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Abstract—Federated learning (FL) has emerged as a popular
machine learning paradigm recently. Compared with traditional
distributed learning, its unique challenges mainly lie in commu-
nication efficiency and non-IID (heterogeneous data) problem.
While the widely adopted framework FedAvg can reduce com-
munication overhead significantly, its effectiveness on non-IID
data still lacks exploration. In this paper, we study the non-
IID problem of FL from the perspective of domain adaptation.
We propose a distribution regularization for FL on non-IID
data such that the discrepancy of data distributions between
clients is reduced. To further reduce the communication cost,
we devise two novel distributed learning algorithms, namely
rFedAvg and rFedAvg+, for efficiently learning with the distribu-
tion regularization. More importantly, we theoretically establish
their convergence for strongly convex objectives. Extensive
experiments on 4 datasets with both CNN and LSTM as learning
models verify the effectiveness and efficiency of the proposed
algorithms.

I. INTRODUCTION

Federated learning (FL) [1]–[3] is a new distributed machine
learning paradigm that collaboratively trains models among
multiple clients while the raw training samples possessed
by each client cannot be shared. Federated learning has a
wide range of real-world applications. For example, a large
number of smartphone users can jointly train accurate next-
word prediction models (a.k.a cross-device FL) [4], whereas
enterprises or hospitals that do not have enough data for
learning can cooperate to train federated models under privacy
regulations (a.k.a cross-silo FL) [3].

Compared with traditional distributed learning, federated
learning faces unique technical challenges. In federated
learning, the data samples held by each client may not come
from the same distribution (not independent and identically
distributed, or non-IID). Also, the bandwidth and the number
of interactions from the clients to the central server can be lim-
ited. These problems can severely deteriorate the effectiveness
and efficiency of distributed stochastic gradient descent (SGD)
algorithms, the mainstream solutions for distributed machine
learning.

FedAvg [1] is a well-known framework for communication-
efficient federated learning. It implements distributed SGD
with client sampling and local training, where a subset of
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Fig. 1: Feature visualization of FedAvg on CIFAR10 with t-
SNE. The features are 512 dimension output vectors of the last
FC layer from training data. The circles, triangles and squares
refer to label class 0, 1 and 2 in CIFAR10. (a), (b) and (c)
shows the features of 3 clients in IID partition. (d), (e) and (f)
are based on non-IID partition where the majority of data in
client #2, #4 and #6 comes from class 0, 1 and 2 respectively.
The black lines represent possible classifiers.

clients run multiple steps of local gradient descent and the
server aggregates the local models by taking the weighted
average of their model parameters. Although FedAvg shows
success in improving communication efficiency of FL, it can
be ineffective on non-IID data [5]–[8]. This is because the
simple averaging of highly divergent models trained on non-
IID data may lead to significant utility loss. Multiple studies
[6], [8]–[10] have proposed remedies to improve the effective-
ness of FedAvg on non-IID data. However, they mostly halt at
theoretical analysis under strong assumptions [11], [12], and
some [6], [7] even achieve lower accuracy than vanilla FedAvg
on certain benchmarks (see Sec. VI).

In this work, we explore federated learning on non-IID
data in the lens of domain adaptation. Fig. 1 visualizes the
features of the last fully connected (FC) layer generated by
FedAvg from 3 clients on both IID and non-IID division of
CIFAR10 [13]. We observe that the feature distributions from



different clients are consistent on IID data, which can produce
consistent models (the black lines in Fig. 1a, Fig. 1b, Fig. 1c)
and thus the averaging of model is effective. However, on non-
IID data, the feature distributions differ from each other so the
local classification models may have discrepancies (the black
lines in Fig. 1d, Fig. 1e, Fig. 1f). Simple averaging of them
causes confusion and drop in classification accuracy. Note that
the non-IID data problem in federated learning resembles the
distribution shift problem in domain adaptation, where the
distributions between the source domain and target domain
are different. Inspired by the solutions in domain adaptation to
deal with distribution shifts between the source and the target
domain, we propose a distribution regularization for federated
learning on non-IID data such that the discrepancy of data
distributions between clients is reduced. The rationale is that
to minimize the discrepancy in data distributions between any
two clients so that their local models tend to have consistent
feature representations.

However, it is infeasible to directly apply FedAvg to fed-
erated learning with distribution regularization. This is be-
cause the regularizer measures the pairwise distances between
clients, whose calculation requires communication between
clients in every round of gradient descent. This will break
the local training steps in FedAvg, and also bring high
communication cost. Accordingly, we devise new distributed
optimization algorithms based on FedAvg that can efficiently
approximate the distribution regularizer and we also provide
theoretical analysis to support its convergence. The main
contributions of this work are summarized as follows.

• We propose the first distribution regularizer to explicitly
account for the non-IID problem in federated learning.

• We devise two new communication-efficient learning
algorithms (rFedAvg and rFedAvg+) for federated learn-
ing with distribution regularization. More importantly,
we theoretically establish their convergence for strongly
convex objectives.

• Evaluations on 4 benchmarks (MNIST [14], CIFAR10
[13], Sent140 [15] and FEMNIST [16]) with different
models (CNN and LSTM) show that our proposed algo-
rithms outperform the state-of-the-arts [6]–[8] in terms
of communication rounds and test accuracy on non-IID
data.

II. RELATED WORK

Federated learning [1], [2] was first proposed for
communication-efficient collaborative learning among android
users and has many applications on image/text data [17],
[18] and spatial data [19]–[24]. The widely recognized core
issues in FL include communication efficiency, learning on
non-IID data, privacy & security, etc. [3], [25], [26]. In this
paper, we focus on communication-efficient federated learning
algorithms on non-IID data, where our idea is inspired by
techniques from domain adaptation.
Communication Efficiency in Federated Learning. Early
research on FL optimizes the communication efficiency in a
distributed learning setting. The most recognized framework is

FedAvg [1], which applies client sampling and local training
to reduce the communication overhead. Follow-ups such as [2]
introduce more compression-based strategies like quantization,
random rotations and sub-sampling. Li et al. [27] provide an
interesting insight to improve the efficiency and reduce the
communication cost. Synopses techniques like sketch are also
popular in compressing gradients in FL [28], [29].

Our proposed learning algorithms are built upon FedAvg,
i.e. applying local training steps to reduce communication
rounds. Nevertheless, our algorithms are tailored for optimiz-
ing the federated learning objective with distribution regular-
izer, such that they outperform FedAvg in case of non-IID
data.

Non-IID in Federated Learning. The non-IID problem is
common in FL, since the samples held by different clients may
be collected in different context e.g. environments and devices.
The naive FedAvg easily suffers from the non-IID problem [5].
Many studies [6], [8]–[10], [12], [30], [31] have explored to
deal with the non-IID data problem by modifying FedAvg in
various ways. Some rectify the distribution shift in clients by
using variance reduction [8] or adding proximal terms [6] in
the local updating process. Others change the global objective
function by considering the fairness in heterogeneous networks
[7] or assuming a structured affine distribution shift in clients’
data [12]. Additional methods include adaptive sampling of
clients [9], [10] and new aggregation strategies at the server
[9], [30], [31]. An experimental study of these methods in
cross-silo setting is made in [32].

In our work, we follow the methods on changing the global
objective function [7], [12] and explicitly account for the non-
IID problem by adding a distribution regularizer. Unlike [7]
which aims to improve the performance of the worst clients
while preserving similar overall performance of FedAvg, and
[12] which introduces worst disturbance to make the learned
overall model more robust, this approach can improve the
overall performance and performance of worst nodes together
with the distribution regularization and holds the potential to
generalize to more than supervised learning tasks. We further
devise two communication-efficient algorithms to cope with
this new regularizer and empirically show that our method
outperforms the state-of-the-arts [6]–[8].

Domain Adaptation. Domain Adaptation (DA) [33] aims to
transfer the knowledge learned from a source domain to a
target domain with different data distributions. The key idea is
to reduce distribution discrepancy by finding domain-invariant
structures [34]. Prior solutions [35]–[37] mainly focus on
minimizing a distance metric of domain discrepancy like the
maximum mean discrepancy distance. More recent proposals
[38], [39] use deep neural networks to learn transferable
features, taking the minimization of domain discrepancy as
an adaptation regularizer in the empirical risk minimization
problem. Adversarial learning has also emerged as an effective
solution to DA [40], [41].

Domain adaptation in the federated learning setting was
first considered in [42]. It aims to generalize the model to



new target devices in different domains while the distributed
data sources are still assumed to be IID. In this work, we
extend the idea of domain adaptation by taking all the clients
in FL as both the sources and targets to minimize the overall
distribution discrepancy. We further devise distributed learning
algorithms to efficiently calculate the regularizer and provide
convergence analysis.

III. FEDERATED LEARNING WITH DISTRIBUTION
REGULARIZATION

In this section, we first introduce the standard federated
learning setting (Sec. III-A) and then present our distribution
regularization dedicated for federated learning on non-IID data
(Sec. III-B).

A. Standard Federated Learning

We consider the following general federated learning model
with N clients [1], [2], [6]–[8], [11]:

minw

{
F (w) ≜

N∑
k=1

pkFk(w)

}
. (1)

where pk is the weight of client k with
∑N

k=1 pk = 1 and
Fk(w) is the local objective for client k with model parameter
w. For general supervised learning, the local objective is to
minimize the empirical risk, i.e. Fk(w) =

∑nk

j=1 l(w, xk,j),
where nk is the number of samples held by client k. Without
loss of generality, we assume the loss function of each client
is the same. Let the samples owned by client k be (xk,yk)
= ((xk,1, yk,1), (xk,2, yk,2), · · · , (xk,nk

, yk,nk
)).

In federated learning, the data partitions {(xk,yk)} cannot
be shared among parties. Instead, only intermediate results are
communicated to a central server for optimization. In addition,
the samples from different parties can be non-independent and
identical distributed (non-IID). Therefore, a good federated
learning algorithm should optimize the objective in Eq. (1)
with minimal communication cost and work in case of non-
IID data.

Our solution is built upon FedAvg [1], a popular
communication-efficient framework for federated learning.
However, the FedAvg framework does not address the non-IID
data problem. We explicitly account for learning on non-IID
data by introducing a distribution regularization, as explained
below.

B. Distribution Regularization

We assume that the samples are from the same distribution
for each client but the distributions vary across clients [8],
[11], [12]. This is reasonable because data generated from the
same client usually undergo the same physical- and device-
dependent context, whereas such context varies across clients.
However, we do not restrict the difference in distributions as
affine shifts as in [12].

For effective learning on differently distorted data distribu-
tions, we propose to project these distributions to a common
space where the distances among the projected distributions
are minimized. The idea has been widely adopted in domain

adaptation [35], [36], [38], [39] but we are the first work to
apply it for the non-IID problem in federated learning. Specif-
ically, for two clients i and j with different marginal distribu-
tions P (xi) ̸= P (xj), we aim to find a mapping ϕ(·) which
projects the two marginal distributions to a reproducing Kernel
Hilbert Space (RKHS) such that P (ϕ(xi)) ≈ P (ϕ(xj)). As a
proof-of-concept, we adopt the widely used empirical estimate
of maximum mean discrepancy (MMD) [35] as the distance
between the data distributions of clients i and j:

MMD(xi,xj) =

∣∣∣∣∣
∣∣∣∣∣ 1ni

ni∑
k=1

ϕ(xi,k)−
1

nj

nj∑
k=1

ϕ(xj,k)

∣∣∣∣∣
∣∣∣∣∣. (2)

In the empirical study of this work, we use a deep neural
network to approximate ϕ. Accordingly, we can reformulate
the standard federated learning model Eq. (1) by adding a
new local objective that explicitly captures the pairwise data
distribution discrepancy between clients.

minw

{
F (w) =

N∑
k=1

pk(fk(w) + λrk(w))

}
. (3)

where

fk(w) =

nk∑
j=1

l(w, xk,j). (4)

and

rk(w) =
1

N − 1

∑
j ̸=k

d2 (ϕ(xk; w̃, ), ϕ(xj ; w̃)). (5)

Here d(·, ·) is the MMD distance between two clients, w̃ is
parameter of ϕ(·) which denotes the parameters of fk(w)
except for the output layer and λ is the weight coefficient
which also works as the normalization factor of rk.

We note that optimizing Eq. (3) demands new federated
learning algorithms due to the following two reasons. First,
naive adoption of the generic FedAvg framework [1] can
lead to high communication cost due to the distribution
regularization term. Also, there is no guarantee on convergence
when optimizing Eq. (3). As next, we propose new learning
algorithms for federated learning with distribution regulariza-
tion that enjoy low communication cost (see Sec. IV) and
guarantees to converge (see Sec. V).

IV. LEARNING ALGORITHMS

The optimization objective in Eq. (3) consists of two parts:
the standard federated learning objective and the distribution
regularization term. The standard federated learning objective
can be optimized by communication-efficient algorithms such
as FedAvg [1]. However, exact calculation of the regularization
term requires extra communication between every pair of
clients to compute the pairwise MMD distances, which incurs
at least O(N2) of communication overhead in a single round.

We propose to reduce the communication cost by calculating
the regularization term approximately. The idea is to use
delayed distribution mapping ϕ(·) rather than the up-to-date
one in computing the regularization. We first review the



FedAvg framework (Sec. IV-A) for the standard federated
learning objective and then present two new communication-
efficient algorithms (Sec. IV-B and Sec. IV-C) for federated
learning with distribution regularization.

A. Preliminaries: FedAvg

FedAvg [1] is a recognized framework for communication-
efficient optimization on the standard federated learning ob-
jective in Eq. (1). It is based on synchronous distributed large-
batch SGD, which has two main steps: (1) local updating
by clients and (2) global aggregating by the server. In each
round t, a subset of clients is sampled with sample ratio SR
among which client k will perform local mini-batch SGD
with learning rate ηt: wk

t+1 ← wk
t − ηt · ∇Fk with batch

size B for E steps. Afterwards, the central server aggregates
the local models by taking a weighted average of them, i.e.,
wt+1 =

∑K
k=1 pkw

k
t+1. In FedAvg, the sample ratio SR, the

number of local steps E and the mini-batch size B together
control the computation and communication overhead. With
SR = 1 and E = 1, FedAvg is reduced to the standard
synchronous distributed SGD.

Our proposed algorithms are built upon the FedAvg frame-
work, i.e. local updating with SGD and global model av-
eraging. However, our algorithms are tailored for federated
learning with distribution regularization by using a delayed
mapping to update the regularization term, as explained below.

B. rFedAvg Algorithm

Basic Idea. As mentioned before, directly applying FedAvg
results in calculating the distances || 1nk

∑nk

j=1 ϕt(xk,j) −
1

nk′

∑nk′
j=1 ϕt(xk′,j)||2 between clients k and k′ in each round

t. The basic idea of rFedAvg is to use a delayed mapping to
avoid such all-round communications. Specifically, we define
a local mapping operator as δkt = 1

nk

∑nk

j=1 ϕt(xk,j) so that
the distance becomes ||δkt − δk

′

t ||2. A delayed mapping refers
to that, for client k at round t, we use the local mapping of
k′ at some previous round t′ < t, i.e., δk

′

t′ to calculate their
distance. The synchronization of local mappings δ follows that
in FedAvg, i.e., synchronizing in every E local steps.
Algorithm Details. Algorithm 1 illustrates the rFedAvg al-
gorithm. Note that the number of iteration t (i.e., steps of
gradient descent) in FedAvg does not differ local and global
steps. We use an extra notion c to represent the global
communication (synchronization) steps to avoid ambiguity. At
each communication step, the number of iteration t is t = c·E.
The algorithm runs for C communication rounds in total,
which equals C · E iterations.

In the ith local training steps after a global step c, client
k calculates the gradient F ′

k, where F ′
k(w, w̃0) ≜ fk(w) +

λr′k(w, w̃t0), r′k(w, w̃t0) ≜
∑

j ̸=k d
2(ϕ(w̃, xk), ϕ(w̃t0 , xj)).

The delayed maps δcE is broadcast by the server at global step
c and thus is delayed for i steps. After the local training, each
client sends their δk(c+1)E as well as the local model parameters
to the server for aggregation and following communications.
Remarks. The rFedAvg algorithm has two shortcomings.

Algorithm 1: rFedAvg Algorithm
input : C: communication rounds; E: local steps; η:

learning rate; (pk): weights of clients;λ:
objective weight parameter.

output: wC·E : the final global model.
1 Server initializes w0, δ0;
2 for c = 0, 1, · · · , C − 1 do
3 Server sends wc·E , δc·E to each client;
4 for Client k = 1, 2, · · · , N do
5 wk

cE ← wcE ;
6 for each local epoch i = 1, 2, · · · , E do
7 t← c · E + i− 1;
8 Randomly samples ξkt from local data of

client k;
9 wk

t+1 ← wk
t − ηt · ∇F ′

k(w̃
k
t , ξ

k
t , δcE);

10 δk(c+1)E ←
1
nk

∑nk

j=1 ϕ(w̃
k
cE , xk,j);

11 Client sends wk
(c+1)E , δk(c+1)E to the server;

12 Server updates w(c+1)E ←
∑N

k=1 pkw
k
(c+1)E ;

13 Server updates
δ(c+1)E ← (δ1(c+1)E , δ

2
(c+1)E , · · · , δ

N
(c+1)E)

14 return wC·E

• Assume δ is a d-dimension vector. Then the communica-
tion overhead in a single round is at least O(dN2) since
the server has to broadcast a copy of N · d-dimension
vector to N clients.

• Each delayed δk
′

cE is calculated with each client’s local
model parameter wk′

cE , which may aggravate the discrep-
ancy between clients.

These drawbacks lead us to devise an improved algorithm:
rFedAvg+, which is explained below.

C. rFedAvg+ Algorithm

Basic Idea. To further reduce the communication cost and to
avoid the inconsistent calculation of mappings, we propose the
rFedAvg+ algorithm, which modifies rFedAvg in the following
aspects:

• We add a synchronization step in each round to obtain
consistent global models before calculating the mappings.

• We reduce the communication overhead by taking the
average of all δk

′
with k′ ̸= k rather than calculate their

distances.

Algorithm Details. Algorithm 2 illustrates the rFedAvg+
algorithm. We mainly describe the two modifications in details.
Firstly, we allow the server and clients to communicate twice
in each communication round. At the first time, the server
and the clients only synchronize the global model. At the
second time, each client calculates δk(c+1)E with the global
model and then sends it back to the server. So the clients can
reach consensus on the models to calculate their distances. As
we will see in Theorem 1 and Theorem 2, this modification
can decrease the constant term in convergence rate. Secondly,



Algorithm 2: rFedAvg+ Algorithm
input : C: communication rounds; E: local steps; η:

learning rate; (pk): weights of clients;λ:
objective weight parameter.

output: wC·E : the final global model.
1 Server initializes w0, δ0 = (δ−1

0 , · · · δ−N
0 );

2 Server sends w0 to each client ;
3 for c = 0, 1, · · · , C − 1 do
4 Server sends δ−k

c·E to client k ;
5 for Client k = 1, 2, · · · , N do
6 wk

cE ← wcE ;
7 for each local epoch i = 1, 2, · · · , E do
8 t← c · E + i− 1;
9 Randomly samples ξkt from local data of

client k;
10 wk

t+1 ← wk
t − ηt · ∇F ′

k(w̃
k
t , ξ

k
t , δ

−k
cE );

11 Client sends wk
(c+1)E to the server;

12 Server updates w(c+1)E ←
∑N

k=1 pkw
k
(c+1)E ;

13 Server sends w(c+1)E to each client ;
14 for Client k = 1, 2, · · · , N do
15 δk(c+1)E ←

1
nk

∑nk

j=1 ϕ(w̃(c+1)E , xk,j);
16 Client sends δk(c+1)E to the server ;

17 for k = 1, 2, · · · , N do
18 Server updates δ−k

(c+1)E ←
1

N−1

∑
j ̸=k δ

j
(c+1)E ;

19 return wC·E

the server will use the average of δ of clients rather than
the N -dimension vector of δ. Therefore the communication
overhead is reduced from O(dN2) to O(dN). In this case, the
objective of rk will change from rk = 1

N−1

∑
j ̸=k ||δk−vj ||2

to r̃k = ||δk − 1
N−1

∑
j ̸=k δ

j ||2. Note that rk and r̃k have the
same gradients with respect to vk so the convergence can still
hold, while r̃k can also be considered as a tight lower bound
of rk.

Remarks. rFedAvg+ reduces the total communication over-
head from O(dN2) to O(dN), although the clients need to
communicate with the server twice in each training round.
As we will show in the evaluations, rFedAvg+ generally
outperforms rFedAvg in terms of test accuracy, and it is also
more efficient in training time per round. It is also worth
mentioning that although we describe rFedAvg and rFedAvg+
by assuming full participation of clients, our empirical studies
show that they are also effective in case of partial par-
ticipation. However, the proposed methods still have some
limitations. For example, they can only alleviate the data
heterogeneity problem but cannot fully address it especially
in case of extreme non-IID (i.e. with outliers). In this case, a
potential remedy is to eliminate the outliers first, and then our
approach will be feasible.

V. THEORETICAL ANALYSIS

This section theoretically analyzes the convergence of rFe-
dAvg and rFedAvg+ on non-IID data.

A. Notations and Assumptions

Recall that our objective function, i.e., Eq. (3) is

minw{F (w) ≜
N∑

k=1

pkFk(w)}.

where Fk(w) ≜ fk(w) + λrk(w), fk(w) =
∑nk

j=1 lj(w, xkj),
rk(w) =

∑
j ̸=k d

2(ϕ(w̃, xk), ϕ(w̃, xj)), w = (w̃, ˜̃w). w̃ is
parameter of ϕ and ˜̃w is parameter of the classification model.

From [11], the process of gradient descent in FedAvg can
be represented by the following sequence.

vkt+1 ≜ wk
t − ηt∇Fk(w

k
t , ξ

k
t ).

wk
t+1 ≜

{
vkt+1 if E ∤ (t+ 1)∑N

k=1 pkv
k
t+1 if E|(t+ 1)

where wk
t is the model parameter of client k at tth round.

It also defines two virtual sequences: v̄t ≜
∑

k pkv
k
t , w̄t ≜∑

k pkw
k
t .

In our methods, the gradient ∇Fk is inaccurate due to the
approximated calculation of rk. We use the apostrophe on
the initial symbols to represent the approximation. Then the
gradient descent process in rFedAvg and rFedAvg+ is

v′
k
t+1 ≜ w′k

t − ηt∇F ′
k(w

′k
t , ξ

k
t , w̃0).

w′k
t+1 ≜

{
v′kt+1 if E ∤ (t+ 1)∑N

k=1 pkv
′k
t+1 if E|(t+ 1)

where F ′
k(w, w̃0) ≜ fk(w) + λr′k(w, w̃t0), r′k(w, w̃t0) ≜∑

j ̸=k d2(ϕ(w̃, xk), ϕ(w̃t0 , xj)).
We also define two virtual sequences: v̄′t ≜

∑
k pkv

′k
t , w̄′

t ≜∑
k pkw

′k
t .

We make the following assumptions.
A1. F1, F2, ..., FN are all L − smooth and µ −

strongly convex.
A2. E∥∇Fk(w

k
t , ξ

k
t )−∇Fk(w

k
t )∥2 ≤ σ2

k.
A3. E∥∇Fk(w

k
t , ξ

k
t )∥2 ≤ G2.

Note that A1, A2 and A3 are used in the convergence
analysis of FedAvg [11]. We further make assumptions on
the mapping ϕ: its gradient and diameter are bounded and the
mapping is convex.

A4. ∥∇ϕ(w̃, x)∥2 ≤ H2, E∥∇F ′
k(w

k
t , ξ

k
t )∥2 ≤ G′2.

A5. maxi̸=j∥ϕ(w̃, xi)− ϕ(w̃, xj)∥2 ≤ τ2.
A6. ϕ is a convex mapping.



B. Convergence Results

We first review the convergence of FedAvg on non-IID data
in Lemma 1, then derive the convergence of rFedAvg+ in
Theorem 1, and finally extend the conclusion to rFedAvg in
Theorem 2.

According to [11], the gradient descent in FedAvg has a
convergence rate of O(1/T ).

Lemma 1. (Theorem 1. in [11]) Assume A1, A2 and A3.
Choose κ = L/µ, γ = max(8κ,E), β = 2

µ , v =

max( β2B
βµ−1 , (γ + 1)E∥w̄1 − w∗∥2) and the learning rate

ηt =
2

µ(γ+t) . Then

E∥w̄2
t − w∗∥2 ≤ v

t+ γ
.

Then by Assumption 3 and 4, the deviation between the
local model wk

t (w
′k
t ) and the global model wt0 can be bounded

by local steps E and learning rate ηt0 .

Lemma 2. Assume A3 and A4. Then

E∥wk
t − wt0∥2 ≤ E2η2t0G

2,E∥w′k
t − wt0∥2 ≤ E2η2t0G

′2.

Proof. By the convexity of ∥·∥2:
E∥wk

t − wt0∥2 = E∥
∑t−1

t=t0
ηt∇Fk(w

k
t , ξ

k
t )∥2 ≤

E
∑t−1

t=t0
η2tE∥∇Fk(w

k
t , ξ

k
t )∥2 ≤ E2η2t0G

2, where t− t0 < E
and E|t0.

E∥w′k
t − wt0∥2 = E∥

∑t−1
t=t0

ηt∇F ′
k(w

′k
t , ξ

k
t )∥2 ≤

E
∑t−1

t=t0
η2tE∥∇F ′

k(w
k
t , ξ

k
t )∥2 ≤ E2η2t0G

′2.

Lemma 1 shows that w̄t can converge to w∗. However, w̄t

represents the model in FedAvg. In our methods, the local
model cannot update in every local epoch. Next we prove that
the difference between v̄′t and v̄t can be bounded by O(η2t0).

Lemma 3. Assume A4, A5, A6 and ηt+1 ≤ ηt. Then

E∥v̄′t − v̄t∥2 ≤ η2t0C1 + η4t0C2.

where C1 =
∑

k pk(2E
2(G2 + G′2 + 2GG′) + 16G2+

32m2H2τ2) and C2 =
∑

k 16pkm
2E2H4(3G2 +G′2)

Proof.
E∥v̄′t+1 − v̄t+1∥2 = E∥

∑
k

pk(v
′k
t+1 − vkt+1)∥2

≤E
∑
k

pk∥v′
k
t+1 − vkt+1∥2

=E
∑
k

pk∥w′k
t − wk

t + ηt∇F ′
k(w

′k
t , ξ

′k
t , w̃t0)

− ηt∇Fk(w
k
t , ξ

k
t )∥2

≤2(
∑
k

pkE∥w′k
t − wk

t ∥2+

η2t
∑
k

pkE∥∇F ′
k(w

′k
t , ξ

′k
t , w̃t0)−∇Fk(w

k
t , ξ

k
t )∥2). (6)

By Lemma 2, we can get:

E∥w′k
t − wk

t ∥2 = E∥w′k
t − wt0 + wt0 − wk

t ∥2

≤E∥w′k
t − wt0∥2 + E∥wt0 − wk

t ∥2+
2E∥w′k

t − wt0∥ · E∥wt0 − wk
t ∥

≤E2η2t0(G
2 +G′2 + 2GG′). (7)

For the second term in (6):

E∥∇F ′
k(w

′k
t , ξ

′k
t , w̃t0)−∇Fk(w

k
t , ξ

k
t )∥2

=E∥∇F ′
k(w

′k
t , ξ

′k
t , w̃t0)−∇F ′

k(w
k
t , ξ

k
t , w̃t0)+

∇F ′
k(w

k
t , ξ

k
t , w̃t0)−∇Fk(w

k
t , ξ

k
t )∥2

≤2(E∥∇F ′
k(w

′k
t , ξ

′k
t , w̃t0)−∇F ′

k(w
k
t , ξ

k
t , w̃t0)∥2︸ ︷︷ ︸

B1

+

E∥∇F ′
k(w

k
t , ξ

k
t , w̃t0)−∇Fk(w

k
t , ξ

k
t )∥2︸ ︷︷ ︸

B2

). (8)

To bound B1, we rewrite B1 as:

E∥∇F ′
k(w

′k
t , ξ

k
t , w̃t0)−∇F ′

k(w
k
t , ξ

k
t , w̃t0)∥2

=E∥∇fk(w′k
t , ξ

′k
t )−∇fk(wk

t , ξ
k
t ) + λ∇r′k(w′k

t , w̃t0)−
λ∇r′k(wk

t , w̃t0)∥2

≤2(E∥∇fk(w′k
t , ξ

′k
t )−∇fk(wk

t , ξ
k
t )∥2+

λ2E∥∇r′k(w′k
t , w̃t0)−∇r′k(wk

t , w̃t0)∥2)
≤4G2 + 4λ2(E∥∇r′k(w′k

t , w̃t0)∥2 + E∥∇r′k(wk
t , w̃t0)∥2).

(9)

To bound ∥∇r′k(w′k
t , w̃t0)∥2, we rewrite it as:

E∥∇
∑
j ̸=k

d2(ϕ(w̃′k
t , xk), ϕ(w̃t0 , xj))∥2

≤m
∑
j ̸=k

E∥∇d2(ϕ(w̃′k
t , xk), ϕ(w̃t0 , xj))∥2

=m
∑
j ̸=k

E∥(ϕ(w̃′k
t , xk)− ϕ(w̃t0 , xj))∇ϕ(w̃′k

t , xk)∥2

≤m2H4E∥w′k
t − wt0∥2 ≤ m2E2G′2H4η2t0 .

where the third inequality results from the convexity of ϕ and
the last inequality from Lemma 2.
In a similar way, we can get a bound for E∥∇r′k(wk

t , w̃t0)∥2:

∥∇r′k(wk
t , w̃t0)∥2 ≤ m2E2H4G2η2t0 . (10)



We next bound B2, which can be rewritten as

E∥∇F ′
k(w

k
t , ξ

k
t , w̃t0)−∇Fk(w

k
t , ξ

k
t )∥2

=E∥∇fk(wk
t , ξ

k
t )−∇fk(wk

t , ξ
k
t ) +∇r′k(wk

t , w̃t0)−∇rk(wk
t )∥2

=E∥∇r′k(wk
t , w̃t0)−∇rk(wk

t )∥2

≤4m
∑
j ̸=k

E∥(ϕ(w̃k
t , xk)− ϕ(w̃t0 , xj))∇ϕ(w̃k

t , xk)−

(ϕ(w̃k
t , xk)− ϕ(w̃k

t , xj))(∇ϕ(w̃k
t , xk)−∇ϕ(w̃k

t , xj)∥2

=4m
∑
j ̸=k

E∥(ϕ(w̃k
t , xj)− ϕ(w̃t0 , xj))∇ϕ(w̃k

t , xk)+

(ϕ(w̃k
t , xk)− ϕ(w̃k

t , xj))∇ϕ(w̃k
t , xj)∥2

≤8m2E(∥(ϕ(w̃k
t , xj)− ϕ(w̃t0 , xj))∇ϕ(w̃k

t , xk)∥2+
E∥(ϕ(w̃k

t , xk)− ϕ(w̃k
t , xj))∇ϕ(w̃k

t , xj)∥2)
≤8m2H2(τ2 + E∥ϕ(w̃k

t , xj)− ϕ(w̃t0 , xj)∥2). (11)

Since ϕ is a convex mapping, therefore:

E∥ϕ(w̃k
t , xj)− ϕ(w̃t0 , xj)∥2

≤E∥w̃k
t − w̃t0∥2 · ∥∇ϕ(w̃k

t , xj)∥2 ≤ E2η2t0G
2H2. (12)

By combining (6)-(12), it follows that:

E∥v̄′t+1 − v̄t+1∥2 ≤
∑
k

2pkE
2η2t0(G

2 +G′2 + 2GG′)+

4η2t
∑
k

pk(4G
2 + 4λ2m2E2G′2H4η2t0 + 4λ2m2E2H4G2η2t0+

8m2H2(τ2 + E2η2t0G
2H2) ≤ η2t0C1 + η4t0C2.

where the last inequality is from ηt0 ≤ ηt.

By Lemma 1 and 3, we have the convergence result for
rFedAvg+.

Theorem 1. Let Assumptions A1 - A6 hold and
L, µ, σk, G,G′, τ be defined therein. Choose κ = L

µ ,
γ = max(8κ,E), v′ = 2v + 8C1

µ2 + 32C2

µ4 and the learning
rate ηt =

2
µ(γ+t) . Then for rFedAvg+:

E[F (w̄′
t)− F ∗] ≤ L

2

v′

t+ γ − E
.

Proof. Let ∆t = E∥w̄′
t − w∗∥2. From Lemma 1 and Lemma

3, it follows that:

∆t = E∥v̄′t − v̄t + v̄t − w∗∥2 ≤ 2E(∥v̄′t − v̄t∥2 + ∥v̄t − w∗∥2)

≤ 2v

t+ γ
+

8C1

µ2(t+ γ − E)2
+

32C2

µ4(t+ γ − E)4

≤ v′

t+ γ − E
.

Then by the L-smoothness of F (·):

E[F (w̄′
t)− F ∗] ≤ L

2
∆t ≤

L

2

v′

t+ γ − E
.

For rFedAvg, the regularization r′k is computed with each
client’s local model parameter w̃k′

cE rather than the global
parameter wt0 .

Theorem 2. Let Assumptions A1 - A6 hold and
L, µ, σk, G,G′, τ be defined therein. Choose κ = L

µ ,
γ = max(8κ,E), v′ = 2v + 8C1

µ2 + 32C3

µ4 and the learning
rate ηt =

2
µ(γ+t) . Then for rFedAvg:

E[F (w̄′
t)− F ∗] ≤ L

2

v′

t+ γ − E
.

where

C3 =
∑
k

64pkm
2E2H4(4G2 +G′2 + 2λ2(2G2 + 3G′2)).

Proof. The only difference is to replace ϕ(w̃t0 , xj) with
ϕ(

˜
v′jt0 , xj). (wj is the local parameter in client j)

Similar to Lemma 2, we can get:

E∥ṽ′jt0 − wt0−t∥2 ≤ E2η2t0−tG
′2 ≤ 4E2η2t0G

′2 (13)

E∥w̃′k
t − wt0−t∥2 ≤ 4E2η2t0−tG

′2 ≤ 16E2η2t0G
′2. (14)

By combining (13) and (14), we can bound ∥∇r′k(w′k
t ,

˜
v′jt0)∥

2:

E∥∇r′k(w′k
t ,

˜
v′jt0)∥

2 ≤ m2H4E∥w′k
t − vj

′

t0∥
2

≤ m2H4E(∥w′k
t − wt0−t∥2 + ∥v′

j
t0 − wt0−t∥2)

≤ 20m2E2G′2H4η2t0 . (15)

In a similar way:

E∥∇r′k(wk
t , v

′j
t0)∥

2 ≤ 4m2E2H4η2t0(4G
2 +G′2). (16)

Since ϕ is a convex mapping, therefore:

E∥ϕ(w̃k
t , xj)− ϕ(ṽ′

j

t0 , xj)∥2

≤E∥w̃k
t − ṽ′

j

t0∥
2 · ∥∇ϕ(w̃k

t , xj)∥2 ≤ 4E2H2η2t0(4G
2 +G′2).

(17)

By combining (6)-(8),(11),(15)-(17), it follows that:

E∥v̄′t+1 − v̄t+1∥2 ≤
∑
k

2pkE
2η2t0(G

2 +G′2 + 2GG′)+

4η2t
∑
k

pk(4G
2 + 80λ2m2E2G′2H4η2t0 + 16λ2m2E2H4η2t0

(4G2 +G′2) + 8m2H2(τ2 + 4E2η2t0H
2(4G2 +G′2))

≤ η2t0C1 + η4t0C3.

Let ∆t = E∥w̄′
t − w∗∥2. From Lemma 1, it follows that:

∆t = E∥v̄′t − v̄t + v̄t − w∗∥2 ≤ 2E(∥v̄′t − v̄t∥2 + ∥v̄t − w∗∥2)

≤ 2v

t+ γ
+

8C1

µ2(t+ γ − E)2
+

32C3

µ4(t+ γ − E)4

≤ v′

t+ γ − E
. (18)

Then by the L-smoothness of F (·):

E[F (w̄′
t)− F ∗] ≤ L

2
∆t ≤

L

2

v′

t+ γ − E
.

Remarks. From Theorem 1 and Theorem 2, rFedAvg+ and
rFedAvg have a convergence rate of O(1/T ), which is the



same as FedAvg, yet the constant terms are larger. rFedAvg+
has a smaller constant term than rFedAvg (i.e., C2 < C3),
which verifies the effectiveness of double synchronization in
rFedAvg+. Our assumptions can be loosen by non-convexity
of fk, which is explored in [8]. As we mainly focus on
the convergence of rk, we do not discuss assumptions of
vanilla FedAvg (i.e., fk). Although our analysis is based on
strongly convex objectives and full participation of clients, we
empirically show that our methods outperform FedAvg with
non-convex models e.g. neural networks, and our method also
work with partial participation.

VI. EVALUATION

This section presents the evaluations on standard bench-
marks with non-IID data in both cross-device and cross-silo
settings.

A. Experimental settings

Compared Methods. We compare the following methods.
• FedAvg [1]: the vanilla Federated Averaging algorithm.
• FedProx [6]: it focuses on tackling the non-IID data and

partial participation problem together in FL.
• Scaffold [8]: it uses variance reduction to correct the

client drifts in FedAvg on non-IID data.
• q-FedAvg [7]: it aims at fairness in FL in heterogeneous

networks but it also works with non-IID data.
• rFedAvg: our proposed Algorithm 1.
• rFedAvg+: our proposed Algorithm 2

Datasets. We compare the performance of different methods
on 4 datasets: MNIST [14], CIFAR10 [13], Sent140 [15] and
FEMNIST [16]. MNIST and CIFAR10 are image classification
benchmarks commonly used in FL [1], [5], [11]. Sent140
is a naturally non-IID dataset for sentiment analysis which
contains millions of tweets with annotated sentiment based
on the emoticons they use. Another representative naturally
non-IID dataset, Federated Extended MNIST (FEMNIST) is
also included. It is built by partitioning the data in Extended
MNIST based on the writer of the digit/character . Following
[32], we test different settings of non-IIDness. The label
distribution skewness is simulated on MNIST and CIFAR10
while Sent140 and FEMNIST are naturally feature distribution
skewed and quantity skewed. We divide MNIST and CIFAR10
following [8]: we first allocate to each client s% IID data, then
sort the remaining (100 − s)% data according to the label
and allocate them evenly to the clients. We use three settings,
Similarity s = 0% (totally non-IID), Similarity s = 10%
(relatively non-IID) and Similarity s = 100% (IID) to measure
the non-IID-ness. For Sent140 and FEMNIST, we sample 500
users directly from the dataset as the non-IID setting, and
randomly shuffle the subset and evenly allocate it to the 500
clients to simulate the IID setting. We evaluate the cross-device
and cross-silo settings with different number of clients N ,
local steps E and sample ratio SR.

• Cross-Device Setting: N = 500, E = 10, SR = 0.2.
• Cross-Silo Setting: N = 20, E = 5, SR = 1.0.

Note that SR = 1.0 refers to full client participation and
SR = 0.2 refers to partial participation (20% of clients in
each round).
Models and Common Training Hyperparameters. For
MNIST and CIFAR10, we use the same CNN structure as
[1] where the dimension of the last FC layer is 512. The local
optimizer is SGD with learning rate 0.1 (0.01 for FedProx
on cross-device settings otherwise it will not converge). The
batch size is 100 for cross-silo settings and 32 for cross-device
settings. For Sent140, we use 2-layer LSTM + 1-layer FC
(dimension of output vector is 256) with pre-trained word
vectors. The local optimizer is RMSProp with learning rate
0.01 and batch size 10.
Algorithm-Specific Hyperparameters. The setup of addi-
tional hyperparameters for each algorithm are summarized
below.

• FedAvg: it has no extra hyperparameters.
• FedProx: for MNIST and CIFAR10, we set µ = 1.0.

For Sent140, we set µ = 0.01 otherwise it can hardly
converge.

• Scaffold: we set ηg = 1.0 on all the datasets.
• q-FedAvg: we set q = 1.0 on MNIST and CIFAR10 and

q = 10−4 on Sent140 (larger q results in divergence).
• rFedAvg: we set λ = 10−4 on MNIST, λ = 10−5 on

CIFAR10 and λ = 0.1 on Sent140, as λ also works as
normalization coefficient and is related to the dimension
and values of feature vectors. The MMD regularizer is
calculated on the last FC layer for all datasets.

• rFedAvg+: the settings are the same as rFedAvg.

Experimental Environment. We implement all the methods
with PyTorch 1.8.0. The experiments were conducted on five
Intel(R) Xeon(R) Platinum 8269CY 3.10GHz CPUs each with
4 cores. The code is open-sourced on github 1.
Evaluation Metrics. We use the train loss and test accuracy
as evaluation metrics. We also record the training time per
round to compare the efficiency of rFedAvg and rFedAvg+.

B. Results

We will show the detailed comparing results, the parameter
study and other evaluations respectively.

1) Results on MNIST: The results on MNIST are shown
in Fig. 2, Fig. 3 Tab. I and Tab. II. We omit the curves with
similarity 100% as they are similar to figures with similarity
10% We record the accuracy for 60 communication rounds. We
observe from Fig. 2a and Fig. 3a that rFedAvg and rFedAvg+
can converge faster and more stable than the baselines in
average while Scaffold and FedAvg are also competitive in
the cross-device 0% similarity setting. FedProx and q-FedAvg
perform relatively worse and they also have larger variances.
In the cross-silo 0% similarity setting (Fig. 2b, Fig. 3b), the
gaps between the methods (except FedProx) become smaller
but we can still find from Tab. I that rFedAvg+ can perform the
best. With similarity = 10%, all the algorithms can have better

1https://github.com/BUAA-BDA/rfedavg



TABLE I: Test accuracy on the three datasets in cross-silo setting. The best performance is marked in bold.

Method MNIST CIFAR10 Sent140
Sim 0% Sim 10% Sim 100% Sim 0% Sim 10% Sim 100% Non-IID IID

FedAvg 97.07± 0.34 98.85± 0.04 99.28± 0.01 45.22± 1.00 60.44± 0.08 67.39± 0.08 72.60± 0.35 75.75± 0.26
FedProx 85.74± 5.61 96.06± 0.07 98.13± 0.04 21.35± 0.33 49.22± 0.63 63.31± 0.22 50.55± 1.97 61.41± 2.35
Scaffold 97.35± 0.11 98.86± 0.04 99.28± 0.01 44.56± 0.82 60.38± 0.12 67.80± 0.01 72.89± 0.54 75.90± 0.25

q-FedAvg 97.28± 0.05 98.79± 0.04 99.25± 0.01 32.24± 0.04 58.69± 0.05 68.69± 0.14 50.67± 0.01 60.07± 5.36
rFedAvg 97.88± 0.07 98.97± 0.08 99.30± 0.02 46.12± 0.82 60.22± 0.14 67.91± 0.02 73.26± 0.32 74.61± 0.37

rFedAvg+ 98.02± 0.03 99.15± 0.01 99.31± 0.02 47.41± 0.32 60.36± 0.10 68.01± 0.02 72.85± 0.23 75.69± 0.34

TABLE II: Test accuracy on the three datasets in cross-device setting. The best performance is marked in bold.

Method MNIST CIFAR10 Sent140
Sim 0% Sim 10% Sim 100% Sim 0% Sim 10% Sim 100% Non-IID IID

FedAvg 94.38± 0.26 97.37± 0.06 98.42± 0.05 42.31± 0.88 54.78± 0.25 58.36± 0.13 72.88± 0.26 77.22± 0.28
FedProx 69.36± 5.78 91.46± 0.16 96.35± 0.06 24.85± 2.79 43.25± 0.44 49.73± 0.22 70.93± 0.56 72.74± 0.64
Scaffold 94.37± 0.19 97.38± 0.07 98.42± 0.05 42.33± 0.91 54.83± 0.34 58.36± 0.13 67.63± 0.82 69.16± 0.57

q-FedAvg 74.42± 10.17 97.27± 0.16 98.40± 0.04 32.09± 0.82 49.29± 0.18 50.37± 0.08 69.89± 0.80 67.81± 0.37
rFedAvg 94.66± 0.40 97.45± 0.04 98.43± 0.01 43.09± 1.85 55.08± 0.33 58.50± 0.08 75.69± 0.78 76.73± 0.37

rFedAvg+ 94.72± 0.26 97.73± 0.04 98.44± 0.04 44.14± 0.97 54.90± 0.34 58.48± 0.15 76.38± 0.21 77.74± 0.16
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Fig. 2: Accuracy curves on MNIST.

performance while the advantages of rFedAvg and rFedAvg+
become smaller. With similarity = 100%, all the algorithms
perform nearly the same. Overall, we find that with higher
non-IID-ness (smaller similarity), the proposed methods can
perform relatively better both in cross-silo and cross-device
settings, which proves its effectiveness in dealing with non-
IID data in FL. However, we also observe that even in the
worst case (cross-device similarity 0%) most of the methods
can still achieve a test accuracy of nearly 95%. It indicates
that the non-IID problem is not severe on MNIST even with
extreme data division.

2) Results on CIFAR10: The results on CIFAR10 are shown
in Fig. 4, Fig. 5, Tab. I and Tab. II. We record the results for
200 rounds. We can find roughly that the non-IID division of
CIFAR10 can lead to about 30% of accuracy loss comparing
with IID division, which means CIFAR10 is more appropriate
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Fig. 3: Loss curves on MNIST.

for non-IID evaluations. In the totally non-IID cases (similarity
0%), rFedAvg+ performs best both in cross-device and cross-
silo settings and leads other methods by over 2%. FedAvg is
still competitive and shows obvious advantages over FedProx
and q-FedAvg. We also observe that the baselines’ curves
of test accuracy oscillate violently especially in cross-device
settings while those of rFedAvg and rFedAvg+ look more
stable with higher averages. With the similarity increasing
to 10% and 100%, the accuracies of all methods rise very fast
and the proposed methods have less obvious advantages or
are even outperformed by FedAvg in the cross-silo similarity
10% setting. The results are aligned with [5] that only a small
part of shared IID data can bring considerable improvement
of performance. However, such strategy should not be allowed
in FL according to the privacy requirements. Therefore, the
proposed methods can be meaningful especially in totally non-
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Fig. 4: Accuracy curves on CIFAR10.
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Fig. 5: Loss curves on CIFAR10.

IID settings where no IID data can be shared.
3) Results on Sent140: The results on Sent140 are shown

in Fig. 6, Fig. 7, Tab. I and Tab. II. We record the results
for 30 rounds. In cross-device settings with non-IID data, we
can observe from Fig. 6a and Fig. 7a that the advantages
of rFedAvg and rFedAvg+ are obvious comparing with the
baselines. They can lead by over 3% according to Tab. II
and the superiority in convergence speed is also very obvious
accroding to Fig. 6a. On IID data, the performance of FedAvg
approaches the proposed methods closely. In cross-silo set-
tings, We can find that rFedAvg and rFedAvg+ still outperform
the baselines on non-IID data significantly while FedProx and
q-FedAvg can hardly converge. The reasons that they perform
bad on Sent140 may be that they are only designed for SGD
and do not support other optimizers well. But the proposed
rFedAvg and rFedAvg+ can still work well with RMSProp,
which verifies that our methods have better compatibility.
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Fig. 6: Accuracy curves on Sent140.
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Fig. 7: Loss curves on Sent140.

4) Results on FEMNIST: The results on FEMNIST are
shown in Fig. 8. We evaluate 2 settings: with 100 clients and
500 clients respectively and record the results for 80 rounds.
In the figures, low cost refers to SR = 0.1, E = 10 and
high cost refers to SR = 0.2, E = 20. We can observe that
the proposed rFedAvg performs the best among all baselines,
while rFedAvg+ also shows competitive performance with
both 100 clients and 500 clients.

5) Parameter Study: We vary the hyperparameters includ-
ing λ,N,E and SR to show the results. The experiments are
conducted on CIFAR10 with non-IID division (similarity 0%).

Impact of λ. From Fig. 9a, we observe that with too small or
too large λ, the optimization may be negative and the accuracy
can even be lower than FedAvg. The reason is that the MMD
loss is usually over 100 in the first few rounds due to the high
dimension of v while the training loss is smaller than 0.1.
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Fig. 8: Accuracy curves on FEMNIST with 100/500 clients.
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Fig. 9: Parameter study.

Therefore it is necessary to find an appropriate λ for different
settings (e.g., λ = 10−5 in this setting).

Impact of N . Results varying the number of clients N are
shown in Fig. 9b. We find that with smaller N , the accuracy
decreases very fast, even to below 0.3 when N = 50. The
reason is that the clients’ data become more unbiased with
smaller N while the sample ratio SR remains 0.2. The results
are also consistent with those in Fig. 9d which vary SR
with the same N . But there also exists a dividing crest of
accuracy, e.g., the threshold is SR = 0.2, N = 200 in this
case. The benefits to the accuracy become negligible when
N · SR exceeds the threshold. Therefore it is important to
find this threshold especially in cross-device and non-IID
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Fig. 10: Efficiency evaluation.

TABLE III: Size of δ (B).

Model Cross-Silo Cross-Device
CNN RNN CNN RNN

rFedAvg 56160 35680 280800 178400
rFedAvg+ 2808 1784 2808 1784

settings, to reduce the surplus participants and unnecessary
communication cost.
Impact of E. We also vary the number of local steps E
in Fig. 9c with the same number of communication rounds
C = 200. We observe that the accuracy will sightly decrease
with larger E except for rFedAvg+ with E = 1. The possible
reason is that a bit more local steps may help reduce the
variance of the estimated average of v. However, with the
same rounds of SGD (e.g., E · C = 200), the convergence
rate will decrease significantly with bigger E (accuracy < 0.3
when E ≥ 5, we omit the results due to the space limitation),
which is consistent with the theoretical results.
Impact of SR. The findings in Fig. 9d are similar to those
in Fig. 9b. With the same N and smaller sample ratio SR,
the accuracy can obviously get worse. Therefore, in cross-
silo and non-IID settings, it is reasonable to set large SR or
even to avoid using client sampling to ensure the learning
performance, as the communication cost may not be the
primary problem when N is small.

6) Efficiency Evaluation: We first compare the minimal
communication rounds needed for achieving different levels of
accuracy and the results are shown in Fig. 10a and Fig. 10b.
The settings are both cross-device with non-IID data. We can
observe that rFedAvg and rFedAvg+ needs fewer rounds to
converge to some specific levels than FedAvg, which verifies
that the proposed methods are more efficient in communication
rounds. We further compare the training times. The results
are shown in Fig. 10c and Fig. 10d. We can observe that the



0.6 0.7 0.8 0.9 1.0
Test Accuracy

0

25

50

75

100

125

150

175

N
um

be
r o

f C
lie

nt
s

FedAvg
rFedAvg+

(a) Performance of clients on MNIST

0.0 0.2 0.4 0.6 0.8
Test Accuracy

0

10

20

30

40

50

60

N
um

be
r o

f C
lie

nt
s

FedAvg
rFedAvg+

(b) Performance of clients on CIFAR10

Fig. 11: Fairness evaluation.
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Fig. 12: Privacy evaluation.

average training time of rFedAvg+ (orange bar) is generally
half of rFedAvg (blue bar), and also close to FedAvg (green
bar). With the similarity of 10%, the training time of rFedAvg+
can be reduced by 2/3. To further evaluate the communication
cost, we compare the memory used for δ in rFedAvg and
rFedAvg+. The results are shown in Tab. III. We can observe
that the size of δ in rFedAvg+ does not expand with the client
number as rFedAvg does, which saves the communciation
overhead significantly. The results verify that the efficiency
optimization in rFedAvg+ is effective.

7) Fairness Evaluation: We also evaluate the fairness of
the proposed methods. We can observe from Fig. 11 that on
both MNIST and CIFAR10 the test accuracy on the worst
clients (i.e. the red circles in the figures) can be generally
higher in rFedAvg+ than in FedAvg. This result verifies that
our methods can improve not only the overall performance but
also the performance on the worst clients, which corresponds
to better fairness.

8) Privacy Evaluation: We also evaluate rFedAvg+ under
privacy preservation. Following [43], we insert Gaussian
noise into the intermediate regularization variable δ with noise
standard deviation σ2: δ̃i ← δi +

1
LN (0, σ2

2C
2
0I), where L is

the batch size, σ2 is the noise parameters, C2 is the clipping

constant. The results are shown in Fig. 12. We can observe that
with σ2 ≤ 5, the curves are almost overlapped and the per-
formance is hardly affected. But with larger magnitude of σ2,
the performance may be damaged. It means that our approach
is compatible with certain level of privacy preservation.

C. Summary of Results

In summary, the proposed methods, rFedAvg and rFedAvg+
can generally outperform FedAvg by 0.95%−2.19% in cross-
silo settings and by 0.34% − 3.50% in cross-device settings
with non-IID data. We further show that rFedAvg+ can
run about twice as fast as rFedAvg in cross-device settings
therefore the efficiency optimization techniques are useful.
The proposed methods can also improve the performance on
the worst clients, which can make the global model more
fair. Moreover, our methods are robust with certain level of
differentially private Gaussian noise, which means that privacy
can still be preserved with regularization.

VII. CONCLUSION

We study the non-IID problem of federated learning in
this paper. We reveal that FedAvg can suffer from incon-
sistent distributions and high discrepancy of local models
when learning on non-IID data despite its efficiency in com-
munication. Inspired by domain adaptation, we propose a
distribution regularization for FL on non-IID data to reduce the
discrepancy of data distributions between clients. To further
reduce communication cost when learning with the distribution
regularization, we devise two novel communication-efficient
distributed learning algorithms named rFedAvg and rFedAvg+.
We theoretically establish their convergence for strongly con-
vex objectives. Finally, we conduct extensive experiments on
4 datasets with both CNN and LSTM as learning models.
The results show that the proposed algorithms have obvious
advantages over the state-of-the-arts on non-IID data in terms
of communication rounds and test accuracy.

The data heterogeneity problem will still be a major chal-
lenge for federated learning in the future. Solutions from a
single perspective like regularization cannot fully address the
problem especially when the data is extremely non-IID. As
a future direction, adaptive participant selection and person-
alized federated learning can be combined with a centralized
training framework, to improve the generalization of the global
model and the personalization performance of local models
simultaneously.
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