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Similarity search is getting increasingly useful in real applications. This paper focuses on the in-memory
similarity search, i.e., the range query and𝑘 nearest neighbor (𝑘NN) query, under arbitrary metric spaces, where
the only known information is the distance function to measure the similarity between two objects. Although
lots of research has studied this problem, the query efficiency of existing solutions is still unsatisfactory. To
further improve the query efficiency, we are inspired by the tree embeddings, which map each object into a
unique leaf of a well-structured tree solely based on the distances. Unlike existing embedding techniques (e.g.,
Lipschitz embeddings and pivot mapping) for similarity search, where an extra multi-dimensional index is
needed to index the embedding space (e.g., 𝐿𝑝 metrics), we directly use this tree to answer similarity search.
This seems to be promising, but it is challenging to tailor tree embeddings for efficient similarity search.
Specifically, we present a novel index called LiteHST, which is based on the most popular tree embedding
(HST) and heavily customized for similarity search in the node structure and storage scheme. We propose a
new construction algorithm with lower time complexity than existing methods and prove the optimality of
LiteHST in the distance bound. Based on this new index, we also design optimization techniques that heavily
reduce the number of distance computations and hence save running time. Finally, extensive experiments
demonstrate that our solution outperforms the state-of-the-art in the query efficiency by a large margin.
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1 INTRODUCTION

Similarity search has beenwidely used in numerous application scenarios, such as image recognition,
analogous DNA sequence identification, and text datamining. In these applications, similarity search
aims to retrieve similar objects to a given query object based on specific similarity measurements.
For example, a range query finds all objects whose distances to the query object are shorter than a
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given threshold and 𝑘NN query searches the 𝑘 nearest neighbors to the query object, where the
similarity can be measured by a distance function that satisfies the triangle inequality.

Due to the wide spectrum of applications [26, 69], many indexes, such as MVPT [16, 17], GNAT
[18], BST [59], BKT [20] and SPB-tree [25], have been proposed in the past decades to achieve
efficient similarity search with the exact result. We focus on the problem of in-memory similarity
search in arbitrary metric spaces 𝑆 = (𝑉 , dis) where the only known information is the distance
function dis, since this setting is commonly seen in in-memory data management and has attracted
much attention in recent years. For the problem that we study, unlike some existing work, we have
no assumptions on (1) specific metric spaces and (2) specific representations of objects.

To perform similarity search under this setting, embedding is one of themost prevalent techniques
used in such research (see surveys [23, 26, 46, 69] and books [71, 82]). In general, an embedding
based method has a two-step framework. First, it maps objects into a low-dimensional space. Then,
it indexes objects under the new embedding space (e.g., by adopting a low-dimensional index).
For example, the state-of-the-art embedding technique, Lipschitz embedding [15, 57], uses some
reference objects (a.k.a., pivots) to map the objects based on their distances to the reference objects.
A few selected methods based on Lipschitz embeddings are SparseMap [54], MVPT [16, 17], GNAT
[18], SPB-tree [25], PM-tree [72], Omni-family [58], and M-Index [65]. Other embedding techniques
are mostly used in similarity search for only Euclidean metrics, such as Karhunen-Loève transform
(KLT) [41] and discrete Fourier transform (DFT) [70], which are not applicable to our setting.

However, the query efficiency of these methods is still unsatisfactory. For example, there is no
single method that dominates all the others in terms of query efficiency [26], since they have their
pros and cons. Here, we still take the Lipschitz embedding based method as an example. Lipschitz
embedding [15, 57] requires 𝑂 (log2 𝑛) pivot sets to achieve the asymptotically optimal distance
lower bound for pruning in similarity search, where 𝑛 is the number of points and the distance lower
bound is crucial for query efficiency [26, 46]. This well-known result [44, 63, 76] leads to the following
dilemma in these methods. If too many pivots are used (e.g., SparseMap [54] and its variants [71]),
it would still be difficult to index the objects under the new embedding space (e.g., 𝐿𝑝 metrics) due
to the curse of high dimensionality. For instance, when 𝑛 = 10000, at least �log2 10000�

2 = 196
pivots are used and hence a high-dimensional (196D) index is needed. By contrast, many existing
methods adopt a fixed and small number of pivots, which largely deteriorates the lower bound and
leads to low query efficiency.

This situation motivates us to explore a new embedding technique beyond Lipschitz embedding
to design a more efficient similarity search method. Intuitively, we believe tree embedding would

be a promising answer due to two reasons. (1) Tree embedding maps the objects into leaves
of a tree-based data structure called Hierarchically Separated Tree (HST) [12]. As a result, the
high dimensional problem for Lipschitz embedding can be avoidable, since HST itself can be used to
index the objects over the embedding space and no extra index is required. (2) Prior work [35] has
proved that the distance lower bound of HST is asymptotically the same as Lipschitz embedding.
Unfortunately, it has never been used in similarity search, though HST has been widely used to
solve combinatorial optimization problems (see the survey [56] and textbooks [44, 78]). Moreover,
our experiments show that straightforwardly using HST by existing query processing methods is
not always superior to the state-of-the-art method for similarity search in query efficiency. Thus,
the main challenge is how to tailor tree embeddings (HST) for efficient in-memory similarity search?
In this paper, we propose a new tree embedding based index called LiteHST for similarity

search. Themajor differences between our LiteHST and the HST [12] lie in two aspects: (1) index
construction and (2) query processing. Specifically, for the index construction, the tree structure of
LiteHST is quite different from existing HST [12, 13, 35, 80] in terms of node information and storage
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scheme (see Sec. 3 for more details). Moreover, LiteHST has a significantly faster construction
algorithm that takes only 𝑂 (𝑛 log𝑛) time than these existing methods (at least 𝑂 (𝑛2) time), where
𝑛 is the number of objects in the input. For the query processing, we design many novel pruning
rules based on the tree structure of LiteHST. These pruning rules are unique due to the intrinsic
distinctions between tree embedding and other embeddings (e.g., Lipschitz embedding), Regardless
of these differences, we also prove the distance lower bound of LiteHST is no worse than that of
HST (and Lipschitz embedding). Finally, motivated by the recent success of AI for DB, we also
adopt the learning-based optimization technique to improve the efficiency of 𝑘NN queries.

The main contributions of this paper are summarized as follows.

• We introduce a tree embedding based index called LiteHST. Here, we design a new construc-
tion method and a compact storage scheme, and prove that LiteHST has the asymptotically
same distance lower bound as the state-of-the-art embedding (i.e., Lipschitz embedding) for
similarity search.

• We design novel query processing methods based on LiteHST and adopt optimizations to
further accelerate efficiency.

• Extensive experiments show that our solution outperforms the state-of-the-art methods in
query efficiency. For example, LiteHST is up to 19.5×-34.8× faster than MVPT [16, 17], GNAT
[18], BST [59], BKT [20], and SPB-tree [25] in range queries. We also show our LiteHST can
also be an efficient index in the external-memory scenario.

In the rest of this paper, we first present the problem definition in Sec. 2. Then, we introduce our
index (LiteHST) in Sec. 3 and query processing algorithms in Sec. 4. Finally, we conduct experiments
in Sec. 5, review related work in Sec. 6, and conclude in Sec. 7.

2 PROBLEM DEFINITION AND BASELINE

In this section, we introduce the problem definition in Sec. 2.1 and briefly review the Lipschitz
embedding based baselines in Sec. 2.2.

2.1 Problem Statement

Definition 1 (Metric Space [76]). A metric space (“metric” for short) is denoted by 𝑆 = (𝑉 , dis),
where a set of 𝑛 objects is denoted by 𝑉 . The distance function dis : 𝑉 ×𝑉 → [0, +∞) is used to
measure the distance between any two objects in 𝑉 and satisfies these properties for any object
𝑥,𝑦, 𝑧 ∈ 𝑉 : (1) dis(𝑥,𝑦) = 0 ⇔ 𝑥 = 𝑦, (2) dis(𝑥,𝑦) = dis(𝑦, 𝑥), and (3) dis(𝑥,𝑦) +dis(𝑦, 𝑧) ≥ dis(𝑥, 𝑧).

Such similarity metrics are commonly seen in existing studies, e.g., 𝐿𝑝 -norm and edit distance.
Some related work assumes that some representations (e.g., feature vectors) of objects are also
given. Notice that, we do not have this assumption in the above metric.
Next, we introduce our similarity search problem, including the range query and 𝑘 nearest

neighbor (𝑘NN) query in Def. 2-3.

Definition 2 (Range Query). Given a metric 𝑆 = (𝑉 , dis), a query object 𝑞, and a searching radius
𝑟 , the range query finds all the objects in 𝑉 which are within a distance of 𝑟 to the object 𝑞, i.e.,

𝑄𝑟𝑎𝑛𝑔𝑒 (𝑉 ,𝑞, 𝑟 ) = {𝑥 | 𝑥 ∈ 𝑉 ∧ dis(𝑥, 𝑞) ≤ 𝑟 }. (1)

Definition 3 (𝑘NN Query). Given a metric 𝑆 = (𝑉 , dis), a query object 𝑞, and a positive integer 𝑘 ,
the 𝑘NN query finds exactly 𝑘 objects in 𝑉 which are most similar to the object 𝑞, i.e.,

𝑄𝑘𝑛𝑛 (𝑉 ,𝑞, 𝑘) = {𝑥 ∈ 𝑉 ′ | 𝑉 ′ ⊆ 𝑉 ∧ |𝑉 ′ | = 𝑘 ∧ ∀𝑦 ∈ 𝑉 \𝑉 ′, dis(𝑞, 𝑥) ≤ dis(𝑞,𝑦)}. (2)

Finally, we illustrate our similarity search problem by Example 1.
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Fig. 1. The Lipschitz embedding (𝑅 = {𝑉1, · · · ,𝑉4})

Example 1. Given a set𝑉 = {𝐴𝐺𝐶𝐴𝐺𝐶𝑇,𝐺𝐶𝐴𝐺𝐴𝐺𝐴𝐺,𝐴𝐺𝐶𝐴𝐺𝐶,𝐶𝐺𝐶𝐴𝐺𝐴,𝐺𝐶𝐴𝐺𝐶,𝐴𝐺𝐴𝐺𝐴𝐺}

of 6 DNA sequences, we use the edit distance to measure the similarity, e.g., dis(𝑣0, 𝑣2) = 1, where
𝑣0 is AGCAGCT and 𝑣2 is AGCAGC. A range query 𝑄𝑟𝑎𝑛𝑔𝑒 (𝑣0,𝑉 , 1) retrieves two objects: 𝑣0 and 𝑣2,
whose distances to the query object is 0 and 1 respectively, i.e., closer than the searching radius
𝑟 = 1. A 𝑘NN query 𝑄𝑘𝑛𝑛 (𝑣0,𝑉 , 2) finds exactly 𝑘 = 2 objects that are most similar to the DNA of
the object 𝑣0, and the answer is 𝑣0 and 𝑣2.

2.2 Baseline: Lipschitz Embedding

In this subsection, we briefly introduce Lipschitz embedding [15, 57], which is commonly used in
similarity search. Please refer to the surveys [5, 46] and textbooks [44, 63, 76] for more details.

Formal Definitions. We first introduce the formal definitions of the contractive embedding, distor-
tion and Lipschitz embedding.

Definition 4 (Contractive Embedding and Distortion [76]). Given a metric space 𝑆 = (𝑉 , dis), the
metric 𝑆 ′ = (𝑉 ′, dis′) is called a contractive embedding of 𝑆 if a mapping 𝑓 : 𝑉 → 𝑉 ′ exists and
satisfies this condition for any object 𝑥,𝑦 ∈ 𝑉 :

(1/𝜌) · dis(𝑥,𝑦) ≤ dis′ (𝑓 (𝑥), 𝑓 (𝑦)) ≤ dis(𝑥,𝑦), (3)

where the distortion 𝜌 measures how much shorter the distances in 𝑆 ′ are than the corresponding
distances in 𝑆 , i.e.,

𝜌 � max
𝑥,𝑦∈𝑉

dis(𝑥,𝑦)

dis′ (𝑓 (𝑥), 𝑓 (𝑦))
(4)

In general, an embedding 𝑆 ′ aims to preserve the distances dis(·, ·) in 𝑆 as much as possible. The
distortion 𝜌 is the standard measurement of the embedding quality [44, 63, 76]. For example, 𝜌 = 1
implies that all pairwise distances in 𝑆 have been perfectly preserved by 𝑆 ′. A contractive embedding

is the embedding whose distances are always lower bounds of the corresponding distance in 𝑆 , i.e.,
dis′ (𝑓 (𝑥), 𝑓 (𝑦)) ≤ dis(𝑥,𝑦) in Eq. (3).

Definition 5 (Lipschitz Embedding [46]). Given a metric space 𝑆 = (𝑉 , dis), a set 𝑅 = {𝑉𝑘 } of 𝑘
subsets of 𝑉 , a Lipschitz embedding maps 𝑆 into a 𝑘-dimensional metric space 𝑆 ′ = (𝑉 ′, dis′) such
that the coordinates (i.e., feature vectors) of any object 𝑥 ∈ 𝑉 in 𝑆 ′ are

coordinate(𝑥) = (dis(𝑥,𝑉1), dis(𝑥,𝑉2), · · · , dis(𝑥,𝑉𝑘 )) . (5)

where each coordinate dis(𝑥,𝑉𝑘 ) equals a user-defined parameter 𝑐 multiplied by the distance from
the object 𝑥 to its closest object in 𝑉𝑘 , i.e., dis(𝑥,𝑉𝑘 ) = 𝑐 ·min𝑦∈𝑉𝑘 dis(𝑥,𝑦).

As shown in Fig. 1, the Lipschitz embedding uses reference sets 𝑅 (a.k.a., pivot sets) to project
each object 𝑥 ∈ 𝑉 into a coordinate space (e.g., 4D Euclidean space). A contractive embedding
requires that the Euclidean distance of any two objects is no longer than their true distance and
the distortion is the largest contraction ratio.

Main Idea. In similarity search, Lipschitz embedding is used to map the objects 𝑉 into data points
in the coordinate space 𝑆 ′, whose distance function dis′ is often an 𝐿𝑝 distance, such as 𝐿1, 𝐿2 and
𝐿∞. After that, a filter-and-refine framework is widely used in processing the range query and 𝑘NN
query, i.e., candidates are first filtered by queries on the embedding 𝐿𝑝 metric 𝑆 ′ and then refined
by their true distances to the query object in 𝑆 .
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Table 1. Summary of the major notations in this paper

Notations Descriptions

𝑆 = (𝑉 , dis) metric 𝑆 with 𝑛 objects 𝑉 and distance function dis

𝑄𝑟𝑎𝑛𝑔𝑒 , 𝑄𝑘𝑛𝑛 range query and 𝑘NN query in similarity search
𝛽 a random parameter uniformly sampled in [0.5, 1]

𝑇, dis𝑇 , 𝐻 distance function dis𝑇 on tree 𝑇 with height 𝐻
𝑤𝑖 = 𝛽2𝐻+1−𝑖 edge weight between 𝑖th level and (𝑖 + 1)th level
ball(cp, 𝑟 ) a ball partition of 𝑉 with a center cp and a radius 𝑟

lev, par , child level, parent and children of a node 𝑣 on 𝑇
dis2cp distance from 𝑣 .cp to 𝑣 .par .𝑐𝑝 , dis(𝑣 .cp, 𝑣 .par .𝑐𝑝)
[l, r] object IDs from 𝑙th leaf to 𝑟 th leaf on 𝑇
distort distortion of objects in a subtree defined in Eq. (4)

We take the range query 𝑄𝑟𝑎𝑛𝑔𝑒 (𝑉 ,𝑞, 𝑟 ) as an example, where 𝑞 is the query object and 𝑟 is the
searching radius. When the cardinality of reference set 𝑅 is 2, the objects 𝑉 can be mapped into a
2D Euclidean space 𝑆 ′ (i.e., 𝑘 = 2 and dis′ is the 𝐿2 distance). Then, we can use R-tree [71] to find
all candidates 𝑥 ∈ 𝑉 in 𝑆 ′ satisfying dis′ (𝑓 (𝑥), 𝑓 (𝑞)) ≤ 𝑟 . Finally, we check each candidate whether
its true distance to the query object in 𝑆 , i.e., dis(𝑥, 𝑞), is closer than 𝑟 .

Basic Property. The contractive property (i.e., the right-hand condition in Eq. (3)) has been proved
in [46] to be necessary to guarantee no false dismissals in similarity search. The distortion (i.e., the
left-hand condition in Eq. (3)) affects the number of candidates. For example, when the distortion
𝜌 = 1, the candidates are the same as the query answers. Intuitively, a lower distortion implies
having fewer candidates and taking a shorter time on the refinement, which is desired in similarity
search. The asymptotically lowest bound of distortion is 𝑂 (log𝑛) (with high probability) [62, 76].

Dilemma of Existing Baselines. Lipschitz embedding based methods usually have the following
dilemma in the query efficiency:

(1) To achieve an optimal distortion guarantee, the Lipschitz embedding needs �log2 𝑛�
2 pivot sets

[46, 76]. Meanwhile, so many pivot sets imply that the dimension of the embedding space 𝑆 ′ is
still too high and causes low efficiency in the filtering.

(2) To retain low dimensions, many existing methods often pick fewer than 10 pivots. Hence, their
distortion bound is no longer optimal, which results in much more candidates and causes low
efficiency in the refinement.

3 OUR TREE EMBEDDING BASED INDEX

In this section, we introduces our tree embedding based index, LiteHST, including the basic structure
(Sec. 3.1), construction method (Sec. 3.2), and storage scheme (Sec. 3.3). Table 1 lists the major
notations used in the rest of this paper.

3.1 Definition of LiteHST

Definition 6 (Tree Embedding [12]). Given a metric space 𝑆 = (𝑉 , dis), a tree embedding 𝑆𝑇 =
(𝑉𝑇 , dis𝑇 ) is a weighted and rooted tree 𝑇 , where each object 𝑥 ∈ 𝑉 is mapped into a unique leaf
on 𝑇 (i.e., leaf(𝑥)) and the tree distance dis𝑇 (leaf(𝑥), leaf(𝑦)) between objects 𝑥,𝑦 is the shortest
distance from leaf(𝑥) to leaf(𝑦) on 𝑇 .

Our index, LiteHST, is devised based on a popular tree embedding data structure, Hierarchically
Separated Tree (HST). HST was first proposed by Bartal in his seminal work [12] and was later
proved by Fakcharoenphol et al. [35] to have an optimal distortion guarantee (𝑂 (log𝑛)) for embed-
ding arbitrary metrics. Although HST has been widely used in many work (see surveys [5, 56]), it

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 35. Publication date: May 2023.



35:6 Yuxiang Zeng, Yongxin Tong, & Lei Chen

Algorithm 1: Construct our index LiteHST

input :a metric 𝑆 = (𝑉 , dis) with 𝑛 objects 𝑉
output :a LiteHST 𝑇 as the tree embedding of the metric 𝑆

1 Random parameter 𝛽 ← uniformly sample in [0.5, 1];

2 Stack 𝑄 ← {(𝑉 , 1)} of remaining objects 𝑉 at the 1st level;

3 while 𝑄 is not empty do

4 (𝑉𝑗 , 𝑗) ← pop remaining objects 𝑉𝑗 at 𝑗th level from 𝑄 ;

5 Ball center cp ← a random object in 𝑉𝑗 , level 𝑖 ← 𝑗 + 1;

6 while 𝑉𝑖 has more than one object (i.e., |𝑉𝑖 | > 1) do
7 Node 𝑢 ← the objects 𝑉𝑖 ⊆ 𝑉𝑖−1 inside ball(cp,𝑤𝑖 );

8 Push (𝑉𝑖−1 \𝑉𝑖 , 𝑖 − 1) into the stack 𝑄 ;

9 Process next level 𝑖 ← 𝑖 + 1;

has never been used in similarity search. Next, we introduce the node structure and edge weight of
our LiteHST and clarify the difference with HST.

Node Structure. Each node 𝑣 of the LiteHST is a disjoint ball partition of the objects 𝑉 and stores
the following information:

(1) lev, par and child: 𝑣 ’s current level, parent and children.
(2) cp: the center of the ball partition for 𝑣 .
(3) dis2cp: the distance from 𝑣 .cp to 𝑣 .par .𝑐𝑝 , dis(𝑣 .cp, 𝑣 .par .𝑐𝑝).
(4) [l, r]: the objects from the 𝑙th leaf and 𝑟 th leaf, which are all inside the ball partition of 𝑣 .
(5) distort: the distortion of these objects in the subtree rooted at 𝑣 .

Edge Weight. Given a parameter 𝛽 and the root of LiteHST, any edge weight between 𝑖th level
and the (𝑖 + 1)th level is defined as

𝑤1 = 𝛽 · 2�log2 max𝑥 ∈𝑉 dis(𝑥,root.cp) �, ∀𝑖 > 2,𝑤𝑖 = 𝑤𝑖−1/2. (6)

Difference with HST. One major difference between our LiteHST and classic HST [12, 35] lies in
the index construction, including the node structure, construction algorithm, and storage method.
For the node structure, existing work stores lev, par, child (only) in each node and we identify
that the other information is more helpful for processing similarity search. The differences in the
construction and storage will be elaborated later in Sec. 3.2 and 3.3.

3.2 Construction of LiteHST

Main Idea. LiteHST is constructed based on ball partitions of the objects𝑉 in a depth-first manner.
Specifically, we first randomly pick an object cp from the currently remaining objects. This object
cp is used as the center of ball partitions from the current level to the leaf level and the edge weight
𝑤𝑖−1 is used as the radius of the partition at the 𝑖th level. Then, a node is created to represent the
objects inside the ball while the other objects outside the ball are waiting for further partitions.

Algorithm Details. Algo. 1 depicts the construction procedure. Specifically, line 1 samples a
random parameter 𝛽 from a uniform distribution. Line 2 initializes a stack 𝑄 of the remaining
objects at each level. In lines 3-9, we construct a tree embedding 𝑇 of the input metric (𝑉 , dis).
Specifically, we first pop the remaining objects 𝑉𝑗 at the 𝑗th level from 𝑄 in line 4. Then, we
randomly select an object cp ∈ 𝑉𝑗 as the center of the ball partition in line 5. Next, at each level
𝑖 , we use 𝑉𝑖 to denote the objects in 𝑉𝑖−1 that are inside the ball centered at cp with a radius 𝑤𝑖

(denoted by ball(cp,𝑤𝑖 )) in line 7. After that, we create a node 𝑢 to represent these objects 𝑉𝑖 and
push the remaining objects 𝑉𝑖−1 \𝑉𝑖 at the (𝑖 − 1)th level into 𝑄 in line 8. The ball partitions in
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Fig. 2. An instance of our index LiteHST (left: pointer-based; right: array-based)

lines 6-9 will stop when |𝑉𝑖 | = 1, since a leaf in LiteHST represents a unique object (i.e., the center
cp). Finally, we maintain nodes’ information (defined in Sec. 3.1).

Example 2. Back to Example 1. Fig. 2 illustrates a LiteHST when the random parameter 𝛽 = 0.97.
We assume the object 𝑣0 is firstly sampled as the center cp in line 5 of Algo. 1. By Eq. (6), we have
𝑤1 = 𝛽 × 2�log2 dis(𝑣0,𝑣1 ) � = 7.76 and𝑤2 = 𝑤1/2. Then, when 𝑖 = 2 during the iterations in lines 6-9,
the objects 𝑉2 is 𝑣0 and 𝑣2-𝑣5. Here, 𝑣1 is excluded, since dis(cp, 𝑣1) = 5 > 𝑤2 indicates 𝑣1 is not in
the ball partition ball(cp,𝑤2). Thus, we create the internal node 𝑢1 to represent 𝑉2 and build the
subtree rooted at 𝑢1. In the internal node 𝑢1, the attribute of [𝑙, 𝑟 ] is [1, 5], which means the 1st leaf
to the 5th leaf (i.e., objects 𝑉2) are covered by the ball partition of this node. Besides, 𝑢1 .distort can

be calculated by Eq. (4), i.e., 𝑢1.distort = max𝑥,𝑦∈𝑉2

∑
𝑒∈𝑝𝑎𝑡ℎ (𝑥,𝑦) 𝑊 (𝑒 )

dis(𝑥,𝑦) = 2×3.88+1.94
dis(𝑣2,𝑣4 )

= 9.7. Similarly, we

can derive the other attributes in Fig. 2.

Complexity Analysis. Let the function dis(, ) take 𝑂 (𝑑) time. For each remaining object set 𝑉𝑗 in
line 4, lines 6-8 involve 𝑂 ( |𝑉𝑗 | · 𝑑) distance computations in total, since we only need to compute
the distance from the center cp to each object in 𝑉𝑗 for once. For each object 𝑥𝑖 ∈ 𝑉 , we use CP (𝑥𝑖 )
to denote the list of centers whose distances to 𝑥𝑖 have been computed. For example, as shown in
Fig. 2, CP (𝑣1) = {𝑣0, 𝑣1}, since dis(𝑣0, 𝑣1) and dis(𝑣1, 𝑣1) have been computed when the leaf node 𝑢8
(i.e., leaf(𝑣1)) is created. Thus, the time complexity of lines 1-9 is bounded by 𝑂 (𝑑

∑𝑛
𝑖=1 |CP (𝑥𝑖 ) |).

To obtain a tight bound, we borrow the following fact from [14].

Fact 1 (Lemma 2.1 in [14]). Given a random permutation 𝜋 of 𝑛 integers, let a non-increasing 𝑦𝑖 be
min𝑗=1,· · · ,𝑖 {𝜋 [ 𝑗]}. We have (1) the number of times in 𝑦𝑖 to change into a smaller value is 𝑂 (log𝑛) in
expectation and (2) it is 𝑂 (log𝑛) with high probability.

By using this fact, we know the expected length of CP (𝑥𝑖 ) is 𝑂 (log𝑛) with high probability (i.e.,
CP (𝑥𝑖 ) corresponds to 𝑦𝑖 ), since CP (𝑥𝑖 ) contains at most 𝑛 centers that are uniformly sampled in
Algo. 1, and the last center in CP (𝑥𝑖 ) is 𝑥𝑖 itself (i.e., leaf(𝑥𝑖 )). Thus, the (expected) time complexity
of lines 1-9 is 𝑂 (𝑑𝑛 log𝑛). Besides, the distortion of 𝑛 objects defined in Eq. (4) takes 𝑂 (𝑛2) time.
To reduce this time cost, we only compute the distortions of those subtrees with 𝑂 (log𝑛) objects.
Overall, the (expected) time complexity of Algo. 1 is still 𝑂 (𝑑𝑛 log𝑛).

Approximation Analysis. We prove Algo. 1 has a tight theoretical guarantee (defined in Def. 7)
on the distortion, i.e., 𝑂 (log𝑛).

Definition 7 (Probabilistic Approximation [12]). A tree embedding 𝑆𝑇 is said to be 𝜌-probabilistically
approximates the metric space 𝑆 if there exists a probability distribution over 𝑆𝑇 such that for any
two objects 𝑥,𝑦 ∈ 𝑉 we have E[dis𝑇 (leaf(𝑥), leaf(𝑦))] ≤ 𝜌 · dis(𝑥,𝑦)
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Lemma 1. Algo. 1 has a tight distortion guarantee 𝑂 (log𝑛).

Proof. We prove this lemma by mathematical induction based on the approximation result from
[35], since Fakcharoenphol et al. [35] have proved that the HST constructed by their algorithm
FRT has a tight distortion guarantee of 𝑂 (log𝑛). We assume both methods are given the same
parameter 𝛽 for edge weights, since the distributions of 𝛽 are the same. Thus, we have the distance
functions for both methods are dis𝑇 (𝑢, 𝑣) =

∑
𝑒∈𝑝𝑎𝑡ℎ (𝑢,𝑣) 𝑤 (𝑒), where 𝑢, 𝑣 are two leaves of the

(sub)tree rooted at 𝑟𝑜𝑜𝑡 , 𝑝𝑎𝑡ℎ(𝑢, 𝑣) is the tree path from 𝑢 to 𝑣 , and𝑤 (𝑒) is the weight of the edge 𝑒 .
When there is only one object, either Algo. 1 or FRT constructs the same tree (i.e., a single root).
When there is more than one object, we assume𝑂 (log𝑛) holds for 𝑛 =𝑚 and prove it also holds

for 𝑛 =𝑚 + 1. Specifically, we use cp1 to denote the first center sampled by Algo. 1 in line 5. Then,
the number of remaining objects 𝑉𝑖−1 \𝑉𝑖 in line 8 is no more than 𝑛 − 1 =𝑚, since a leaf will be
eventually created to represent the object cp1. It implies that the distortion guarantees of subtrees
for the remaining objects are all bounded by 𝑂 (log𝑚) = 𝑂 (log𝑛). It remains to be proved that
E[dis𝑇 (leaf(𝑥), leaf(cp1))] ≤ 𝜌 · dis(𝑥, cp1), where the distortion 𝜌 = 96 ln𝑛 = 𝑂 (log𝑛).

Note that the centers of FRT [35] are sequentially picked from a global and random permutation
𝜋 of all objects 𝑉 . It means its first center (say cp′1) is also uniformly sampled from 𝑉 . Thus, our
center cp1 has the same distribution as the first center cp′1 by FRT. Since FRT has proved that
E[dis𝑇 (leaf(𝑥), leaf(cp

′
1))] ≤ 96 ln𝑛 · dis(𝑥, cp′1) (see Sec. 2.3 in [35]), we complete our proof. �

Difference with HST. Compared with existing construction algorithms [12–14, 35, 42, 60, 80] that
take at least 𝑂 (𝑑𝑛2) time, our algorithm has a significantly lower time complexity (𝑂 (𝑑𝑛 log𝑛)).

3.3 Storage of LiteHST

Motivation. LiteHST can be resident in memory with a pointer-based storage scheme. However,
we observe this pointer-based storage scheme has information redundancy, which is about 36%-50%
of the total space cost. As shown in Fig. 2, the left-most descendants (e.g., 𝑢) of any node must
have the same center and hence 𝑢.cp = 𝑢.par .cp and 𝑢.dis2cp = 0.0 always holds. To reduce this
information redundancy and save the space cost, we propose an array-based storage scheme for
LiteHST as follows.

Main Idea. In Algo. 1, each object is used as the center for once. Thus, our idea is to store the index
information from the view of each center. For example, we use an array row [·] to store the index
information and row [cp] stores the following information lead by ball partitions centered at cp (in
lines 5-9 of Algo. 1):
(1) dis2cp: distance from cp to the center of 𝑉𝑗 ’s parent.
(2) l: the position of leaf(cp) at the leaf level.
(3) rs: a list of the right boundary (r) for nodes with center cp.
(4) levs: a list of levels (lev) for nodes with center cp.
(5) distorts: a list of distortions (distort) for nodes with center cp.

Algorithm Details. Based on these definitions, a pointer-based LiteHST can be transformed into
an array-based LiteHST. The main issue is how to enumerate the child nodes in this array-based
HST, since our storage scheme does not involve pointers referring to children. Algo. 2 depicts the
detailed procedure. Suppose we want to enumerate all children of the node partitioned by the
center cp at the 𝑘th level. In lines 1-3, we observe that the left-most child (𝑢1) must be partitioned
by cp′ = cp at the level row [cp′] .levs[𝑖]. Based on the right boundary row [cp′] .rs[𝑖], we can infer
the next sibling 𝑢2 of 𝑢1 must be partitioned by the object which is right after row [cp′] .rs[𝑖] in the
leaf level. We use order[·] to denote the sequence of corresponding objects in the leaf level. Thus,
line 3 iterates each child node, and line 4 moves to the next child.
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Algorithm 2: Enumerating the children of the node partitioned by the center cp at the 𝑘th
level

1 l ← row [cp] .l, cp′ ← cp, 𝑖 ← 𝑘 + 1;

2 while l ≤ right boundary row [cp] .rs[𝑘] of parent node do
3 next child is partitioned by cp′ at level row [cp′] .levs[𝑖];

4 l ← row [cp′] .rs[𝑖] + 1, cp′ ← order[l], 𝑖 ← 0;

Example 3. An array-based LiteHST is created on the right side of Fig. 2. To enumerate the
children of the root 𝑢0 whose center is 𝑣0, we set 𝑙 = 1, cp′ = 𝑣0, 𝑖 = 2 in line 1. Then, in line 3, the
first child can be derived from row [cp′] at the 2nd level, which corresponds to 𝑢1 in Fig. 2. After
that, we have 𝑙 = row [𝑣0] .rs[2] + 1 = 6, 𝑖 = 0 and cp′ becomes the 6th object in the leaf level (i.e.,
𝑣1). Finally, we access the sibling (𝑢8) of the node 𝑢1 via row [𝑣1].

Difference with HST. Compared with the pointer-based scheme used in traditional HST [12, 35],
our array-based storage scheme can save 36%-50% spaces based on the following space-saving

analysis. First, we assume an integer type takes 4 bytes, a floating type takes 8 bytes and a pointer
type takes 4 types (e.g., in C/C++). Let 𝑈 and 𝐸 denote the nodes and edges on LiteHST. In a
pointer-based storage scheme, each node stores 2 floating types (dis2cp and distort), 1 + |child |

pointer types (par and child), and 5 integer types (|child |, lev, cp and [l, r]). Thus, we can derive
the space cost as

2 × 8 × |𝑈 | + 4 × (|𝑈 | + |𝐸 |) + 5 × 4 × |𝑈 | = 40|𝑈 | + 4|𝐸 | (7)

As for the array-based storage scheme, let 𝑚cp be the number of nodes with the center cp, i.e.,
|rs | = |levs | = |distorts | = 𝑚cp. As each node has only one center, we know

∑
cp∈𝑉 𝑚cp = |𝑈 |. As

shown in Fig. 2 (bottom right-hand corner), row [cp] stores 1+𝑚cp floating types (dis2cp and distorts)
and 1 + 2𝑚cp integer types (l, rs and levs). Thus, the space cost of this new storage scheme is∑

cp∈𝑉

(
8(1 +𝑚cp) + 4(1 + 2𝑚cp)

)
= 12|𝑉 | + 16|𝑈 | (8)

Finally, since each internal node has at least two children and LiteHST has |𝑉 | = 𝑛 leaves, we have
|𝑈 | = |𝐸 | + 1 and |𝑈 | ∈ [𝑛, 2𝑛], we can easily derive the space saving is 36%-50% as follows.

1 −
12|𝑉 | + 16|𝑈 |

40|𝑈 | + 4|𝐸 |
≈ 1 −

12𝑛 + 16|𝑈 |

44|𝑈 |
=

7

11
−

3

11
·
𝑛

|𝑈 |
(9)

Remark.Although our major concern is an in-memory index for similarity search, LiteHST can still
be extended to the external-memory scenario. Specifically, we can still use the above construction
algorithm and storage scheme. The main change is that a leaf node in the external-memory scenario
will be created when the number of contained objects could fit in one disk page. Similar to other
external-memory indexes [25, 58], we also utilize the random access file (RAF) to store these objects
in disks. Each RAF entry records the actual object and its distance to the center of the leaf node.
The RAF stores these records in an ascending order of (1) their leaf nodes’ appearance orders (from
left to right) and (2) the distances to the leaf node’ center (for objects in the same leaf).

4 QUERY PROCESSING METHODS

In this section, we first introduce the motivation and preliminary in Sec. 4.1. Then, we present our
solutions to range queries and 𝑘NN queries in Sec. 4.2 and Sec. 4.3, respectively. Finally, we discuss
our learning-based enhancement for query efficiency in Sec. 4.4. The following query processing
methods, which are designed for in-memory LiteHST, are also applicable to the external-memory
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LiteHST. The main difference is that the external-memory LiteHST needs to scan more than one
object that is stored in a leaf node. All proofs in Sec. 4.2 and 4.3 are deferred to Sec. 4.5.

4.1 Motivation and Preliminary

Motivation. As explained in Sec. 3, LiteHST can be viewed as not only a contractive embedding of
the input metric but also a ball partition of this metric. Thus, two existing solutions for similarity
search can be directly used for LiteHST: M-tree based solution [27] and contractive-embedding based

solution [47] (see Sec. 5.1.1 for the implementations). However, neither of them outperforms the
state-of-the-art in our experiments, since they all fail to fully utilize the properties of LiteHST. By
contrast, this section presents a new solution that is faster than the existing ones.

Preliminary. Following primitives, which only take 𝑂 (1) time, are used in our solution.

(1) radAt(𝑖): the radius of the ball partition at the 𝑖th level, i.e., radAt(𝑖) = 𝑤𝑖−1, where 𝑤𝑖−1 is
defined in Eq. (6).

(2) disTAt(𝑖): the sum of edge weights between two leaves whose lowest common ancestor is at
level 𝑖 , i.e., disTAt(𝑖) = 2

∑𝐻
𝑗=𝑖 𝑤𝑖 .

(3) ring(𝑜, 𝑟, 𝑅): a ring centered at the object 𝑜 with an inner radius 𝑟 and an exterior radius 𝑅,
where 𝑟 ≤ 𝑅.

(4) coverby(𝑜, 𝑟1, 𝑅1, 𝑟2, 𝑅2): it checks whether ring(𝑜, 𝑟1, 𝑅1) is covered by ring(𝑜, 𝑟2, 𝑅2), where both
rings are centered at 𝑜 .

(5) overlap(𝑜, 𝑟1, 𝑅1, 𝑟2, 𝑅2): it checks whether ring(𝑜, 𝑟1, 𝑅1) overlaps with ring(𝑜, 𝑟2, 𝑅2), where both
rings are centered at 𝑜 .

4.2 RangeQuery Processing

Main Idea. To answer range queries, we use a breadth-first search in the LiteHST and classify any
searched node 𝑣 into three kinds:

(1) The 𝑣 ’s covered objects (i.e., from 𝑣 .lth leaf to 𝑣 .rth leaf) can be directly added to the query
answer, when they are guaranteed to be inside the query range (by Lemma 2 (1) and (3)).

(2) The 𝑣 ’s covered objects (i.e., from 𝑣 .lth leaf to 𝑣 .rth leaf) can be ignored, when they are guaran-
teed to be outside the query range (by Lemma 2 (2), (4)-(6) and Lemma 3).

(3) Otherwise, we need to search the children of this node 𝑣 .

Pruning Strategy. Let 𝑣 denote the current node during the breadth-first search and dis2q =
dis(𝑣 .cp, 𝑞) be the distance from its center 𝑣 .cp to the query object 𝑞. The basic idea of our pruning
strategies is as follows. We first derive the lower bound (𝐿𝐵) and upper bound (𝑈𝐵) of the distances
from 𝑣 .cp to any object inside the query range (no matter whether it is in 𝑉 or not). Then, for
this node 𝑣 , its child or its right sibling, we derive the lower bound (𝑙𝑏) and upper bound (𝑢𝑏) of
the distances from 𝑣 .cp to any object covered by 𝑢. Finally, we use these bounds and primitive
operations to determine the right kind for each node. All these bounds are derived based on (1)
properties of metric space (in Def. 1), (2) structures of our index LiteHST (in Sec. 3.1), and (3) the
construction method (in Sec. 3.2).

When an internal node 𝑣 is searched, Lemma 2 is used to prune its child nodes. When some child
nodes (𝑢1, 𝑢2, · · · , 𝑢𝑖−1) of 𝑣 are also searched, Lemma 3 is used to prune their sibling nodes.

Lemma 2. Given a range query 𝑄𝑟𝑎𝑛𝑔𝑒 (𝑉 ,𝑞, 𝑟 ), a node 𝑣 , 𝑣 ’s non left-most child 𝑢, and dis2q =
dis(𝑣 .cp, 𝑞), our pruning strategy is

(1) 𝑣 ’s covered objects are in the query range if dis2q + radAt(𝑣 .lev) ≤ 𝑟 ;
(2) 𝑣 can be pruned if overlap(𝑣 .cp, 𝐿𝐵,𝑈𝐵, 0, radAt(𝑣 .lev)) is false, where 𝐿𝐵 = max{0, dis2q − 𝑟 },
𝑈𝐵 = min{radAt(𝑣 .lev), dis2q + 𝑟 };
(3)𝑢’s covered objects are in the query range if dis2q+min{radAt(𝑣 .lev), 𝑢.dis2cp+ radAt(𝑢.lev)} ≤ 𝑟 ;
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Algorithm 3: Answer exact range query

input :a range query 𝑄𝑟𝑎𝑛𝑔𝑒 (𝑉 ,𝑞, 𝑟 ) and LiteHST 𝑇
output : the exact answer (denoted by 𝑎𝑛𝑠)

1 𝑟𝑡 ← 𝑇 ’s root, queue 𝑄 ← {(𝑟𝑡, dis(𝑟𝑡 .cp, 𝑞))};

2 while 𝑄 is not empty do

3 (𝑟𝑡, dis2q) ← pop from the head of 𝑄 ;

4 foreach node 𝑣 ∈ {𝑟𝑡} ∪ {𝑟𝑡 ’s left-most descendants} do

5 if Lemma 2 (1) is satisfied then

6 add all 𝑣 ’s objects into 𝑎𝑛𝑠 and break;

7 if Lemma 2 (2) is satisfied then break;

8 if Lemma 2 (6) is satisfied then continue;

9 dis2q∗ ← dis2q, 𝑢∗ ← 𝑣 ’s left-most child;

10 foreach node 𝑢 ∈ non left-most children of 𝑣 do
11 if Lemma 2 (3) is satisfied then

12 add all 𝑢’s objects into 𝑎𝑛𝑠 and continue;

13 if Lemma 2 (4) and Lemma 3 (1) are violated then push (𝑢, dis(𝑢.cp, 𝑞)) to the tail

of 𝑄 and maintain 𝑢∗, dis2q∗ based on Lemma 3;

14 if Lemma 3 (2) is satisfied then break;

15 if Lemma 2 (5) is satisfied then break;

(4) 𝑢 can be safely pruned if overlap(𝑣 .cp, 𝐿𝐵,𝑈𝐵, 𝑙𝑏,𝑢𝑏) is false, where 𝑙𝑏 = max{radAt(𝑣 .lev +

1), disTAt(𝑣 .lev)/𝑣 .distort, 𝑢.dis2cp−radAt(𝑢.lev)},𝑢𝑏 = min{radAt(𝑣 .lev), 𝑢.dis2cp+radAt(𝑢.lev)};
(5) 𝑣 ’s left-most child node can be pruned if radAt(𝑣 .lev + 1) < 𝐿𝐵;
(6) 𝑣 ’s other child nodes can be pruned if radAt(𝑣 .lev + 1) > 𝑈𝐵.

Lemma 3. Given a range query𝑄𝑟𝑎𝑛𝑔𝑒 (𝑉 ,𝑞, 𝑟 ), an internal node 𝑣 , its child nodes𝑢1, 𝑢2, · · · , 𝑢𝑘 (from
left to right), we have searched the first 𝑖 − 1 child nodes and define 𝑢∗ = argmin𝑗<𝑖 dis(𝑢 𝑗 .cp, 𝑞) and
dis2q∗ = dis(𝑢∗ .cp, 𝑞). Our pruning strategy is:

(1)𝑢𝑖 can be pruned if overlap(𝑢
∗ .cp, 𝐿𝐵,𝑈𝐵, 𝑙𝑏,𝑢𝑏) is false, where the bounds 𝐿𝐵 = max{0, dis2q∗−𝑟 },

𝑈𝐵 = min{2radAt(𝑣 .lev), dis2q∗ +𝑟 }, 𝑙𝑏 = max{radAt(𝑣 .lev+1), disTAt(𝑣 .lev)/𝑣 .distort, |𝑢∗ .dis2cp−
𝑢𝑖 .dis2cp | − radAt(𝑢𝑖 .lev)}, and 𝑢𝑏 = 𝑢∗ .dis2cp +min{radAt(𝑣 .lev), 𝑢𝑖 .dis2cp + radAt(𝑢𝑖 .lev};
(2) 𝑢𝑖 and its right sibling nodes can be pruned ifmax{radAt(𝑣 .lev + 1), disTAt(𝑣 .lev)/𝑣 .distort} − 𝑟 >
dis2q∗.

Algorithm Details. In Algo. 3, we use a queue𝑄 to maintain the next internal node to be searched.
Lines 4-15 search the subtree rooted at the 𝑟𝑡 whose center to the query object 𝑞 is dis2q. Specifically,
we use 𝑣 to denote 𝑟𝑡 itself or any 𝑟𝑡 ’s left-most descendants. Since all the iterated nodes 𝑣 have
the same center object, we have dis2q = dis(𝑣 .cp, 𝑞). If the condition of line 5 is satisfied, then all
the objects contained in 𝑣 must be inside the query range. Lines 7-8 testify whether the objects
contained in 𝑣 and its left siblings are outside the query range. In lines 9-15, we enumerate each
non left-most child node of 𝑢 and put it into 𝑄 when its covered objects may be in the query range.
Line 11 puts all 𝑢’s covered objects into the answer 𝑎𝑛𝑠 , if the corresponding circular range of 𝑢 is
covered by the query range. Lines 13-15 are based on Lemmas 2 and 3. In line 13, dis2q∗ and 𝑢∗,
which are used to prune 𝑢’s right siblings (i.e., break the inner loop of line 10), are maintained by
Lemma 3. Line 15 is used to prune 𝑣 ’s right siblings.
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Example 4. Back to Example 1. We want to use the LiteHST in Fig. 2 to answer the range query
𝑄𝑟𝑎𝑛𝑔𝑒 (𝑣0 = 𝐴𝐺𝐶𝐴𝐺𝐶𝑇,𝑉 , 1). The searching procedure of Algo. 3 starts from the root 𝑢0. In lines
4-15, we try to prune some unqualified nodes which have no objects within the query range. For
example, when dis2q = dis(𝑢0.cp, 𝑣0) = 0, we can safely prune the node 𝑢8 due to Lemma 2 (6).
Specifically, we first compute𝑈𝐵 = min{radAt(𝑢0.lev), dis2q + 𝑟 } = min{𝑤1, 0 + 1} = 1. Thus, we
have radAt(𝑢0 .lev + 1) = 𝑤2 > 𝑈𝐵 and Lemma 2 ensures that no object covered by 𝑢9 belongs to
the query answer.

4.3 𝑘NNQuery Processing

Main Idea. For 𝑘NN queries, we use a best-first-search algorithm with an adaptively decreased

searching radius (denoted by 𝑟𝑘 ). During the search, we still use the pruning strategy for a range
query 𝑄𝑟𝑎𝑛𝑔𝑒 (𝑉 ,𝑞, 𝑟𝑘 ) to get the candidate objects. When the searching radius 𝑟𝑘 is decreased to
the 𝑘th nearest distance to the query object 𝑞, we will eventually find the 𝑘 nearest neighbors.
Specifically, a heap 𝑄 is used to organize the searching orders of the nodes (say 𝑢) based on

the lower bound 𝑑𝑚𝑖𝑛 of distances from the query object 𝑞 to 𝑢’s covered objects, i.e., 𝑑𝑚𝑖𝑛 =
{0, dis(𝑢.cp, 𝑞) − radAt(𝑢.lev)}. We can safely terminate the search procedure when the top element
in the heap 𝑄 is larger than the radius 𝑟𝑘 .
Besides, the radius 𝑟𝑘 is maintained with the longest distance in a distance set 𝑁𝑁𝑑𝑖𝑠 , which

has at most 𝑘 distances of different objects in 𝑉 to the query object 𝑞. Specifically, for a node 𝑢,
𝑑𝑚𝑎𝑥 is used to denote the upper bound of distances from the query object 𝑞 to 𝑢’s covered objects,
i.e., 𝑑𝑚𝑎𝑥 = dis(𝑢.cp, 𝑞) + radAt(𝑢.lev) (𝑢 is an internal node) and 𝑑𝑚𝑎𝑥 = dis(𝑢.cp, 𝑞) (𝑢 is a leaf
node). Then, we can put at most min{𝑘,𝑢.rs − 𝑢.l + 1} objects into 𝑁𝑁𝑑𝑖𝑠 with the distance upper
bound 𝑑𝑚𝑎𝑥 and maintain 𝑟𝑘 accordingly. Once an internal node has been popped from 𝑄 , we also
remove the corresponding upper bounds in 𝑁𝑁𝑑𝑖𝑠 .

Pruning Strategy. Except for Lemma 2 and Lemma 3, we propose another pruning strategy in
Lemma 4 for processing 𝑘NN queries.

Lemma 4. Given a 𝑘NN query 𝑄𝑘𝑛𝑛 (𝑉 ,𝑞, 𝑘), an internal node 𝑝 , 𝑝’s child nodes 𝑣1, 𝑣2, · · · , 𝑣𝑘 (from

left to right), 𝑣1’s left-most child node 𝑢1, and dis2q = dis(𝑝.cp, 𝑞), our pruning strategy is as follows.

The nodes 𝑣2-𝑣𝑘 can be pruned if dis2q ≤ radAt(𝑢1.lev + 1) and the number of objects in 𝑢1 is no
smaller than 𝑘 (i.e., 𝑢1.r − 𝑢1 .l + 1 ≥ 𝑘).

Algorithm Details. In line 1 of Algo. 4, we compute the distance (dis2q) from 𝑞 to the root’s
center object. We also calculate the lower/upper bound (𝑑𝑚𝑖𝑛/𝑑𝑚𝑎𝑥) of distances from 𝑞 to the
roots’ covered objects. We also use 𝑟𝑘 to denote the searching radius. After that, we push the tuple
(𝑟𝑡, dis2q, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥) into a min-heap 𝑄 , where the tuples in 𝑄 are maintained based on 𝑑𝑚𝑖𝑛.
We add the tuple (𝑟𝑡, 𝑑𝑚𝑎𝑥, 𝑘) into a distance set 𝑁𝑁𝑑𝑖𝑠 , where 𝑘 denotes at least 𝑘 objects in 𝑟𝑡
that have distances to 𝑞 within 𝑑𝑚𝑎𝑥 and the tuples in 𝑁𝑁𝑑𝑖𝑠 are maintained by 𝑑𝑚𝑎𝑥 . Lines 2-14
depict the searching procedure. Line 3 pops the top tuple (𝑣, dis2q, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥) from the top of 𝑄 .
Iterations in lines 4-14 search each child node 𝑢 of 𝑣 . Here, the pruning strategies (i.e., Lemma 2 and
Lemma 3) for range query processing can be also used in these iterations. If 𝑢 is not pruned, we will
calculate dis2q, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 with respect to 𝑢 in lines 6-10. If 𝑑𝑚𝑖𝑛 ≤ 𝑟𝑘 , we will update 𝑄, 𝑁𝑁𝑑𝑖𝑠 ,
and 𝑟𝑘 in lines 12-14. In line 15, the exact answer 𝑎𝑛𝑠 is obtained from the objects in 𝑁𝑁𝑑𝑖𝑠 .

4.4 Learning based Optimization

Main Idea. Intuitively, a smaller 𝑟𝑘 in Algo. 4 implies faster processing for a 𝑘NN query. Thus, we
design a learning-based optimization to derive a small enough initialization (denoted by 𝑟𝑘 ) of the
searching radius 𝑟𝑘 . By this way, we can save the time cost, since the above pruning strategies are
more likely to work when the radius is short. Specifically, our optimization works as follows.

(1) We use the regression model to predict the position 𝑞𝑖𝑑 of the query object 𝑞 at the leaf level.
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Algorithm 4: Answer exact 𝑘NN query

input :a 𝑘NN query 𝑄𝑘𝑛𝑛 (𝑉 ,𝑞, 𝑘) and LiteHST 𝑇
output : the exact answer (denoted by 𝑎𝑛𝑠)

1 𝑟𝑡 ← 𝑇 ’s root, dis2q ← dis(𝑟𝑡 .cp, 𝑞), 𝑑𝑚𝑖𝑛 ← max{0, dis2q − radAt(𝑟𝑡 .lev)},
𝑑𝑚𝑎𝑥 ← dis2q + radAt(𝑟𝑡 .lev), 𝑟𝑘 ← 𝑑𝑚𝑎𝑥 , 𝑄 ← {(𝑟𝑡, dis2q, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥)},
𝑁𝑁𝑑𝑖𝑠 ← {(𝑟𝑡, 𝑑𝑚𝑎𝑥, 𝑘)};

2 while 𝑄 is not empty and top element’s 𝑑𝑚𝑖𝑛 ≤ 𝑟𝑘 in 𝑄 do

3 (𝑣, dis2q, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥) ← pop from the top of 𝑄 ;

4 foreach child node 𝑢 of the node 𝑣 do
5 Use Lemma 2 and Lemma 3 to prune 𝑢 for a circular range query

𝑄𝑟𝑎𝑛𝑔𝑒 (𝑢’s objects, 𝑞, 𝑟𝑘 );

6 dis2q ← dis(𝑢.cp, 𝑞);

7 if 𝑢 is an internal node then

8 𝑑𝑚𝑎𝑥 ← dis2q + radAt(𝑢.lev);

9 𝑑𝑚𝑖𝑛 ← max{0, dis2q − radAt(𝑢.lev)};

10 else 𝑑𝑚𝑎𝑥 ← dis2q, 𝑑𝑚𝑖𝑛 ← dis2q ;

11 if 𝑑𝑚𝑖𝑛 ≤ 𝑟𝑘 then

12 Push (𝑢, dis2q, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥) into min-heap 𝑄 ;

13 Add (𝑢,𝑑𝑚𝑎𝑥,𝑢.r − 𝑢.l + 1) into 𝑁𝑁𝑑𝑖𝑠 ;

14 𝑟𝑘 ← the 𝑘th longest distance in 𝑁𝑁𝑑𝑖𝑠 ;

15 𝑎𝑛𝑠 ← the objects contained in the nodes in 𝑁𝑁𝑑𝑖𝑠 ;

(2) We use our estimation algorithm (i.e., Algo. 5) to derive a suitable initial value 𝑟𝑘 based on 𝑞𝑖𝑑
and 𝑘 for the 𝑘NN query.

(3) Finally, we set 𝑟𝑘 with 𝑟𝑘 and run Algo. 4.

Although a learning model may involve errors, the following lemma guarantees the correctness of
our solution to 𝑘NN queries.

Lemma 5. The estimation 𝑟𝑘 in line 5 of Algo. 5 is an upper bound of the 𝑘th nearest distance to the

query object 𝑞.

Proof. Let 𝑉 ′ be the objects covered by the node 𝑣 in line 5 of Algo. 5. Due to the construction
of Lite-HST, we have ∀𝑥 ∈ 𝑉 ′, dis(𝑣 .cp, 𝑥) ≤ radAt(𝑣 .lev). By the triangle inequality, we know
dis(𝑞, 𝑥) ≤ dis(𝑞, 𝑣 .cp) + dis(𝑣 .cp, 𝑥) ≤ dis(𝑣 .cp, 𝑞) + radAt(𝑣 .lev). Since 𝑉 ′ has at least 𝑘 objects
(line 4), we can derive that the estimation 𝑟𝑘 is no shorter than the 𝑘th nearest distance. �

Algorithm Details. For the regression, the main challenge is how to derive the feature vectors for
each input object in 𝑉 , since the metric studied in our paper may not be a coordinate space (e.g.,
Euclidean space). To tackle this challenge, we borrow the idea of Lipschitz embeddings defined in
Sec. 2.2. Specifically, we select𝑚 objects in 𝑉 as𝑚 reference sets in Lipschitz embeddings, where
each reference set has only one object. After that, we create a𝑚-dimensional coordinate as feature
vectors of each object, and the label is its position in the leaf level. To pick these𝑚 objects, we
first compute the total number of objects have been covered by each object in 𝑉 in all levels of a
LiteHST and then choose the top-𝑚 objects that have the largest total number. Finally, existing
regression model can be used to predict the mapping position in the leaf level for each new object,
e.g., Gradient Boosting Regression Tree (GBRT) [45] with𝑚 = 15 is used in our experiments.
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Algorithm 5: Estimate the 𝑘th nearest distance

input :a 𝑘NN query 𝑄𝑘𝑛𝑛 (𝑉 ,𝑞, 𝑘) and LiteHST 𝑇
output :an estimation 𝑟𝑘 of the 𝑘th nearest distance to 𝑞

1 𝑞𝑖𝑑 ← predict the position of 𝑞 at the leaf level;

2 𝑣 ← the 𝑞𝑖𝑑th leaf on LiteHST 𝑇 ;

3 while 𝑣 is not empty do

4 if 𝑣 covers more than 𝑘 objects then

5 𝑟𝑘 ← dis(𝑣 .cp, 𝑞) + radAt(𝑣 .lev), break;

6 𝑣 ← the parent of 𝑣 ;

For the estimation, Algo. 5 illustrates the details. In lines 1-2, we first predict the position 𝑞𝑖𝑑 of
the query object 𝑞 at the leaf level and use 𝑣 to denote the 𝑞𝑖𝑑th leaf. Lines 3-6 traverse the ancestors
of this leaf node. If this ancestor covers more than 𝑘 objects, we estimate the 𝑘th nearest distance
in line 5 and break the iteration. The estimation 𝑟𝑘 is an upper bound of 𝑘th nearest distance.

Example 5. Back to Example 1. We try to answer a 𝑘NN query 𝑄𝑘𝑛𝑛 (𝐴𝐺𝐶𝐴𝐺𝐶𝑇,𝑉 , 2). If we can
predict the accurate position of the query object 𝑣0 = AGCAGCT in the leaf level (i.e., 𝑞𝑖𝑑 = 1 in
Fig. 2), we can easily infer that 𝑣 = 𝑢2 covers no fewer than 2 objects in line 4. Thus, in line 5, we
can estimate the initial value of 𝑟𝑘 is 𝑟𝑘 = dis(𝑢2.cp, 𝑞) + radAt(𝑢2.lev) = 0.0 + 1.94 = 1.94.

Remark. The parameter𝑚 can be tuned based on the intrinsic dimensionality of the datasets. For
example, we can tune this parameter by slightly changing the values of𝑚 around the intrinsic
dimensionality and observing the query efficiency of a random query workload. This is because
existing research [25, 58] has suggested to use the intrinsic dimensionality to be the number of
reference points in Lipschitz embeddings. The intrinsic dimensionality can be computed by two
ways: global methods and local methods. Their main difference is that a global method provides
an estimation for all objects while a local method computes the estimation for partial objects. For
example, a popular global method [23] uses 𝜇2/𝜔2 as the intrinsic dimensionality, where 𝜇 and 𝜔
are the mean and variance of pairwise distances. By contrast, local methods [6, 7] estimate the local
intrinsic dimensionality (LID) [48–51] of partial objects. According to [21], the (global) intrinsic
dimensionality can be estimated by averaging the LID values over large enough samples. The local
methods are relatively efficient and can be applied here due to the result in Lemma 5.

4.5 Deferred Proofs of Lemmas 2-4

The proof of Lemma 2 is as follows.

Proof. Let 𝑥 be an object contained in 𝑣 and 𝑦 be an object contained in its child node 𝑢.
Based on the node structure and construction algorithm, we know dis(𝑣 .cp, 𝑥) ≤ radAt(𝑣 .lev),
dis(𝑣 .cp, 𝑦) ≤ radAt(𝑣 .lev), dis(𝑢.cp, 𝑦) ≤ radAt(𝑢.lev), 𝑢.dis2cp = dis(𝑣 .cp, 𝑢.cp).

Case (1). We derive the upper bound of dis(𝑞, 𝑥) as

dis(𝑞, 𝑥) ≤ dis(𝑣 .cp, 𝑞) + dis(𝑣 .cp.𝑥) ≤ dis2q + radAt(𝑣 .lev).

The prerequisite of this case is dis2q + radAt(𝑣 .lev) ≤ 𝑟 , which means dis(𝑞, 𝑥) ≤ 𝑟 and 𝑥 is inside
the query range.
Case (2). Let 𝐿𝐵 and 𝑈𝐵 denote the lower bound and upper bound of distances between 𝑣 .cp

and any object 𝑧 that is inside the query range and contained in 𝑣 . As 𝑧 is in the query range,
we know dis(𝑞, 𝑧) ≤ 𝑟 . By the triangle inequality, we have dis(𝑣 .cp, 𝑧) ≥ dis(𝑣 .cp, 𝑞) − dis(𝑞, 𝑧) ≥
dis2q − 𝑟 and dis(𝑣 .cp, 𝑧) ≤ dis(𝑣 .cp, 𝑞) + dis(𝑞, 𝑧) ≤ dis2q + 𝑟 . Since 𝑧 is contained in 𝑣 , we know
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dis(𝑣 .cp, 𝑧) ≤ radAt(𝑣 .lev). Now, we have proved the correctness of 𝐿𝐵 and 𝑈𝐵. We next derive
the lower bound of dis(𝑞, 𝑥) as

dis(𝑞, 𝑥) ≥ dis(𝑣 .cp, 𝑞) − dis(𝑣 .cp.𝑥) ≥ dis2q − radAt(𝑣 .lev).

The prerequisite of this case is radAt(𝑣 .lev) < 𝐿𝐵 < dis2q − 𝑟 , which means dis(𝑞, 𝑥) > 𝑟 and 𝑥 is
not in the query range.

Case (3). We derive the upper bound of the distance dis(𝑞,𝑦) as:

dis(𝑞,𝑦) ≤ dis(𝑞, 𝑣 .cp) + dis(𝑣 .cp, 𝑦) ≤ dis2q + radAt(𝑣 .lev)

dis(𝑞,𝑦) ≤ dis(𝑞, 𝑣 .cp) + dis(𝑣 .cp, 𝑢.cp) + dis(𝑢.cp, 𝑦)

≤ dis2q + 𝑢.dis2cp + radAt(𝑢.lev)

The prerequisite of this case is dis2q + radAt(𝑣 .lev) ≤ 𝑟 and dis2q + 𝑢.dis2cp + radAt(𝑢.lev) ≤ 𝑟 ,
which means dis(𝑞,𝑦) ≤ 𝑟 and 𝑦 is inside the query range.

Case (4). 𝑙𝑏 and 𝑢𝑏 denote the lower bound and upper bound of distance from 𝑣 .cp to 𝑦. We first
show the correctness of 𝑙𝑏. As 𝑢 contains 𝑦 and 𝑢 is not 𝑣 ’s left-most child, we have dis(𝑣 .cp, 𝑦) >
radAt(𝑣 .lev + 1) (otherwise, the left-most child is 𝑢). Since 𝑣 is the lowest common ancestor of the
leaves of 𝑣 .cp and 𝑦, we have 𝐷𝑖𝑠𝑇 (𝑦, 𝑣 .cp) = disTAt(𝑣 .lev) by Def. 6. Based on Def. 4, we know
dis(𝑦, 𝑣 .cp) ≥ 𝐷𝑖𝑠𝑇 (𝑦, 𝑣 .cp)/𝑣 .distort ≥ disTAt(𝑣 .lev)/𝑣 .distort. By the triangle inequality, we have
dis(𝑦, 𝑣 .cp) ≥ dis(𝑣 .cp, 𝑢.cp) − dis(𝑦,𝑢.cp) ≥ 𝑢.dis2cp − radAt(𝑢.lev).
We next prove the correctness of 𝑢𝑏. Similar to that of 𝑙𝑏, we have dis(𝑦, 𝑣 .cp) ≤ dis(𝑣 .cp, 𝑢.cp) +

dis(𝑦,𝑢.cp) ≥ 𝑢.dis2cp + radAt(𝑢.lev). Since 𝑣 contains 𝑦, dis(𝑦, 𝑣 .cp) ≤ radAt(𝑣 .lev).
We finally prove the statement of this case. The prerequisite of this case is that ring(𝑣 .cp, 𝐿𝐵,𝑈𝐵)

does not overlap with ring(𝑣 .cp, 𝑙𝑏,𝑢𝑏). Due to the definitions of these lower/upper bounds, the
object 𝑦 cannot be inside the query range,

Case (5). This case is a corollary of the second case. Let 𝑣 ′ be the left-most child node of 𝑣 . Based
on the construction algorithm, we know radAt(𝑣 ′ .lev) ≤ radAt(𝑣 .lev + 1) and 𝑣 ′ .cp = 𝑣 .cp =⇒
dis2q′ = dis(𝑣 ′ .cp, 𝑞) = dis2q. The prerequisite of this case is radAt(𝑣 .lev + 1) < 𝐿𝐵, where
𝐿𝐵 = max{0, dis2q − 𝑟 }. Thus, we have radAt(𝑣 ′ .lev) < max{0, dis2q′ − 𝑟 }. We complete the proof
by substituting 𝑣 ′, dis2q′ for 𝑣, dis2q in the second case.

Case (6). This case is a corollary of the fourth case. Based on the prerequisite, we can infer that
𝑢2𝑣𝐿𝐵 ≥ radAt(𝑣 .lev + 1) > 𝑈𝐵. Thus, overlap(𝑣 .cp, 𝐿𝐵,𝑈𝐵,𝑢2𝑣𝐿𝐵,𝑢2𝑣𝑈𝐵) is always false. �

The proof of Lemma 3 is as follows.

Proof. Let 𝑥 be an object contained in 𝑢𝑖 . Based on the construction algorithm of LiteHST,
we know dis(𝑣 .cp, 𝑢∗ .cp) ≤ radAt(𝑣 .lev), dis(𝑣 .cp, 𝑥) ≤ radAt(𝑣 .lev), dis(𝑢𝑖 .cp, 𝑥) ≤ radAt(𝑢𝑖 .lev),
𝑢∗ .dis2cp
= dis(𝑣 .cp, 𝑢∗ .cp), and 𝑢𝑖 .dis2cp = dis(𝑣 .cp, 𝑢𝑖 .cp).
Case (1). Let 𝐿𝐵 and 𝑈𝐵 denote the lower bound and upper bound of distances from 𝑢∗ .cp

to any object 𝑧 that is in the query range and contained in 𝑢∗. Let 𝑙𝑏 and 𝑢𝑏 denote the lower
bound and upper bound of distance from 𝑢∗ .cp and 𝑥 . The proof of Lemma 2 (2) has shown the
correctness of 𝐿𝐵 and dis(𝑢∗ .cp, 𝑧) ≤ dis2q∗ + 𝑟 . Hence, we only need to prove dis(𝑢∗ .cp, 𝑧) ≤

2radAt(𝑣 .lev). As both 𝑢∗ .cp and 𝑧 are contained in 𝑣 , we know dis(𝑣 .cp, 𝑢∗ .cp) ≤ radAt(𝑣 .lev)
and dis(𝑣 .cp, 𝑧) ≤ radAt(𝑣 .lev). By triangle inequality, we have dis(𝑣 .cp, 𝑢∗ .cp) + dis(𝑣 .cp, 𝑧) ≤

radAt(𝑣 .lev) + radAt(𝑣 .lev).
We next prove the correctness of 𝑙𝑏. By the proof of Lemma 2 (4), we know dis(𝑢∗ .cp, 𝑥) is no

smaller than radAt(𝑣 .lev + 1) and disTAt(𝑣 .lev)/𝑣 .distort. Therefore, we can derive dis(𝑢∗ .cp, 𝑥) ≥
dis(𝑢∗ .cp, 𝑢𝑖 .cp) − dis(𝑢𝑖 .cp, 𝑥) ≥ |dis(𝑣 .cp, 𝑢∗ .cp) − dis(𝑣 .cp, 𝑢𝑖 .cp) | − radAt(𝑢𝑖 .lev) ≥ |𝑢∗ .dis2cp −
𝑢𝑖 .dis2cp | − radAt(𝑢𝑖 .lev).
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Then, we prove the correctness of 𝑢𝑏. From the proof of Lemma 2 (4), we know dis(𝑢∗ .cp, 𝑥) ≤
𝑢∗ .dis2cp+radAt(𝑣 .lev). Similar to the proof of 𝑙𝑏, we can derive that dis(𝑢∗.cp, 𝑥) ≤ dis(𝑣 .cp, 𝑢∗ .cp)+
dis(𝑣 .cp, 𝑢𝑖 .cp) + radAt(𝑢𝑖 .lev) ≤ 𝑢∗ .dis2cp + 𝑢𝑖 .dis2cp + radAt(𝑢𝑖 .lev).
We finally prove the statement of the first case. If ring(𝑢∗ .cp, 𝐿𝐵,𝑈𝐵) does not overlap with

ring(𝑢∗ .cp, 𝑙𝑏,𝑢𝑏). the object 𝑥 cannot be in the query range due to definitions of these bounds.
Case (2). The prerequisite of this case is max{radAt(𝑣 .lev + 1), disTAt(𝑣 .lev)/𝑣 .distort} > 𝑟 +

dis2q∗, and this case is a corollary of the first case. Let 𝑦 be an object contained in child nodes
𝑢𝑖 , · · · , 𝑢𝑘 . Based on 𝑙𝑏’s definition, we know 𝑙𝑏 ≥ max{radAt(𝑣 .lev + 1), disTAt(𝑣 .lev)/𝑣 .distort}
for any of these child nodes. Based on 𝑈𝐵’s definition, we know 𝑈𝐵 ≥ dis2q∗ + 𝑟 . Based on the
prerequisite, we can infer 𝑙𝑏 > 𝑈𝐵, which means overlap(𝑢∗ .cp, 𝐿𝐵,𝑈𝐵, 𝑙𝑏,𝑢𝑏) is always false for
these child nodes. Thus, 𝑢𝑖-𝑢𝑘 can be pruned. �

The proof of Lemma 4 is as follows.

Proof. Let 𝑥 be an object contained in𝑢1 and𝑦 be an object contained in 𝑣2-𝑣𝑘 . Based on the node
structure and construction algorithm, we know 𝑝.cp = 𝑣1.cp = 𝑢1.cp, dis(𝑝.cp, 𝑥) = dis(𝑢1 .cp, 𝑥) ≤
radAt(𝑢1.lev), dis(𝑝.cp, 𝑦) = dis(𝑣1.cp, 𝑦) is between radAt(𝑣1.lev + 1) and radAt(𝑣1.lev)]. Based on
the definition of radAt(·), we know radAt(𝑣1 .lev) ≥ 2radAt(𝑢1.lev) ≥ 22radAt(𝑢1.lev + 1).
We first derive the lower bound of dis(𝑞,𝑦) as follows.

dis(𝑞,𝑦) ≥ dis(𝑝.cp, 𝑦) − dis(𝑝.cp, 𝑞) ≥ dis(𝑝.cp, 𝑦) − dis2q

> radAt(𝑣1.lev + 1) − radAt(𝑢1 .lev + 1)

> 22radAt(𝑢1 .lev + 1) − radAt(𝑢1.lev + 1)

> 3radAt(𝑢1.lev + 1)

We next derive the upper bound of dis(𝑞, 𝑥) as follows.

dis(𝑞, 𝑥) ≤ dis(𝑝.cp, 𝑥) + dis(𝑝.cp, 𝑞) ≤ dis(𝑝.cp, 𝑥) + dis2q

≤ radAt(𝑢1 .lev) + radAt(𝑢1 .lev + 1)

≤ 2radAt(𝑢1.lev + 1) + radAt(𝑢1 .lev + 1)

≤ 3radAt(𝑢1.lev + 1)

Based on the prerequisite, 𝑢1 contains at least 𝑘 objects (e.g., 𝑥). The proof above indicates the
their distances to 𝑞 are no longer than 3radAt(𝑢1 .lev + 1). Thus, the distance between 𝑞 and its
𝑘th nearest neighbor is no longer than 3radAt(𝑢1 .lev + 1). Since dis(𝑞,𝑦) > 3radAt(𝑢1 .lev + 1), the
object 𝑦 cannot be the k nearest neighbors of 𝑞 and hence can be pruned. �

5 EXPERIMENTAL STUDY

This section conducts experiments under two scenarios: main-memory and external-memory.

5.1 Experiment in Main-Memory

As aforementioned, in-memory similarity search is our major concern and hence we first conduct
experiments in main-memory.

5.1.1 Experimental Setup. Datasets. Table 2 lists the datasets used in our experiments. Color [37]
is an image dataset, where each object is associated with 112-dimensional features extracted from
color histograms of 112,682 MPEG-7 images and the 𝐿2 distance is suggested in [37]. Dutch [37] and
English [1] are both string datasets, where each object is a word in Dutch and English, respectively.
Thus, we use edit distance to measure the similarity in these two datasets. BinStr is a synthetic
dataset to test the scalability, where each object is a unique binary string generated at random.
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Table 2. Statistics of the datasets

Datasets #(Objects) #(Dimension) Distance function

Color 112,682 112 𝐿2 distance
Dutch 229,328 1-40 Edit distance
English 466,550 1-45 Edit distance
BinStr 1,000,000 48 Hamming distance

Table 3. Parameter Settings

Parameters Settings

Radius 𝑟 2%, 4%, 8%, 16%, 32% (× the maximum distance)
Integer 𝑘 5, 10, 20, 50, 100

Parameters. Table 3 lists the varied parameters in our experiments. Specifically, we vary the length
of searching radius 𝑟 in range queries and increase the value of 𝑘 in 𝑘NN queries. The test ranges
of these two parameters are based on the existing survey [26], which are generally aligned with
existing studies on similarity search.

Compared Algorithms. To show the good efficiency of our solution (denoted by LiteHST), our
experiments compare with the state-of-the-art solutions from two aspects: query efficiency by
different indexes and query efficiency by different processing methods over same index (i.e., our
LiteHST), in Sec. 5.1.2 and Sec. 5.1.3.

First, we want to show the superior performance of our index LiteHST. Thus, based on a recent
survey [26] for in-memory similarity search, we choose the top 4 fastest indexes as our baseline
indexes, i.e., MVPT [16, 17], GNAT [18], BST [59] and BKT [20]. These indexes are also devised
based on either partitioning or embedding. We also compare with in-memoryM-tree [3, 27] and
the embedding-based index SPB-tree (SPBT for short) in a recent work [25]. As SPBT is a B-tree
based index, we also use the learned index PGM-index [36] to enhance its query efficiency and
space cost. All embedding-based indexes adopt the pivot selection algorithm HFI [25], since it often
leads to the best query efficiency [84].

Besides, we also want to demonstrate that simple extensions of existing query processingmethods
cannot fully utilize the structure properties of LiteHST and hence sometimes have worse efficiency
than the best among existing indexes. In this part, we have the following baselines from existing
literature.

• LiteHST𝑀𝑡𝑟𝑒𝑒 answers the similarity search over LiteHST by using the query processing of
the M-tree family [27], since each node in M-tree also corresponds to a ball partition.

• LiteHST𝐹𝑎𝑠𝑡𝑀𝑎𝑝 solves the similarity search over LiteHST by using a general framework [47]
for contractive embeddings.

• SOTA denotes the best result achieved by existing indexes, i.e., MVPT, GNAT, BST, BKT,
SPBT, andM-tree.

• LiteHST𝑂0 denotes the result of 𝑘NN query over LiteHST without our learning-based opti-
mization.

Implementation. All the algorithms are coded in C++ with a uniform implementation, and most
implementations of the existing solutions are referred to the well-known and open-sourced library
[37] maintained by the International Workshop on Similarity Search and Applications (SISAP).
For the learning-based optimization in 𝑘NN query, we use the Gradient Boosting Regression Tree
(GBRT) [45] implemented in scikit-learn [2] as our regression models. Similar to other learning-
enhanced index work [36, 61, 66], regression models have been trained in advance of queries.
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Fig. 3. Comparisons with GNAT, BST, BKT, MVPT, SPBT, and M-tree in range queries
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Fig. 4. Comparisons with GNAT, BST, BKT, MVPT, SPBT, and M-tree in 𝑘NN queries

Metrics. These algorithms are evaluated in terms of the number of distance computations (“#(Dis-
tance)” for short) and the running time, which are common metrics in existing work. We also report
the results of running time and space consumption on constructing these indexes. All experiments
are conducted on a server with the Intel Xeon(R) Gold 6240R 2.40GHz processor, 128 GB RAM and
1 TB disk space. Each parameter setting is repeated 50 times with randomly sampled query objects,
and the average result is reported.

5.1.2 Comparisons with Existing Indexes. Results of Range Query. Fig. 3 illustrates the experi-
mental comparisons with existing indexes in range queries. We can observe that our LiteHST is
always the most efficient in all four datasets. Specifically, LiteHST saves up to 1.8×, 11.0×, 4.5×
and 1.9× fewer distance computations than the runner-up in Color , Dutch, English, and BinStr

datasets, respectively. This time saving is due to the effective pruning rules designed in Lemmas
2 and 3. As a result, LiteHST is up to 19.5×-211.0× faster than the compared baselines in these
datasets. Besides, we can also observe that the efficiency of existing baselines generally gets worse
with the expansion of query ranges. However, for our index LiteHST, when the searching radius
becomes large enough, the efficiency sometimes gets better (e.g., Fig. 3f and Fig. 3g). This is due
to the pruning rules of Lemma 2 (1) and (3). That is, when the ball areas of more nodes get fully
covered by the increasingly enlarged query range, we do not have to check the distances from
the objects in these nodes to the query object, which reduces the time cost. Among the baselines,
MVPT is the fastest in Color and English datasets, GNAT is often the most efficient in BinStr dataset,
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Fig. 5. Comparisons with LiteHST𝐹𝑎𝑠𝑡𝑀𝑎𝑝 , LiteHST𝑀𝑡𝑟𝑒𝑒 and SOTA in range queries

Table 4. Results of construction in BinStr

Index BST BKT GNAT MVPT SPBT M-tree Ours

Time 4.9s 1.5s 2.0s 1.6s 26.6s 18.3s 86.5s
Space 27M 9M 31M 7M 23M 43M 34M

BKT and SPBT are sometimes the fastest in Dutch dataset, and M-tree sometimes has the least
distance computations in Dutch dataset.

Results of 𝑘NN Query. Fig. 4 presents the experimental comparisons with existing indexes in
𝑘NN queries. Our solution LiteHST always takes the least distance computations and the shortest
running time. For example, LiteHST is 1.3×-17.0× faster than the compared baselines in the Color
dataset, and it needs 2.2×-7.7× fewer distance computations in the English dataset. Besides, we
also observe the running time of all the solutions gets longer with the increase of 𝑘 . Among these
baselines, GNAT is the fastest in Color datasets, and MVPT is the fastest in English and BinStr

datasets. Although BKT or SPBT is often the least efficient, they are sometimes faster than GNAT

and BST. M-tree is often the slowest baseline. The results also validate our motivation that no
single method dominates all the others.

Results of Construction. Due to page limitations, we only list the results of construction in the
large-scale dataset (i.e.,BinStr). As shown in Table 4, all these methods can construct an index of up
to 1 million objects in less than 1.5 minutes with no more than 43 MB space, which is relatively
efficient for real-world scenarios. Among these compared baselines, BKT takes the lowest time
cost andMVPT consumes the least space cost. The results of our LiteHST are consistent with the
time and space complexity of the LiteHST, i.e., 𝑂 (𝑑𝑛 log𝑛) and 𝑂 (𝑛) respectively, where 𝑂 (𝑑) is
the time cost of a distance computation and 𝑛 is the number of objects. Although the results show
that constructing LiteHST takes longer time and more space than the others, this is still acceptable
when considering the notable improvement in query efficiency.
5.1.3 Comparisons with Existing Query Processing Methods Over LiteHST. Results of Range

Query. Fig. 5 presents the experimental comparisons with existing query processing methods
over LiteHST on range queries. First, we can observe that the state-of-the-art index (i.e., SOTA)
is not outperformed by existing approaches over LiteHST, i.e., LiteHST𝐹𝑎𝑠𝑡𝑀𝑎𝑝 and LiteHST𝑀𝑡𝑟𝑒𝑒 .
However, our query processing algorithm LiteHST is always faster than SOTA. Second, we can also
observe that the efficiency of LiteHST𝐹𝑎𝑠𝑡𝑀𝑎𝑝 is relatively stable. This is because the pruning rule
of LiteHST𝐹𝑎𝑠𝑡𝑀𝑎𝑝 relies on the value of distortion, which takes𝑂 (𝑛2) time in the construction and
hence is too slow for an in-memory index for similarity search. As a result, we use the theoretical
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Fig. 6. Comparisons with LiteHST𝐹𝑎𝑠𝑡𝑀𝑎𝑝 , LiteHST𝑀𝑡𝑟𝑒𝑒 , SOTA and LiteHST𝑂0 in 𝑘NN queries
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Fig. 7. Comparisons with DSACLT+, LC, PMT, SPBT, and M-tree in range queries (a-b) and 𝑘NN queries (c-d)

guarantee of the distortion (i.e., 96 log𝑛 in Lemma 1), which is too loose in practice. These issues
cause LiteHST𝐹𝑎𝑠𝑡𝑀𝑎𝑝 to be as slow as a linear scan since its pruning rule is often unsatisfactory.
Finally, these results validate that our solution utilizes the structure properties of LiteHST better
than the existing solutions.

Results of 𝑘NN Query. Fig. 6 depicts the experimental comparisons with existing query process-
ing methods over LiteHST on 𝑘NN queries. Overall, we can observe a similar pattern with the
experiments on range queries. That is, SOTA is still faster than LiteHST𝐹𝑎𝑠𝑡𝑀𝑎𝑝 and LiteHST𝑀𝑡𝑟𝑒𝑒 ,
but slower than our query processing algorithm LiteHST in all these tests. Moreover, we can
also evaluate the effect of our learning-based optimization by comparing between LiteHST and
LiteHST𝑂0. The comparison shows that our learning-based enhancement can save up to 5.52% of
the number of distance computations and reduce the time cost by up to 6.55%.

5.1.4 Summary ofMajor Experimental Findings. Wehave following observations in our experiments
under the main-memory scenario.
(1) The experiments in Sec. 5.1.2 validate our motivation, i.e., no single solution can dominate

other existing approaches in query efficiency of similarity search. For example, MVPT and GNAT are
often more efficient than BST and BKT. Although BKT is often the least efficient, sometimes it can
be faster than GNAT and BST.M-tree can have the least distance computations among baselines.
(2) The experiments in Sec. 5.1.3 prove that it is challenging and non-trivial to devise query

processing methods for tree embeddings.
(3) Our LiteHST outperforms the state-of-the-art solutions in query efficiency in two aspects:

number of distance computations and running time. For example, LiteHST is up to 19.5×-211.0×
faster than MVPT, GNAT, BST, BKT, SPBT, and M-tree in range queries, and up to 1.8×-17.1×
faster than them in 𝑘NN queries.
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5.2 Experiment in External-Memory

We also conduct an experiment in the external-memory scenario, since the dataset may not fit the
size of the main-memory.

5.2.1 Experimental Setup. Datasets. We use a public dataset called SIFT [4] with 100 million
objectives on the 𝐿2 metric space. Each objective is associated with 128-dimensional features. The
parameter settings for range queries and 𝑘NN queries are listed in Table 3.

Compared Algorithms. According to the recent survey [26], we choose the (averagely) top 4
fastest indexes for external-memory similarity search as our baselines, i.e., DSACLT+ [19], LC [39],
PM-tree [72] (PMT for short), and (external-memory) SPB-tree (SPBT for short) [25]. We also
compare with (external-memory)M-tree [27]. Note that since PGM-index [36] is an in-memory
learned index to enhance the performance of (in-memory) SPBT, we can no longer adopt this
learning-based optimization here.

Implementation. All solutions are coded in C++ with a uniform implementation based on the
open-sourced library [37] maintained by SISAP. All embedding-based indexes adopt the same pivot
selection algorithm called HFI [25] to pick 5 pivots, which often leads to the best query efficiency
based on the evaluation work [84]. They are configured to use a fixed disk page size of 4KB and a
cache size of 256KB. These configurations are commonly seen in existing research [9, 26, 33, 67].
The bucket size of LC is configured to be 1024KB, which can be regarded as 256 disk pages. This
parameter has been tuned by us, since a smaller bucket indicates (almost) unacceptable construction
time (e.g., over 2 days), and a larger size indicates a worse query efficiency. Other implementation
details are similar to those in Sec. 5.1.1.

Metrics. These solutions are evaluated in terms of the number of page access (“#(Page access)” for
short) and the running time (including both CPU time and I/O time). We report the number of page
accesses instead of the distance computations, since the former is more important to the running
time than the latter in the external-memory scenario. We also report the results of construction
time and index size. Each parameter setting is repeated 50 times with random objects, and the
average result is reported. The experimental environment is the same as that in Sec. 5.1.1. All these
experiments are conducted on a server with the Intel Xeon(R) Gold 6240R 2.40GHz processor, 128
GB RAM and 1 TB external disk space.

5.2.2 Experimental Results. Results of Range Query. Fig. 7a and Fig. 7b present the experimental
comparisons with existing external-memory indexes for range queries. We can first observe that
the running time and the number of page accesses will increase when the radius gets longer. This
is because more objects will be involved query answers when the query range gets larger. Our
LiteHST is always the most efficient in terms of both running time and I/O cost (i.e., the number
of page accesses). For example, LiteHST is up to 4.0×, 4.3×, 5.0×, 6.6×, and 8.3× faster than SPBT,
LC, PMT, DSACLT+, andM-tree, respectively. The number of page accesses by LiteHST is up to
3.5×-16.4× smaller than those by compared baselines. Besides, when the radius is the longest, the
top 3 fastest algorithms are LiteHST, DSACLT+, and LC (from the fastest solution to the slowest
one). They have closer running time and similar numbers of page accesses, because large portions
of objects are covered by the largest query range and large numbers of disk pages are accessed.
Overall, the improvements of LiteHST are due to our well-structured index and pruning rules in
the query processing. These results demonstrate that our solution LiteHST can still be a promising
solution in the external-memory scenario. Among these baselines, LC is often the most efficient.
SPBT and DSACLT+ can sometimes be the most efficient. PMT often has the largest number of
page accesses. Sometimes M-tree takes the longest running time. The results also show that no
single method always dominates all the others in the external-memory scenario.
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Table 5. Results of construction in SIFT (time: minute)

Index DSACLT+ LC PMT SPBT M-tree Ours

Time 9.5 2986 339 293 52 354
Space 162M 5M 553M 231M 215M 522M

Results of 𝑘NN Query. Fig. 7c and Fig. 7d illustrate the experimental results of 𝑘NN queries in
the external-memory scenario. In these results, it is obvious that our solution LiteHST still takes
the shortest running time and the least number of page accesses. For instance, the number of page
accesses by our solution is up to 1.5×-3.2× smaller than those by compared baselines, which leads
to the decrease in the time cost of LiteHST. In terms of running time, the rankings of the baselines
are LC, M-tree, DSACLT+, PMT, and SPBT (from the fastest baseline to the slowest one). As for the
number of page accesses, LC is still the best among these baselines, and DSACLT+ or SPBT can
sometimes be the runner-up. PMT has the highest I/O cost, since it takes the largest number of
page accesses.

Results of Construction. As shown in Table 5, most of these methods can construct an index of
100 million objects in less than 6 hours with no more than 553 MB space. Our method is comparably
fast with PMT, and faster than LC. Among these compared baselines, DSACLT+ is the fastest, and
M-tree is the runner-up in the time cost. LC, which takes over 2 days, is the slowest, but takes the
least space cost. Overall, although LiteHST takes a longer time and more space than some of the
baselines, this is acceptable when considering the data size and improvement in query efficiency.

5.2.3 Summary of Major Experimental Findings. We have the following observations in our experi-
ment in the external-memory.

(1) Our solution LiteHST can also efficiently process datasets that do not fit the size of the main-
memory. Moreover, the running time of LiteHST is notably shorter than the compared baselines in
both range queries and 𝑘NN queries.

(2) Among the baselines, LC is often the most efficient for both range queries and 𝑘NN queries.
However, the construction time of LC is much longer than the others.M-tree, DSACLT+, and SPBT

are relatively efficient. For example, SPBT is sometimes the fastest baseline in range queries.M-tree

is the runner-up baseline in terms of running time in 𝑘NN queries. DSACLT+ sometimes has fewer
numbers of page accesses thanM-tree and PMT.

6 RELATEDWORK

Our paper is related to similarity search and tree embeddings.

Similarity Search. Similarly search has been widely studied in the Database community. Following
the taxonomy in [26], we briefly review the existing research from two categories: partitioning
based solutions and pivot based solutions. Please refer to the surveys [23, 26, 46, 69] and books
[71, 82] for a more detailed review.

The basic idea of partitioning based solutions is to first separate the objects into disjoint partitions
and then prune the dissimilar objects in specific partitions. The compared algorithms in our
experiments, BST [59] and M-tree [27], belong to this category. Other examples include Spatial
Approximation Tree [64], LC family [22], D-index family [30, 31], and Δ-tree [29]. Our proposed
index LiteHST also applies a ball partition based technique.

For the pivot based solutions, the basic idea is to utilize the distances to a few selected pivots and
the properties like the symmetry and triangle inequality to derive the distance bounds and refine
the search space. Here, a pivot is a reference object that is often selected from the input objects 𝑉
and pivot mapping aims to embed the input metric into an 𝐿𝑝 metric via these pivots. Generally
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speaking, pivot mapping is a special version of Lipschitz Embedding (defined in Sec. 2.2), where
the cardinality of each reference set is 1. Examples in this category include GNAT [18], BKT [20],
MVPT [16, 17], Omni-family [58] and SPB-tree [25].
Recently, existing research also focuses on approximation solutions to similarity search (i.e.,

“approximate similarity search”). A few popular techniques for approximate similarity search include
locality-sensitive hashing (LSH) [43] (e.g., QALSH [55] and PM-LSH [83]), permutation-based
indexes [38, 77], pivot-based pruning (e.g., HD-index [9]), local intrinsic dimensionality (LID) based
optimization [52, 53], learning-based enhancement [8], and so on. Please refer to the tutorials
[32, 68] and benchmarks [10] for recent techniques for approximate similarity search. Note that
these algorithms usually find approximate answers instead of exact answers, or can only retrieve
exact answers with certain probabilities. By contrast, based on our problem definition in Def. 2-3, our
solution and compared baselines need to always find the exact answers. Thus, these approximation
solutions were not compared in our experiments.

Tree Embeddings. Bartal [12] proposed the first work on tree embeddings, i.e., Hierarchically
Separated Tree (HST). From then on, many studies have been proposed to find good tree embeddings.
The basic idea of tree embeddings is to map the objects in arbitrary metric spaces into a tree.

For example, we can map the objects in 𝑉 into the leaves of an HST, where HST is the tree
embedding of the input metric (𝑉 , dis). Early work [13, 35, 60] concentrated on studying the
distortion guarantee of a tree embedding, where the distortion is the standard measurement of
the quality of an embedding. Recent studies focus on efficiently constructing a tree embedding
[14, 40, 42, 80, 81]. or broadening the applications of tree embeddings (e.g., clustering [11], privacy
protection [24, 73], facility location [34], spatial crowdsourcing [74, 75], and route planning [28, 79]).
To the best of our knowledge, tree embeddings have never been used for exact similarity search.

7 CONCLUSION

This paper focuses on the in-memory similarity search, where similarity is measured by arbitrary
metrics and no feature vectors are known in advance to represent the objects. There is still no
single solution that can dominate all the other methods in terms of the query efficiency. To achieve
this goal, we are motivated by a new embedding technique for similarity search: tree embeddings.
Specifically, we propose a new index called LiteHST based on the classic tree embedding, HST.
Based on this new index, we propose efficient query processing methods with complex pruning
strategies for range and 𝑘NN queries in similarity search. Moreover, a learning-based optimization
is used to accelerate 𝑘NN queries. Finally, extensive experiments demonstrate that our solution
LiteHST outperforms the state-of-the-art solutions in the query efficiency.
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