w2 has a plan of heading to
his/her destination (4, 4), i.e. pw2

= {dLocw2
}, and locates

at (4, 2). We could obtain the values of Dw1
[.], Ew1

[.] and
MDw1

[.] by Eq. 14 and Eq. 15, as shown in Table IV. For ex-
ample, Dw1 [1] = 4(current time)+dis(cLocw1 , loc

′
t1) = 5.41.

As for MDw1 [.], we first calculate MDw1 [2] = expw1 −
Dw1

[2] = 0.15. Then we use MDw1
[2] to obtain MDw1

[1] =
min{expt1 − Dw1

[1],MDw1
[2]} = 0.09. After obtaining

MDw1
[.], we could judge by Ew1

[i] > MDw1
[i] that t3

cannot be inserted into w1’s plan. Hence it is assigned to w2,
and w2’s plan now is pw2 = 〈loc′t3 , dLocw2〉.

3) Complexity Analysis: We analyze the time complexity
of the proposed technique. Suppose currently there are mwa

tasks for a given worker wa ∈ W . Line 2 in Alg. 3 takes a
time complexity of O(mwa

+1), as Ewa
[i] and MDwa

[i] can
be obtained according to Eq. 14 and Eq. 15 by O(1) time. It
takes O(mwa+1) time to find the best insertion position (lines
4-8), because for each insertion position i, we just compare
the values Ewa

[k] and MDwa
[k]. Hence the time complexity

of lines 3-8 is O(mwa
+ 1). Considering the enumeration of

14

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:28:30 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Experimental settings.

Parameters Settings
|W | 100, 200, 300, 400, 500
|T | 1000, 2000, 3000, 4000, 5000
tst σ = 10, µ = 60, 120, 180, 240, 300
tsw σ = 10, µ = 30, 60, 90, 120, 150

Revmax 2, 4, 6, 8, 10
R 1, 1.5, 2, 2.5, 3

the workers in W , the total time complexity of Alg. 3 is∑
wa∈W

O(mwa
+ 1) = (16)

O(|W |+
∑
wa∈W

mwa) = O(n+m)

where the last deduction is derived from the truth that |W | = n
and

∑
wa∈W mwa

≤ m. Noticing that Alg. 3 is executed each
time a task appears, its total time complexity in the framework
is O(m(n+m)). Alg. 2 still takes O(nm logm) time to make
plan for a single worker. Hence the total time complexity of
our framework is O(mn logm+m2).

IV. EXPERIMENTAL STUDY

A. Experimental Setup

Datasets. We evaluate the performance of different algorithms
on both synthetic and real datasets. Synthetic datasets are
generated in a similar setting as [5], and the parameters are
shown in Table V. Default parameters are marked in bold.
Tasks and workers are generated randomly on a 600 × 600
square, and the radius of the tasks being accomplished is set to
R = 1. Following [25], [5], the spare time (i.e. the expiration
time minuses the release time) of the tasks and workers is
randomly generated following the Gaussian distribution. In
Table V, we denote the parameters of the spare time of tasks
and workers as tst and tsw, respectively. The release time of
tasks and workers is randomly generated following the Poisson
distribution. Since there is more tasks than workers, the release
time is generated with λt = 2/min and λw = 20/min for
tasks and workers, respectively. Finally, the privacy budgets of
the tasks are uniformly generated from [1, 2], and we generate
the revenue of the tasks by uniformly sampling from the
interval [1, Revmax], as shown in Table V.

As for real datasets, we use the same dataset as [5]. The
dataset includes the taxi orders from a taxi-calling service
platform. Each order consists of a pickup location and drop-off
location, and is randomly chosen as the location information
of a task or a worker. We use the pickup location as the
location of a task, and use the pickup and drop-off locations
as the start location and destination of a worker respectively.
Other parameters are generated with the same parameters as
the synthetic datasets.

Compared Algorithms. To the best of our knowledge, there
is no study on task planning in spatial crowdsourcing under
differential privacy. Hence we compare our framework with

1000 2000 3000 4000 5000
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

|T|

R
e

v
e

n
u

e

baseline−Fast

baseline−Delay

EPTP

(a) Revenue of Varying |T |

100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

8000

|W|

R
e

v
e

n
u

e

baseline−Fast

baseline−Delay

EPTP

(b) Revenue of Varying |W |

1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

|T|

T
im

e
(S

e
c
s
)

baseline−Fast

baseline−Delay

EPTP

(c) Time of Varying |T |

100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

|W|

T
im

e
(S

e
c
s
)

baseline−Fast

baseline−Delay

EPTP

(d) Time of Varying |W |

1000 2000 3000 4000 5000
1.84

1.842

1.844

1.846

1.848

1.85

1.852
x 10

4

|T|

M
e

m
o

ry
(K

B
)

baseline−Fast

baseline−Delay

EPTP

(e) Memory of Varying |T |

100 200 300 400 500
1.84

1.8402

1.8404

1.8406

1.8408

1.841

1.8412

1.8414

1.8416

1.8418

1.842
x 10

4

|W|

M
e

m
o

ry
(K

B
)

baseline−Fast

baseline−Delay

EPTP

(f) Memory of Varying |W |

Fig. 4: Results on Varying |T | and |W |

two state-of-the-art algorithms on task planning with the same
privacy mechanism (i.e. the Laplacian mechanism).
• baseline-Delay (Delay Planning algorithm in [5]): it

makes a plan for each newly arrived worker, and keeps
the plan unchangeable until the worker finishes the plan.

• baseline-Fast (Fast Planning algorithm in [5]) it keeps
updating plans with the arrival of the tasks.

• EPTP: our proposed framework.

Implementation. All algorithms are implemented in C++, and
the experiments were performed on a machine with Intel(R)
Xeon(R) Gold 5118 2.30Hz CPUs and 256GB memory. Each
case is executed 10 times and average results are reported.

B. Experiment Results

Effect of |T |. The first column of Fig. 4 shows the re-
sults of varying the number of tasks. The total revenues
of baseline-Fast and EPTP are always better than that of
baseline-Delay, while EPTP performs the best in most cases.
This is reasonable as we consider both the current revenue and
the probability of the tasks being accomplished in long-term
effect. Another observation is that, with the increase of the
number of tasks |T |, the revenues of baseline-Fast and EPTP
keep increasing, while that of baseline-Delay stays stable. This

15

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:28:30 UTC from IEEE Xplore. Restrictions apply.

60 120 180 240 300
2000

3000

4000

5000

6000

7000

8000

µ of ts
t

R
e

v
e

n
u

e

baseline−Fast

baseline−Delay

EPTP

(a) Revenue of Varying tst

30 60 90 120 150
2000

3000

4000

5000

6000

7000

8000

µ of ts
w

R
e

v
e

n
u

e

baseline−Fast

baseline−Delay

EPTP

(b) Revenue of Varying tsw

60 120 180 240 300
0

0.05

0.1

0.15

0.2

0.25

µ of ts
t

T
im

e
(S

e
c
s
)

baseline−Fast

baseline−Delay

EPTP

(c) Time of Varying tst

30 60 90 120 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

µ of ts
w

T
im

e
(S

e
c
s
)

baseline−Fast

baseline−Delay

EPTP

(d) Time of Varying tsw

60 120 180 240 300
1.84

1.8402

1.8404

1.8406

1.8408

1.841

1.8412

1.8414

1.8416

1.8418

1.842
x 10

4

µ of ts
t

M
e

m
o

ry
(K

B
)

baseline−Fast

baseline−Delay

EPTP

(e) Memory of Varying tst

30 60 90 120 150
1.84

1.8402

1.8404

1.8406

1.8408

1.841

1.8412

1.8414

1.8416

1.8418

1.842
x 10

4

µ of ts
w

M
e

m
o

ry
(K

B
)

baseline−Fast

baseline−Delay

EPTP

(f) Memory of Varying tsw

Fig. 5: Results on Varying tst and tsw

has also been observed in [5]. baseline-Delay is the fastest,
and EPTP consumes an allowed time cost (less than 0.4s).
Specifically, EPTP performs better than baseline-Fast and is
up to 34% faster, which validates the power of the dynamic
programming technique. Finally, all of the three algorithms
consume a similar memory, and the gap is negligible (20KB
to 18MB).

Effect of |W |. The second column of Fig. 4 reports the results
of varying the number of workers |W |. With the increase of
|W |, the revenues of all the three algorithms increase, which
is reasonable as more workers can accomplish more tasks. Our
EPTP performs the best except when |W | = 100, with 39%-
70% improvement in revenue compared with the baselines.
As for the time cost, EPTP is faster than baseline-Fast,
while baseline-Delay is the fastest. With the increase of the
number of workers, the time cost of baseline-Fast and EPTP
increases, while that of baseline-Delay stays stable. Finally,
EPTP consumes a similar size of memory compared with
baseline-Fast, and both of them are more efficient in terms
of the memory cost.

Effect of tst. The first column of Fig. 5 shows the results of
varying the mean of the tasks’ spare time. EPTP still performs
the best. With the increase of tst, EPTP, baseline-Fast and

1 1.5 2 2.5 3
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

R

R
e

v
e

n
u

e

baseline−Fast

baseline−Delay

EPTP

(a) Revenue of Varying R

2 4 6 8 10
0

2000

4000

6000

8000

10000

12000

Rev
max

R
e

v
e

n
u

e

baseline−Fast

baseline−Delay

EPTP

(b) Revenue of Varying Revmax

1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R

T
im

e
(S

e
c
s
)

baseline−Fast

baseline−Delay

EPTP

(c) Time of Varying R

2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Rev
max

T
im

e
(S

e
c
s
)

baseline−Fast

baseline−Delay

EPTP

(d) Time of Varying Revmax

1 1.5 2 2.5 3
1.84

1.8402

1.8404

1.8406

1.8408

1.841

1.8412

1.8414

1.8416

1.8418

1.842
x 10

4

ε

M
e

m
o

ry
(K

B
)

baseline−Fast

baseline−Delay

EPTP

(e) Memory of Varying R

2 4 6 8 10
1.84

1.8402

1.8404

1.8406

1.8408

1.841

1.8412

1.8414

1.8416

1.8418

1.842
x 10

4

Rev
max

M
e

m
o

ry
(K

B
)

baseline−Fast

baseline−Delay

EPTP

(f) Memory of Varying Revmax

Fig. 6: Results on Varying R and Revmax

baseline-Delay gain more revenues, while the improvement
of baseline-Delay is less. This is because the long spare
time of the tasks means that the tasks have more opportunity
to be accomplished, but baseline-Delay only benefits when
new workers appear. As for the time cost, both baseline-Fast
and EPTP increase while baseline-Delay stays stable. This is
reasonable as a longer spare time leads to a larger search
space in baseline-Fast and EPTP, and this has little effect on
baseline-Delay. The memory cost of the three algorithms has
similar trends to the previous experiments.

Effect of tsw. The second column of Fig. 5 illustrates the
results of varying the mean of the workers’ spare time tsw.
Our algorithm EPTP again performs the best in terms of the
revenue, and all three algorithms increase as tsw increases.
The extent of the increase is less than the experiments on
varying tst. This might be because workers may not be able
to accomplish more tasks with an increased spare time due to
factors like the locations of the tasks, the detour to accomplish
the tasks, etc. In terms of the time cost, it could be observed
that in most cases the time cost of all algorithms stays stable
(except for baseline-Fast when µ = 30 and EPTP when
µ = 120, 150). This is because no matter how long spare time
a worker has, the algorithms should always iterate all tasks,

16

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:28:30 UTC from IEEE Xplore. Restrictions apply.

1000 2000 3000 4000 5000
2000

4000

6000

8000

10000

12000

14000

|T|

R
e

v
e

n
u

e

baseline−Fast

baseline−Delay

EPTP

(a) Varying |T |

100 200 300 400 500
2000

3000

4000

5000

6000

7000

8000

9000

|W|

R
e

v
e

n
u

e

baseline−Fast

baseline−Delay

EPTP

(b) Varying |W |

60 120 180 240 300
6500

7000

7500

8000

8500

9000

µ of ts
t

R
e

v
e

n
u

e

baseline−Fast

baseline−Delay

EPTP

(c) Varying tst

30 60 90 120 150
6000

6500

7000

7500

8000

8500

9000

9500

µ of ts
w

R
e

v
e

n
u

e

baseline−Fast

baseline−Delay

EPTP

(d) Varying tsw

Fig. 7: Revenue Results on Real Datasets

which leads to a stable time cost. In terms of the memory cost,
all of the three algorithms consume an allowable memory (less
than 18MB) and their curves keep stable.

Effect of the radius R. The first column of Fig. 6 shows the
results of varying radius R of workers. EPTP still performs
the best in most cases. With the increase of R, the revenues
of all three algorithms increase. This is because the larger
the radius, the more possible the tasks are accomplished, as
Theorem 1 shows. As for time cost, EPTP still outperforms
baseline-Fast, and baseline-Delay performs the best. All of
the three algorithms stay stable as R varies since the time
complexities of these algorithms are irrelevant to the radius
R. In terms of memory cost, we observe a similar trend to
previous experiments.

Effect of Revmax. The second column of Fig. 6 reports
the results of varying Revmax. EPTP still outperforms
baseline-Delay and baseline-Fast. Unsurprisingly, the revenues
of all the algorithms increase as Revmax increase. The
revenues of baseline-Fast and EPTP increase greater than
baseline-Delay when Revmax increases. In terms of time and
memory cost, baseline-Fast, baseline-Delay and EPTP perform
a stable and allowable cost.

Performance on Real Datasets. Fig. 7 shows partial ex-
perimental results on real datasets. We observe a similar
trend of the algorithms on real datasets in terms of the
revenue, time cost and memory cost. Hence only the revenue
results of varying |T |, |W |, tst and tsw are reported. EPTP
outperforms the baselines in most cases and has a reasonable
time and memory cost. This accords with our conclusions in
the experiments on synthetic datasets.

Summary of Results. In terms of the revenue, EPTP benefits
from the long-term effect strategy, and outperforms the base-

lines by up to 70% in most cases. In terms of the time cost, our
EPTP, though not the most efficient, still has an allowable time
cost (less than 0.4s with 5000 workers). All of the algorithms
have a stable memory cost (roughly 18MB), which validate
the memory efficiency of EPTP. Our EPTP obtains the best
revenue with an allowable time cost and stable memory cost.

V. RELATED WORK

Our work is related to the domains of Task Planning and
Location Privacy Protection in spatial crowdsourcing.

A. Task Planning in Spatial Crowdsourcing

Task assignment and task planning have been widely consid-
ered as the core challenge of spatial crowdsourcing. Despite
of many works [26], [27], [28], [29], [22], [30] that focus
on task assignment, task planning has attracted attention in
recent years because of its practicalness and hardness. The
task planning problem in spatial crowdsourcing can trace back
to the orienteering problem [31] and the orienteering problem
has generated many variants since then. The main difference
between the orienteering problem (as well as its variants) and
our work is that our problem is defined in a dynamic scenario,
and the information of the workers and tasks can only be
observed after they appear.

More recently, the task planning problem in spatial crowd-
sourcing also gets attention in database community. Deng et
al. [7] designs approximate algorithms to make task planning
for a single worker with previous known tasks such that the
number of accomplished tasks is maximized. Deng et al. [9],
[10] further extends the problem to make planning for multiple
workers. On the contrary, [32] focuses on the exact solution
to the task planning problem. A worker dependency partition
is proposed to prune and reduce the searching space.

Another research line in this part is the task planning
problem in dynamic scenario, which comforts more to the
practice. In dynamic scenario, the information of tasks or
workers can be observed after its appearing. This makes
the problem harder be bo solved. Li et al. [8] first studies
the task planning problem in dynamic scenario for single
worker. Two kinds of algorithms are proposed to heuristically
make plans for workers. Tao et al. [5] further extends the
problem with multiple workers, and assumes that both workers
and tasks dynamically arrive. Two heuristic but efficient and
effective algorithms are proposed to solve the problem. More
recent works also pay attention to the task planning problems
in specific spatial crowdsourcing applications like last-mile
delivery [33] and ridesharing services [34]. To accord with
the applications, each task is associated with a pickup location
and a delivery location in these works, which is quite different
from our work. Comparing with these works, we also consider
the location privacy of the tasks, which is more different and
harder.

B. Location Privacy Protection in Spatial Crowdsourcing

Differential Privacy [18] has been widely developed in
recent years. It has also been utilized to protect the privacy of

17

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:28:30 UTC from IEEE Xplore. Restrictions apply.

the locations in spatial crowdsourcing or other applications.
For example, To et al. [14] studies how to protect the number
of workers in differential regions, and makes task assignment
such that the acceptance rate is maximized. However, this work
still treats the locations as aggregation values and utilizes the
general privacy mechanisms to protect the values.

On the other hand, Andrés et al. [17] propose Geo-
Indistinguishability to protect the differential privacy of the
locations, which has been utilized in spatial crowdsourc-
ing [19][13][15]. Wang et al. [19] study how to protect the
Geo-Indistinguishability of the workers’ locations and give a
Mixed-Integer-Programming based algorithm to minimize the
expected traveling distance. They still assume the platform
knows the information of the workers and tasks in advance.
More recently, [13] and [15] further propose algorithms to
make task assignment for dynamically arriving workers and
tasks with objectives of maximizing match size and minimiz-
ing total distance, respectively. However, to the best of our
knowledge, no previous work has pay attention to the task
planning algorithm with location privacy protected. Our focus
is on the task planning algorithms with the location privacy,
which has essential difference from the above works.

VI. CONCLUSION

In this paper, we study privacy-preserving task planning in
spatial crowdsourcing which aims to ensure differential pri-
vacy of task locations while the total revenue of the platform is
maximized. To protect location privacy of tasks, we apply the
Laplacian mechanism to guarantee geo-indistinguishability,
and analyze how the obfuscated locations affect task planning.
To make plans over obfuscated locations with large revenue,
we consider both the current revenue and long-term effect.
We further design a dynamic programming based technique to
accelerate task planning. Evaluations both real and synthetic
datasets valid the effectiveness and efficiency of our methods.

ACKNOWLEDGMENT

We are grateful to anonymous reviewers for their con-
structive comments. Qian Tao, Yongxin Tong, Shuyuan Li
and Ke Xu’s works are partially supported by the National
Key R&D Program of China under Grant 2018AAA0101100,
National Science Foundation of China (NSFC) under Grant
No. 61822201, 62076017 and U1811463.

REFERENCES

[1] Yongxin Tong, Lei Chen, and Cyrus Shahabi. Spatial crowdsourcing:
Challenges, techniques, and applications. PVLDB, 2017.

[2] Yongxin Tong, Zimu Zhou, Yuxiang Zeng, Lei Chen, and Cyrus Shahabi.
Spatial crowdsourcing: a survey. The VLDB Journal, 2020.

[3] Didi Chuxing, http://www.didichuxing.com/.
[4] Meituan, http://www.meituan.com/.
[5] Qian Tao, Yuxiang Zeng, Zimu Zhou, Yongxin Tong, Lei Chen, and

Ke Xu. Multi-worker-aware task planning in real-time spatial crowd-
sourcing. In DASFAA, 2018.

[6] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and
Ke Xu. A unified approach to route planning for shared mobility.
PVLDB, 2018.

[7] Dingxiong Deng, Cyrus Shahabi, and Ugur Demiryurek. Maximizing
the number of worker’s self-selected tasks in spatial crowdsourcing. In
GIS, 2013.

[8] Yu Li, Man Lung Yiu, and Wenjian Xu. Oriented online route
recommendation for spatial crowdsourcing task workers. In SSTD, 2015.

[9] Dingxiong Deng, Cyrus Shahabi, and Linhong Zhu. Task matching and
scheduling for multiple workers in spatial crowdsourcing. In GIS, 2015.

[10] Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, and Linhong Zhu.
Task selection in spatial crowdsourcing from worker’s perspective.
GeoInformatica, 2016.

[11] Huaxin Li, Haojin Zhu, Suguo Du, Xiaohui Liang, and Xuemin Sherman
Shen. Privacy leakage of location sharing in mobile social networks:
Attacks and defense. IEEE Transactions on Dependable and Secure
Computing, 2018.

[12] Natalia Marmasse and Chris Schmandt. Location-aware information
delivery with commotion. In HUC, 2000.

[13] Hien To, Cyrus Shahabi, and Li Xiong. Privacy-preserving online task
assignment in spatial crowdsourcing with untrusted server. In ICDE,
2018.

[14] Hien To, Gabriel Ghinita, and Cyrus Shahabi. A framework for
protecting worker location privacy in spatial crowdsourcing. PVLDB,
2014.

[15] Qian Tao, Yongxin Tong, Zimu Zhou, Yexuan Shi, Lei Chen, and Ke Xu.
Differentially private online task assignment in spatial crowdsourcing:
A tree-based approach. In ICDE, 2020.

[16] John Krumm. A survey of computational location privacy. Personal and
Ubiquitous Computing, 2009.

[17] Miguel E. Andrés, Nicolás Emilio Bordenabe, Konstantinos Chatzikoko-
lakis, and Catuscia Palamidessi. Geo-indistinguishability: differential
privacy for location-based systems. In CCS, 2013.

[18] Cynthia Dwork. Differential privacy. In ICALP, 2006.
[19] Leye Wang, Dingqi Yang, Xiao Han, Tianben Wang, Daqing Zhang, and

Xiaojuan Ma. Location privacy-preserving task allocation for mobile
crowdsensing with differential geo-obfuscation. In WWW, 2017.

[20] Yuxiang Zeng, Yongxin Tong, Lei Chen, and Zimu Zhou. Latency-
oriented task completion via spatial crowdsourcing. In ICDE, 2018.

[21] Yajun Wang and Sam Chiu-wai Wong. Two-sided online bipartite
matching and vertex cover: Beating the greedy algorithm. In ICALP,
2015.

[22] Yongxin Tong, Jieying She, Bolin Ding, Libin Wang, and Lei Chen.
Online mobile micro-task allocation in spatial crowdsourcing. In ICDE,
2016.

[23] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Marco
Stronati. Location privacy via geo-indistinguishability. ACM SIGLOG
News, 2015.

[24] Changsha Ma and Chang Wen Chen. Nearby friend discovery with
geo-indistinguishability to stalkers. In FNC, 2014.

[25] Yongxin Tong, Libin Wang, Zimu Zhou, Bolin Ding, Lei Chen, Jieping
Ye, and Ke Xu. Flexible online task assignment in real-time spatial data.
PVLDB, 2017.

[26] Leyla Kazemi and Cyrus Shahabi. Geocrowd: enabling query answering
with spatial crowdsourcing. In GIS, 2012.

[27] Leyla Kazemi, Cyrus Shahabi, and Lei Chen. Geotrucrowd: trustworthy
query answering with spatial crowdsourcing. In GIS, 2013.

[28] Hien To, Cyrus Shahabi, and Leyla Kazemi. A server-assigned spatial
crowdsourcing framework. ACM Transactions on Spatial Algorithms
and Systems, 2015.

[29] An Liu, Weiqi Wang, Shuo Shang, Qing Li, and Xiangliang Zhang.
Efficient task assignment in spatial crowdsourcing with worker and task
privacy protection. GeoInformatica, 2017.

[30] Yongxin Tong, Yuxiang Zeng, Bolin Ding, Libin Wang, and Lei Chen.
Two-sided online micro-task assignment in spatial crowdsourcing. IEEE
Transactions on Knowledge and Data Engineering, 2019.

[31] Bruce L Golden, Larry Levy, and Rakesh Vohra. The orienteering
problem. Naval research logistics, 1987.

[32] Yan Zhao, Yang Li, Yu Wang, Han Su, and Kai Zheng. Destination-
aware task assignment in spatial crowdsourcing. In CIKM, 2017.

[33] Yuxiang Zeng, Yongxin Tong, and Lei Chen. Last-mile delivery
made practical: An efficient route planning framework with theoretical
guarantees. PVLDB, 2019.

[34] Yuxiang Zeng, Yongxin Tong, Yuguang Song, and Lei Chen. The simpler
the better: An indexing approach for shared-route planning queries.
PVLDB, 2020.

18

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:28:30 UTC from IEEE Xplore. Restrictions apply.

		2021-07-06T06:40:37-0400
	Preflight Ticket Signature

