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Abstract—Accurate forecasting of traffic flow plays a crucial
role in building smart cities in the new era. Previous work
has achieved success in learning inherent spatial and temporal
patterns of traffic flow. However, existing works investigated
the multiple periodicities (e.g., hourly, daily, and weekly) of
traffic via entanglement learning, which has not yet dealt with
distribution shift and interaction shift problems in traffic flow. In
this paper, we propose a novel disentanglement learning network,
called MUSE-Net, to tackle the limitations of entanglement
learning by simultaneously factorizing the exclusiveness and
interaction of multi-periodic patterns in traffic flow. Grounded
in the theory of mutual information, we first learn and dis-
entangle exclusive and interactive representations of traffics
from multi-periodic patterns. Then, we utilize semantic-pushing
and semantic-pulling regularizations to encourage the learned
representations to be independent and informative. Moreover,
we derive a lower bound estimator to tractably optimize the
disentanglement problem with multiple variables and propose a
joint training model for traffic forecasting. Extensive experimen-
tal results on several real-world traffic datasets demonstrate the
effectiveness of the proposed framework. The code is available
at: https://github.com/JianyangQin/MUSE-Net.

Index Terms—Traffic Flow Forecasting, Time Series, Multi-
variate, Disentanglement

I. INTRODUCTION

With the rapid development of cities, the urban population is

increasing, resulting in a growing number of instances of traf-

fic congestion encountered by people in their daily commutes.

To address traffic congestion, many countries are committed

to vigorously developing the Intelligent Transportation System

(ITS) [1]. Moreover, ITS is of great importance for many real-

world applications, such as public safety and disaster control

[2]. Traffic flow forecasting has played a critical role in ITS.

Accurate traffic flow prediction can help the transportation

department design better transportation scheduling and mobil-

ity management strategies. In general, the goal of traffic flow

forecasting is to predict the traffic volume (e.g., inflow and

outflow) of each region from historical traffic data [3], [4].

� Corresponding authors.
This work was partially supported by the National Key-Research and De-

velopment Program of China (Grant No.2020YFB2104003) and the National
Natural Science Foundation of China (Grant No.U19A2067).

Some early studies have been proposed to address traffic

flow forecasting by simply considering temporal and spatial

data. These methods either only capture temporal correlation

via statistics model [5], [6], Recurrent Neural Networks (RNN)

[7]–[9] and Transformer [10], or combine spatial learning

with temporal learning by further introducing Convolutional

Neural Network (CNN) [11], [12] and Graph Neural Net-

work (GNN) [13], [14] to learn grid-based or unstructured

spatial dependency. More recently, some methods propose to

capture the fine-grained temporal information to enrich the

temporal representation by modeling the multiple periodicities

in different time resolutions (e.g., hourly, daily, and weekly)

[15]. Specifically, a sequence of traffic can be intercepted into

closeness, period, and trend sub-series, which corresponds to

hourly, daily, and weekly resolutions.

However, existing works learn this multi-periodicity in an

entangled manner. One entanglement learning jointly encodes

the multi-periodic sub-series into a unified representation,

ignoring the difference among multi-periodicity [16], [17]. An-

other entanglement learning simply separates multi-periodic

sub-series encoding without considering the similarity among

multi-periodicity [18]–[20] . Therefore, how to decouple the

similarity and difference existing in multi-periodic represen-

tations still face many challenges. The main challenges in

modeling the multi-periodicity are as follows:

(1) Distribution shift. In the real world, a lot of external

factors (e.g., weather, holidays, and traffic accidents) affect

traffic and cause the traffic flow to change. Thus, the distri-

bution of a time series may shift [21]. Fig. 1 illustrates two

typical cases of the distribution shift problem, i.e., level shift

and point shift. If we jointly learn an entangled representation

from all multi-periodic sub-series, it would be challenging

to model these distribution shifts existing in different sub-

series. To address this, we propose to disentangle the multi-

periodicity into several independent exclusive representations;

that is, we use different networks to model the multiple sub-

series in different time resolutions and maintain the differences

among multi-periodicity, so as to better characterize each

multi-periodic sub-series for traffic flow forecasting.

(2) Interaction shift. The interaction means that the ob-
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served time series may affect the forecasting of future traffic

flow. In particular, future traffic flow may interact differ-

ently with multi-periodic sub-series, and each interaction may

change over time, which is called interaction shift [16]. Fig.

2 illustrates an example of interaction shift problem. The

reason for this interaction shift to appear is the semantic

divergence among multiple sub-series. Particularly, the close-

ness sub-series characterizes short-term dependency, while the

trend sub-series characterizes long-term dependency. Thus, we

propose to learn an interactive representation to capture the

common pattern of traffic flow sharing information among

multi-periodicity, which can alleviate the interactive gaps

between future traffic flow and multi-periodic sub-series.
(3) Optimizing multivariate disentanglement. In our case,

we intercept a sequence of traffic flow into multiple sub-

series, which can be seen as multiple variates. Recently, a

variety of works [22] have been proposed to disentangle

independent bivariates. However, as the number of variates

increases, it is becoming harder for disentanglement learning

to address increasing unknown posterior distributions and

more complex relations between variates. Therefore, how to

optimize multivariate disentanglement with independence and

informativeness remains an open issue.
In this paper, we propose a novel predictive net-

work, namely, MUlti-periodicity diSEntanglement Network

(MUSE-Net), to mitigate the limitation of entangled traffic

flow forecasting by explicitly learning the disentangled multi-

periodic patterns. In particular, we disentangle the traffic

flow of the closeness, period, and trend sub-series into three

exclusive representations with temporal peculiarity to alleviate

the distribution shift problem, as well as an interactive repre-

sentation shared across all time sub-series to tackle the interac-

tion shift problem. Moreover, we introduce two regularization

terms, i.e., semantic-pushing and semantic-pulling terms. The

semantic-pushing term forces the interactive representation to

be pushed away from arbitrary exclusive representations, en-

suring the interactive representation to be independent of each

exclusive representation. The semantic-pulling term forces

the interactive representation to be pulled towards original

closeness, period, and trend time sub-series, encouraging inter-

active representation to learn common patterns shared across

different time sub-series. After that, the learned exclusive and

interactive representations are aggregated to further capture

spatial dependency for traffic flow forecasting. Finally, we

propose a lower bound estimator to tackle the intractable

disentanglement problem by optimizing the mutual informa-

tion of exclusive and interactive representations. The main

contributions of this paper can be summarized as follows:

• MUSE-Net proposes a multivariate disentanglement net-

work to accurately model the multi-periodic patterns

by decoupling exclusive and interactive representations,

which can deal with the distribution shift and interaction

shift for traffic flow forecasting.

• We introduce semantic-pushing and semantic-pulling reg-

ularization terms to encourage exclusive and interactive

representations to be independent and informative.

(a) level shift (b) point shift

Fig. 1. Two typical cases of the distribution shift of time series. The level
shift means that a time series e.g., closeness) is totally different from others
(e.g., trend) in terms of distribution, while the point shift means that a time
series includes outliers.

Fig. 2. An example to illustrate the interaction shift. Specifically, we sample
the future traffic flow (i.e., traffic flow from t step to t+15 step) and closeness,
period, and trend traffic flow related to the future traffic flow in hourly, daily
and weekly dimensions, respectively. Then, we plot these traffic flow in the
same timeslot axis to illustrate the correlations among them. At timeslot 3,
the future traffic flow positively interacts with (i.e., is similar to) period and
trend time sub-series, while negatively interacts with (i.e., is different from)
the closeness time sub-series. As time goes by, the future traffic flow becomes
close to the closeness time sub-series at timeslot 9.

• We drive a lower bound estimator to straightforwardly

differentiate and optimize the problem of disentangled

representation learning with multiple variates.

• Extensive experimental results on three traffic datasets

demonstrate the superiority of the proposed method com-

pared to state-of-the-art traffic forecasting methods.

II. RELATED WORK

In this section, we briefly review the related work on traffic

flow forecasting and disentanglement learning.

A. Traffic Forecasting

With the rapid development of the city, traffic forecasting,

which models the changes of traffic conditions over time

and across regions, has attracted increasing research atten-

tion. As representative methods, recurrent networks, such as

Long-Short-Term-Memory (LSTM) networks [8] and Gated

Recurrent Unit (GRU) networks [9], [23], learn temporal

correlation from long-range sequences. For spatial learning,

Convolution Neural Network (CNN) has been widely used

in traffic forecasting of grid-cell data [15], [24]. Compared

to the CNN-based method, Graph Neural Network (GNN)

based methods, such as [19], [25]–[35], were generalized

to excavate the spatial dependency of nonlinear structured

data. Specifically, Data-Driven Spatial-Temporal Graph Neural

Network (STGNN-DJD) [14] developed two novel graphs
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to model the flow characteristic and pattern correlation, re-

spectively. Furthermore, several studies [36]–[38] introduced

attention mechanisms to better learn contextual information

from traffic by adaptively focusing on the most relevant

features to predictive data [16]. For example, Spatio-Temporal

Wavelets (STWave) [39] modeled trends and events through a

disentangled dual-channel network and then captured dynamic

spatial correlations through the graph attention mechanism.

Although these methods have remarkably improved the

performance of traffic prediction, they are ways of entan-

gled learning that lack thoughtful consideration of the multi-

periodic patterns for traffic forecasting. For example, both [16]

and [17] are difficult to capture intrinsic patterns in different

temporal dimensions by learning a unified representation of

multi-periodicity. Although [18] and [20] separate the encod-

ing of multi-periodicity and fuse multi-periodicity by gating

mechanism and convolution, respectively, they hardly distin-

guish the similarity and difference among multi-periodicity

and thus learn redundant information. By contrast, our pro-

posed method explicitly decouples the entangled time sub-

series into exclusive and interactive representations, which not

only captures the private patterns of each time sub-series but

also captures the common patterns among multiple sub-series.

In this way, our proposed method can be powerful in over-

coming the distribution shift and interaction shift problems.

B. Disentanglement Learning

Disentanglement learning [21], [40] is to factorize the

observed data into several different representations that char-

acterize the underlying explanatory factors. Variational Auto-

Encoder (VAE) [41] and its variant β-VAE [42] were represen-

tative disentanglement methods to learn latent representations

using a generative model. Based on VAE, some research has

been proposed for bivariate disentanglement [22]. For exam-

ple, both the Cross-domain Disentanglement Network (CdDN)

[43] and the Interaction Information Auto-Encoder (IIAE)

proposed a cross-domain disentanglement to learn domain-

specific and domain-shared representations for the image-

to-image translation task. Unlike VAE, some works, such

as Information Maximizing Generative Adversarial Networks

(InfoGAN) [44] and Disentangled Graph Contrastive Learning

(DGCL) [40], adopted Generative Adversarial Network (GAN)

[45] and contrastive learning to learn disentangled repre-

sentations by maximizing mutual information [46] between

latent variables and inputs. As for spatial-temporal forecasting,

Spatial-Temporal Normalization (ST-Norm) [47] proposed to

disentangle observed data into a high-frequency component

and a local component.

Although bivariate disentanglement methods have achieved

promising success, they are difficult to generalize into mul-

tivariate scenarios. With the number of variates increasing,

it raises an issue of how to determine the effect of one

disentangled representation on the others. A feasible solu-

tion is to estimate the mutual information between different

variables, but the optimization of multivariate disentanglement

with mutual information remains a challenging problem due

to the intractable posterior distribution of variables. Due to

this, we propose a joint training model and derive a lower

bound estimator to optimize multivariate disentanglement with

mutual information evaluation.

III. PRELIMINARIES

In this paper, we focus on traffic flow forecasting and briefly

revisit the definition and notation of traffic flow forecasting.

Definition 1 (Spatial Region). There are plenty of definitions
to model the regions in a city. In this study, we follow the
conventional grid definition [20] that partitions a city into
H ×W grid maps with the same size based on longitude and
latitude, such that each grid represents a spatial region rh,w
(h ∈ [1, · · · , H], w ∈ [1, · · · ,W ]). The grid map takes into
account the traffic conditions in regions and helps to design
regions’ traffic scheduling and management. For example,
bike-sharing companies can use regions’ traffic volumes to
decide how many bikes should be placed in these regions.

Definition 2 (Inflow/Outflow). After the grid-based partition,
we represent the distributions of traffic volume between regions
at the i-th time interval as a tensor Xi ∈ R

2×H×W where
(Xi)0,h,w = x0,h,w

i and (Xi)1,h,w = x1,h,w
i denote the outflow

and inflow volumes for a region (h,w), respectively. Formally,
the outflow and inflow volumes are defined respectively as,

x0,h,w
i =

∑
Mrk

∈P

|{i > 1|ui−1 ∈ (h,w) ∩ ui /∈ (h,w)}| , (1)

x1,h,w
i =

∑
Mrk

∈P

|{i > 1|ui−1 /∈ (h,w) ∩ ui ∈ (h,w)}| , (2)

where |·| denotes the cardinality of a set. P represents the
collection of trajectories at the ith time interval. Mr : u1 →
u2 → · · · → u|Mr| is a trajectory in P, and uk ∈ (h,w)
means that a spatial point uk lies within region (h,w), and
vice versa.

Definition 3 (Closeness/Period/Trend). To study the multi-
periodicity of traffic, a temporal sequence of traffic flow can
be intercepted into three sub-series with different resolutions,
i.e., C (closeness), P (period), and T (trend). In this paper, we
choose the hourly, daily, and weekly resolutions to represent
the closeness, period, and trend sub-series because the traffic
flow usually changes rapidly. Suppose that the sampling fre-
quency is f times per day, and the lengths of C, P , and T
are Lc, Lp, and Lt, respectively. Closeness, period, and trend
sub-series for the i-th time interval can be defined as follows:

Ci = [Xi−Lc+1, Xi−Lc+2, · · · , Xi] , (3)

Pi =
[
Xi−Lp×f , Xi−(Lp−1)×f , · · · , Xi−1×f ,

]
(4)

Ti =
[
Xi−Lt×f×7, Xi−(Lt−1)×f×7, · · · , Xi−1×f×7

]
. (5)

Notably, the multi-periodicity (i.e., closeness, period, and
trend) can also be defined as other resolutions depending on
different forecasting requirements, such as {minutely, hourly,
daily} for short-term forecasting and {daily, monthly, yearly}
for long-term forecasting.
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Definition 4 (Traffic Flow Prediction). Given the historical
observations {Xi|i = 0, · · · , n− 1}, the target of one-step
traffic flow prediction is to find a model F that uses a multi-
periodic subset of observations to predict the inflow and
outflow volumes of regions at the next timestamp,

Yn = F (Cn−1, Pn−1, Tn−1) , (6)

and the multi-step traffic flow prediction aims to use several
multi-periodic subsets of observations to predict the inflow and
outflow volumes of regions at the next l-timestep.

n+l−1∑
j=n

Yj = F
⎛⎝ n−1∑

j=n−l

Cn−j , Pn−j , Tn−j

⎞⎠ (7)

IV. METHODOLOGY

Our MUSE-Net first proposes Disentanglement, Semantic-

Pushing, and Semantic-Pulling modules to model the temporal

multi-periodicity. Then, an existing ResPlus network [20] is

adopted to capture spatial dependency. After that, we introduce

an optimization and joint training procedure to solve the

disentanglement problem for traffic flow forecasting.

A. Disentanglement

To address the limitations of entanglement learning, we aim

to disentangle the flow of closeness, period, and trend sub-

series into corresponding exclusive representations along with

an interactive representation. Each exclusive representation is

to capture the private property of the corresponding time sub-

series, which can be useful to model the level shift and point

shift of a time series. In addition, interactive representation

with common patterns of traffic flow is to reduce the semantic

gaps among multiple time series, which can be essential to

alleviate the problem of interaction shift. That is, the exclusive

representation can characterize the traffic dynamics during

peak periods, while the interactive representation can describe

the traffic steadiness during non-peak periods.

We assume that a set of ternary time sub-series is generated

by some random process, i.e., (c, p, t) ∼ qD (c, p, t), where

each element of a triplet c ∈ C, p ∈ P and t ∈ T is

respectively extracted from closeness, period and trend sub-

series, and qD(·) is an unknown true joint distribution. This

temporal triplet can be factorized into four parts, including

exclusive representations zc ∈ ZC , zp ∈ ZP and zt ∈ ZT ,

and interactive representation zs ∈ ZS , which can be rewritten

as a marginal likelihood maximization problem [41],

maxLdis = max qθ (c, p, t)

=max

∫
dzcdzpdztdzsqθc (c|zc, zs) qθp (p|zp, zs)
qθt

(
t|zt, zs) q (zc) q (zp) q (zt) q (zs) ,

(8)

where qθ (c, p, t) is a generative distribution to approximate the

unknown true distribution qD (c, p, t), and θ is a parameter of

model.

B. Semantic-Pushing

Although we disentangle multiple time sub-series into ex-

clusive and interactive representations, we cannot ensure that

none of the flow patterns is shared across any disentan-

gled representations. To address this, we propose to push

the interactive representation away from arbitrary exclusive

representations, such that each representation is semantically

independent. To achieve this, we minimize the mutual infor-

mation between each exclusive representation and interactive

representation, which is equivalent to a maximization problem

as follows,

maxLpush = max
(
Lc
push + Lp

push + Lt
push

)
, (9)

where Lc
push = −I

(
ZC ;ZS

)
, Lp

push = −I
(
ZP ;ZS

)
and

Lt
push = −I

(
ZT ;ZS

)
denotes the mutual information about

closeness, period and trend sub-series, respectively. To get
a better insight into how the mutual information work for
disentangled representations, we take Lc

push as an example

and rewrite mutual information between ZC and ZS with the
help of interaction information [48]:

Lc
push =− I

(
ZC ;ZS

)

=− I
(
C;ZC

)
+ I

(
ZC ;C|ZS

)
− I

(
ZC ;ZS |C

)
.

(10)

Due to the fact that ZS learns from C, we have q (zc|c) =
q (zc|c, zs). Thus, the last term in the above equation disap-

pears, i.e., I
(
ZC ;ZS |C)

= H
(
ZC |C)−H

(
ZC |C,ZS

)
= 0,

which yields

Lc
push = −I

(
C;ZC

)− I
(
C;ZS

)
+ I

(
C;ZC , ZS

)
. (11)

In Eq. (11), the first two terms are against the last term

in terms of the total amount of information in ZC and ZS ,

making the ZC and ZS to capture the mutually exclusive

information of closeness sub-series C. In addition, the mu-

tual information Lp
push and Lt

push can be obtained just like

Lc
push and will not be described in detail here due to space

limitations.

C. Semantic-Pulling

To enable the learned interactive representation to fully

capture the common pattern of traffic flow shared across

multiple time sub-series, we propose to pull the interactive

representation towards the original closeness, period, and trend

sub-series. To this end, we quantify the amount of shared

information among interactive representation and multiple

time sub-series by maximizing interaction information [48],

maxLpull = max I
(
C;P ;T ;ZS

)
(12)

Since Eq. (12) holds symmetry, we can rewrite the interac-

tion information I
(
C;P ;T ;ZS

)
as the following objectives

about closeness, period and trend sub-series, respectively [49],

Lc
pull =I

(
C;ZS

)− I
(
C;ZS |P )− I

(
C;ZS |T )+

I
(
C;ZS |P, T ) . (13)

Lp
pull =I

(
P ;ZS

)− I
(
P ;ZS |C)− I

(
P ;ZS |T )+

I
(
P ;ZS |C, T ) (14)
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Lt
pull =I

(
T ;ZS

)− I
(
T ;ZS |C)− I

(
T ;ZS |P )

+

I
(
T ;ZS |C,P )

.
(15)

It can be seen that Eq. (13) consists of four terms. The

first term encourages ZS to learn information from C. The

second and third terms are to discard some information in ZS

separately related to P and T . The last term is to recover

some information that is repeatedly discarded by the second

and third items. To jointly consider the closeness, period,

and trend sub-series, the objective of semantic-pulling can be

reformulated as follows,

maxLpull =max 3 · I (C;P ;T ;ZS
)

=max
(
Lc
pull + Lp

pull + Lt
pull

) (16)

D. Optimization
Our goal is to predict future traffic flow based on disen-

tangled exclusive and interactive representations. To achieve

this, we train the MUSE-Net to predict future traffic flow

via a regression loss Lreg that minimizes the difference

between predictive values Yn and true values Xn, along with

disentangling under the regularizations of semantic-pushing

and -pulling. Combining Eqs. (8), (9), (16) and regression

loss, we can derive the following overall objective for the

multivariate disentanglement problem,

max
qθ,rφ

LDis + λ (LPush + LPull)− LReg (17)

where λ is a balanced parameter to trade off the amount

of information captured by interactive representation with

that from exclusive representation. It can be seen that the

proposed objective function is significantly different from the

existing disentangle-based methods. On the one hand, the

proposed disentanglement considers the multivariate scenario,

making the disentanglement more practicable. On the other

hand, the proposed method adopts mutual information to

quantify the information among disentangled representations,

encouraging the discrimination of disentanglement. However,

it is intractable to directly optimize Eq. (17) since the mutual

information-based regularization terms (i.e., semantic-pushing

and -pulling) bring several intractable integrals to the multi-

variate disentanglement. Therefore, we theoretically derive a

lower bound estimator to straightforwardly differentiate and

optimize the multivariate disentanglement problem as follows.
Optimizing Ldis. It is intractable to solve Ldis (i.e., Eq. (8))

since the interactive representation zs and the true parameter

θ∗ are unknown. Inspired by [50], Eq. (8) can be rewritten as

a lower bound on the marginal likelihood and be optimized

via variational inference:

Ldis = log qθ (c, p, t)

≥Erφ(zc,zp,zt,zs|c,p,t)

[
log

qθ (c, p, t, z
c, zp, zt, zs)

rφ (zc, zp, zt, zs|c, p, t)
]
,

(18)

where rφ (z
c, zp, zt, zs|c, p, t) is an approximated posterior for

true posterior distribution qθ (z
c, zp, zt, zs|c, p, t), and can be

calculated as follows:

rφ
(
zc, zp, zt, zs|c, p, t)

=rφ (z
c|c) rφ (zp|p) rφ

(
zt|t) rφ (zs|c, p, t) . (19)

Thus, we reformulate Eq. (18) into the following inequation:

Ldis ≥
∑

i∈{c,p,t}
Erφ(zi|i)rφ(zs|c,p,t)

[
log qθ

(
i|zi, zs)]

−
∑

i∈{c,p,t}
DKL

[
rφ

(
zi|i) ‖qθ (zi)]

−DKL [rφ (z
s|c, p, t) ‖qθ (zs)] .

(20)

Optimizing Lpush. Lpush (i.e., Eq. (9)) is intractable

due to the unknown distribution qD (c), qD (p) and qD (t);
therefore, we apply the Variational Information Bottle-

neck (VIB) [51] to simplify and optimize Eq. (9).

Taking the objective of semantic-pushing about close-

ness as an example (i.e., Eq. (11)), the first term

−I
(
C;ZC

)
and the second term −I

(
C;ZS

)
can be

approximated by using −EqD(c) [DKL [rφ (z
c|c) ‖|qθ (zc)]]

and −EqD(c) [DKL [rφ (z
s|c) ‖|qθ (zs)]], respectively, as their

lower bound, where qθ (z
c) and qθ (z

s) can be defined as the

standard Gaussian distribution. In addition, we can maximize

the lower bound of the last term I
(
C;ZC , ZS

)
by using a

generative distribution qθ (c|zc, zs) as follows,

I
(
C;ZC , ZS

)
=Erφ(zc,zs|c)qD(c)

[
log

rφ (c|zc, zs)
qD(c)

]
=H (C) + Erφ(zc,zs|c)qD(c) [qθ (c|zc, zs)] +
Erφ(zc,zs)

[DKL [rφ (c|zc, zs) ‖qθ (c|zc, zs)]]
≥H (C) + Erφ(zc,zs|c)qD(c) [qθ (c|zc, zs)] .

(21)

Thus, the objective of semantic-pushing about closeness

sub-series can be derived as follows,

Lc
push ≥− EqD(c) [DKL [rφ (z

c|c) ‖|qθ (zc)]]
− EqD(c) [DKL [rφ (z

s|c) ‖|qθ (zs)]]
+ Erφ(zc,zs|c)qD(c) [qθ (c|zc, zs)] .

(22)

Optimizing Lpull. Similar to the optimization of Lpush,

we apply the VIB [51] technique to optimize the intractable

Lpull (that is, Eq. (16)). Taking the objective of semantic-

pulling about closeness as an example (i.e., Eq. (13)), the lower

bound of last term I
(
C;ZS |P, T ) can be maximized via a

variational distribution dp,tω (zs|p, t) for paired sub-series P
and T as follows,

I
(
C;ZS |P, T )

=EqD(c,p,t)rφ(zs|c,p,t)

[
log

rφ (z
s|c, p, t)

rφ (zs|p, t)
]

=EqD(c,p,t)rφ(zs|c,p,t)

[
log

rφ (z
s|c, p, t) dp,tω (zs|p, t)

dp,tω (zs|p, t) rφ (zs|p, t)

]
=EqD(c,p,t)

[
DKL

[
rφ (z

s|c, p, t) ‖dp,tω (zs|p, t)]]+
EqD(c,p,t)

[
DKL

[
dp,tω (zs|p, t) ‖rφ (zs|p, t)

]]
≥EqD(c,p,t)

[
DKL

[
rφ (z

s|c, p, t) ‖dp,tω (zs|p, t)]] .

(23)

For the second term I
(
C;ZS |P )

and third term

I
(
C;ZS |T ) in Eq. (13), we can derive the following lower

1286

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 02,2024 at 05:38:12 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. The framework of our proposed MUSE-Net. Specifically, we first intercept data into ternary time sub-series, including closeness C, period P ,
and trend T sub-series. Then, we disentangle the ternary time sub-series into exclusive and interactive representations and distributions via exclusive and
interactive encoders, respectively. After that, we take the exclusive and interactive distributions as the input of the reconstructed decoder to decode and obtain
reconstructed ternary time sub-series, which can be used for semantic pushing. Meanwhile, we utilize simplex and duplex variational encoders to obtain
variational distributions. Variational distributions are combined with exclusive and interactive distributions for semantic pulling. Finally, we fuse exclusive and
interactive representations by an existing ResPlus network to capture spatial dependency and predict unknown traffic flow.

bound of the second term by introducing a variational distri-

bution gpτ (z
s|p), and the third term is analogous:

− I
(
C;ZS |P )

=− EqD(c,p)rφ(zs|c,p)

[
log

rφ (z
s|c, p)

rφ (zs|p)
]

=− EqD(c,p)rφ(zs|c,p)

[
log

rφ (z
s|c, p) dc,pω (zs|c, p) gpτ (zs|p)

dc,pω (zs|c, p) gpτ (zs|p) rφ (zs|p)
]

=− EqD(c,p) [DKL [dc,pω (zs|c, p) ‖gpτ (zs|p)]]
+ EqD(c,p) [DKL [dc,pω (zs|c, p) ‖rθ (zs|c, p)]]
+ EqD(c,p) [DKL [rθ (z

s|p) ‖gτ (zs|p)]]
≥− EqD(c,p) [DKL [dc,pω (zs|c, p) ‖gpτ (zs|p)]] .

(24)

Thus, we can derive the objective of semantic-pulling about
closeness sub-series as follows,

Lc
pull ≥EqD(c) [DKL [rφ (zs|c) ‖|qθ (zs)]]−

EqD(c,p) [DKL [dc,pω (zs|c, p) ‖gpτ (zs|p)]]−
EqD(c,t)

[
DKL

[
dc,tω (zs|c, t) ‖gtτ (zs|t)

]]
+

EqD(c,p,t)

[
DKL

[
rφ (zs|c, p, t) ‖dp,tω (zs|p, t)]] .

(25)

Overall Objective Function. After obtaining the lower

bound of Ldis, Lpush and Lpull, we can reformulate the overall

objective function (i.e., Eq. (17)) by merging and canceling out

terms,

max
qθ,rφ

L̂Dis + L̂Push + L̂Pull − LReg, (26)

where

L̂Dis =− (1 + λ) · E
⎡
⎣ ∑

i∈{c,p,t}
DKL

[
rφ

(
zi|i

)
‖qθ

(
zi
)]⎤⎦

− EqD(c,p,t) [DKL [rφ (zs|c, p, t) ‖qθ (zs)]] ,
(27)

L̂Push = (1 + λ) · E
⎡
⎣ ∑

i∈{c,p,t}
log qθ

(
i|zi, zs

)⎤⎦ , (28)

L̂Pull =λ · E

⎡
⎢⎢⎣−

∑
i,j∈{c,p,t}

i �=j

DKL

[
di,jω (zs|i, j) ‖giτ (zs|i)

]

+
∑

i∈{c,p,t}
i �=j

DKL

[
rφ (zs|c, p, t) ‖di,jω (zs|i, j)

]
⎤
⎥⎥⎦ ,

(29)

LReg = ‖Xn − Yn‖22 . (30)

E. Joint Training

The overall objective function Eq. (26) consists of four

components. Specifically, Eqs. (27), (28), (29), and (30) de-

note disentanglement, semantic-pushing, semantic-pulling and

forecasting units, respectively. To achieve this, we propose a

joint training framework, as shown in Fig. 3. The details of

the joint training framework are as follows.

In Eq. (27), we propose an exclusive encoder to learn

exclusive information. The exclusive encoder first takes a time

sub-series as input (e.g., C), then utilizes a convolutional layer

to encode the exclusive representation (e.g., ZC) of time sub-

series, and a fully connected layer to extract the distribution

of representation (e.g., rφ (z
c|c)). Meanwhile, we propose

an interactive encoder to learn interactive information. The

interactive encoder takes the convolutional features of ternary

time sub-series, including C, P , and T , as inputs and consists

of two components: a convolutional layer for learning interac-

tive representation (i.e., ZS), and a fully connected layer for

learning corresponding distribution (i.e., rφ (z
s|c, p, t)).

In Eq. (28), we take the generative distributions (e.g.,

qθ (c|zc, zs)) as a reconstructed decoder. The reconstructed

decoder aims to reconstruct a time sub-series (e.g., Ĉ) based

on corresponding exclusive (e.g., ZC) and interactive (i.e., ZS)

representations by using a fully connected layer.

In Eq. (29), we propose a simplex variational encoder to

approximate the variational distribution for single time sub-

series (e.g., gpτ (z
s|p)), and a duplex variational encoder to
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TABLE I
THE COMPARISON OF TIME AND SPACE COMPLEXITY OF DIFFERENT

METHODS.

Method Class Type Complexity

DeepSTN+ [20] CNN
Time O(LdM + d2M + dM2)
Space O(Ld+ d2 + dM2))

DMSTGCN [52] GCN
Time O(Ld2M + LdE)
Space O(LdM + d3 +M2)

GMAN [38] Attention
Time O(Ld2M + LdM2)
Space O(LdM + L2M + LM2 + d2)

MUSE-Net (Ours) CNN
Time O(LdM + d2M + dM2)
Space O(Ld+ d2 + dM2))

approximate the variational distribution for paired time sub-

series (e.g., dp,tω (zs|p, t)). The simplex variational encoder

takes the convolutional feature of a time sub-series (e.g.,

P ) as input and extracts the variational distribution by the

combination of a convolutional layer and a fully connected

layer. The duplex variational encoder is similar to the simplex

one but takes paired time sub-series (e.g., P and T ) as inputs.

In Eq. (30), we aim to fit the prediction Yn into real future

traffic flow Xn based on the learned exclusive and interac-

tive representations. Therefore, we adopt a ResPlus network

proposed by DeepSTN+ [20] that is designed to model spatial

dependency, fuse exclusive and interactive representations, and

generate the prediction of future traffic flow Yn.

Following DeepSTN+ [20], we set the lengths of the close-

ness, period, and trend subseries (that is, Lc, Lp and Lt) to

3, 4, and 4 steps. The dimension of learned exclusive and

interactive representations is set to d = 64. The distribution

of representation is denoted by mean and standard deviation.

Empirically, we sample the mean and standard deviation

with dimension k/4 from the exclusive representations while

sampling the mean and standard deviation with the dimension

k from the interactive representation, where k = 128.

F. Complexity Analysis

Table I tabulates the comparison of time and space com-

plexity of the proposed MUSE-Net with representative CNN-

based, GCN-based, and Attention-based baselines, including

DeepSTN+ [20], DMSTGCN [52], and GMAN [38], where

L = Lc +Lp +Lt, d, M = H ×W , and E denote the length

of multi-periodic series, the representation dimension, the grid

size, and the number of edges in a graph, respectively. Since

the proposed MUSE-Net is mainly dependent on convolution,

the time complexity of MUSE-Net is O(LdM + d2M). As

shown in Table I, the MUSE-Net can be faster than GMAN

because L, d � M . Moreover, if the graph is dense, i.e.,

E → M2, the time complexity of DMSTGCN [52] will be

higher than the proposed method. In terms of space complex-

ity, although the proposed MUSE-Net requires slightly more

memory than DMSTGCN and GMAN, the space complexity

of MUSE-Net has the same magnitude as the baselines becasue

these methods all have M2 space complexity. Considering the

superior performance of the MUSE-Net achieved (please see

Table II in the Experiments Section), the space complexity of

the proposed method is acceptable.

V. EXPERIMENTS

In this section, we evaluate our proposed MUSE-Net on

three public benchmark datasets in comparison with the state-

of-the-art traffic flow forecasting methods, which are summa-

rized to answer the following research questions:

• RQ1: Does our proposed MUSE-Net outperform base-

lines in traffic flow forecasting?

• RQ2: Does the design of different components contribute

to the performance of the model?

• RQ3: Are disentangled exclusive and interactive repre-

sentations independent of each other?

• RQ4: Can exclusive and interactive representations pro-

vide sufficient information for forecasting?

• RQ5: Can exclusive and interactive representations inter-

pret specific traffic flow patterns?

• RQ6: How do the hyper-parameters of MUSE-Net affect

the performance of the prediction task?

A. Datasets

We evaluate the proposed method on three real-world bench-

mark datasets, as detailed follows,

• NYC-Bike [8]: The NYC-Bike dataset consists of bike

trajectories in New York from 07/01/2016 to 08/29/2016.

Following [53], we first divide the entire city as grid maps

of 10× 20. The size of each grip is about 1km× 1km.

Then, we select data from the first 40 days (i.e., from

07/01/2016 to 08/09/2016) as the training set and the data

from the last 20 days as the testing set.

• NYC-Taxi [8]: The NYC-Taxi dataset consists of taxicab

trajectories in New York from 01/01/2015 to 03/01/2015.

Following [53], we first divide the entire city as grid maps

of 10× 20. The size of each grip is about 1km× 1km.

Then we select data from the first 40 days (that is, from

01/01/2015 to 02/10/2015) as the training set and data

from the last 20 days as the testing set.

• TaxiBJ [15]: The TaxiBJ dataset includes taxicab GPS

trajectories collected from 01/01/2013 to 10/30/2013.

Following [16], we first divide the entire city as grid maps

of 32×32. The size of each grip is about 0.6km×0.6km.

Then, we select data from the last 20 days (i.e., from

10/11/2013 to 10/30/2013) as the testing set and the

remaining data as the training set.

In our experiment, the length of each time interval is set

to 30 minutes. We use tanh as our final activation function

of which output ranges between −1 and 1. Thus, we scale

the data into the range [−1, 1] via the Min-Max normalization

during training and re-scale the predicted value back to the

normal values for comparison with the ground-truth during

evaluation. Moreover, we select 90% of the training data to fit

the models and the remaining 10% for validation.
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TABLE II
ONE-STEP FORECASTING COMPARISON OF ALL METHODS IN THE NYC-BIKE, NYC-TAXI, AND TAXIBJ DATASETS, RESPECTIVELY.

Method

NYC-Bike NYC-Taxi TaxiBJ

Outflow Inflow Outflow Inflow Outflow Inflow

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

RNN [7] 12.79 4.18 82.92% 13.27 4.23 84.97% 32.81 13.53 32.83% 35.24 13.32 41.52% 33.27 18.26 22.35% 37.64 18.77 23.12%

Seq2Seq [54] 11.26 4.02 75.45% 9.99 3.56 64.92% 30.26 9.45 33.75% 31.14 11.09 42.49% 27.92 16.26 20.48% 27.71 16.48 20.86%

ASTGCN [18] 6.11 1.89 40.49% 5.35 1.75 38.17% 28.96 9.31 30.79% 25.01 8.76 30.85% 21.99 13.43 20.32% 22.28 13.55 20.50%

CONVGCN [55] 3.80 1.59 25.28% 3.72 1.56 25.56% 21.23 12.28 27.45% 21.62 12.59 31.69% 18.77 11.16 16.50% 18.91 11.27 16.68%

GMAN [38] 3.63 1.34 24.45% 3.43 1.27 23.24% 22.36 7.76 23.39% 24.11 8.64 25.29% 21.39 12.93 18.63% 21.47 12.98 18.72%

STGNN [25] 6.49 1.99 40.65% 6.50 1.96 39.51% 25.52 8.65 32.93% 22.86 7.92 27.80% 21.72 13.36 19.69% 21.92 13.75 20.09%

DMSTGCN [52] 3.68 1.45 25.42% 3.82 1.86 28.98% 18.67 9.80 29.43% 18.24 7.84 23.66% 20.74 12.12 17.03% 21.09 12.25 17.57%

ST-Norm [47] 3.75 1.61 25.12% 3.59 1.55 23.94% 19.51 8.94 29.10% 17.45 8.16 27.60% 19.20 11.44 16.74% 19.90 11.95 17.78%

STGSP [16] 3.86 1.26 25.46% 3.80 1.25 25.87% 21.74 6.99 23.04% 21.60 7.38 23.83% 21.53 12.63 17.90% 21.64 12.71 18.06%

DeepSTN+ [20] 3.68 1.35 25.07% 3.48 1.33 24.54% 18.25 7.37 27.07% 18.33 7.94 33.13% 18.30 10.81 15.77% 18.38 10.87 15.88%

ST-SSL [17] 4.56 1.26 24.11% 4.07 1.22 23.46% 23.79 7.12 21.80% 24.57 7.05 21.25% 20.45 11.41 15.89% 20.47 11.42 15.92%

MUSE-Net (Ours) 2.89 1.11 21.28% 2.73 1.06 20.70% 15.16 5.40 19.94% 14.05 5.42 19.47% 17.16 10.28 14.60% 17.26 10.35 14.72%
Improvement 20% 12% 12% 20% 13% 12% 17% 23% 9% 19% 23% 8% 6% 5% 7% 6% 5% 7%

B. Baselines & Implementation

We implement the proposed model with the Keras frame-

work and train our model using the Adam optimizer with

a learning rate of 0.0002, batch size of 8, and maximal

epoch of 350. For the objective function, the balance coef-

ficient λ is set as 1 to trade off the information learning.

Then, We compare MUSE-Net with the following 11 base-

lines, which can be grouped into five classes: RNN-based

models (RNN, Seq2Seq), CNN-based models (CONVGCN,

DeepSTN+), GNN-based models (ASTGCN, DMSTGCN,

STGNN, ST-SSL), Attention-based models (GMAN, STGSP)

and Disentangle-based model (ST-Norm).

• RNN [7]: It leverages a recurrent neural network to

capture temporal effects for forecasting time series data.

• Seq2Seq [54]: It is an encoder-decoder framework using

a gated recurrent neural network to predict traffic flow.

• ASTGCN [18]: It includes a spatial-temporal component

where a graph convolutional network and a convolution

network are to learn spatial and temporal information,

respectively, and an attention component which is to

capture spatial-temporal correlations.

• CONVGCN [55]: It combines a graph convolution with

a 3D convolution to capture short-term and long-term

spatial dependency for traffic flow forecasting.

• GMAN [38]: It designs an encoder-decoder framework

with a transform attention mechanism that converts his-

torical traffic flow into future traffic flow.

• STGNN [25]: It combines a position-wise graph neu-

ral network with a recurrent-based transformer layer to

jointly capture the spatial and temporal dependency for

traffic flow forecasting.

• DMSTGCN [52]: It explores the time-specific spatial

dependency of traffic flow via a dynamic graph convolu-

tional network with dilated convolution layer.

• ST-Norm [47]: It proposes temporal and spatial normal-

ization that separately refines the high-frequency and

local components to model the patterns of traffic flow.

• STGSP [16]: It is a transformer-based method that can

model the dynamic correlation of multi-periodic patterns

by using the multi-head attention mechanism.

• DeepSTN+ [20]: It jointly learns the temporal and spatial

dependencies to predict future traffic flow via a convolu-

tional neural network.

• ST-SSL [17]: It proposes a self-supervised learning

paradigm to model spatial and temporal heterogeneities

for traffic flow forecasting.

For the ASTGCN, CONVGCN, GMAN, DMSTGCN, and

ST-Norm methods, we carefully modify their output channel

of prediction layer from 1 to 2 to jointly predict inflow and

outflow. For the STGSP method, we do not utilize external

information (such as date and weather) to predict traffic flow

for a fair comparison. For the rest of the baselines, we adopt

their original networks and follow the best parameters reported

in papers to perform the experiments.

All experiments are conducted on a Linux server (CPU:

Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz, GPU: NVIDIA

Tesla V100 GPU 32GB). Additionally, we employ Mean

Absolute Error (MAE), Root Mean Square Error (RMSE),

and Mean Absolute Percentage Error (MAPE) as metrics to

evaluate the prediction performance of different methods [56].

For the MAE, RMSE, and MAPE metrics, smaller values

indicate the better prediction performance.

C. Performance Comparison (RQ 1)

To comprehensively evaluate the performance of our pro-

posed MUSE-Net, we first conduct comparative experiments

in both one-step forecasting and multi-step forecasting set-

tings. Then, we further evaluate the prediction performance

of the MUSE-Net during peak vs. non-peak and weekday vs.

weekend periods to understand the difference in prediction for

diverse traffic conditions. Finally, we visualize the forecasting

results of our MUSE-Net.

One-step forecasting is a fundamental task in traffic flow

forecasting. In our experimental setting, we predict the traffic

flow of a time series at the next time step based on the

historical multi-periodic data. Table II tabulates the perfor-

mance of our MUSE-Net compared to eleven baselines in the

NYC-Bike, NYC-Taxi, and TaxiBJ datasets, respectively. The

percentage of improvement in Table II achieved by our MUSE-

Net is defined as Best baseline result − Ours result
Best Baseline result × 100%.
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TABLE III
MULTI-STEP FORECASTING COMPARISON OF FOUR METHODS IN THE NYC-BIKE, NYC-TAXI, AND TAXIBJ DATASETS, RESPECTIVELY.

Dataset
Method

Horizon 1 Horizon 2 Horizon 3

Outflow Inflow Outflow Inflow Outflow Inflow

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

NYC-Bike

ST-GSP 4.06 1.32 27.70% 4.01 1.31 27.18% 3.63 1.22 25.45% 3.71 1.24 25.67% 4.13 1.34 27.95% 3.99 1.31 27.46%

DeepSTN+ 1.29 0.52 6.82% 1.33 0.54 7.15% 1.36 0.54 7.68% 1.35 0.55 7.59% 3.21 1.12 22.34% 2.96 1.08 21.44%

ST-SSL 3.15 0.46 6.28% 2.70 0.50 7.57% 3.18 0.49 7.04% 2.77 0.54 8.46% 4.30 1.20 22.66% 3.84 1.17 22.51%

MUSE-Net 1.08 0.37 5.11% 1.09 0.36 4.93% 1.19 0.40 5.55% 1.14 0.39 5.40% 3.18 1.08 21.06% 2.92 1.03 20.63%
Improvement 16.28% 19.57% 18.63% 18.05% 28.00% 31.05% 12.50% 18.37% 21.16% 15.56% 27.78% 4.76% 0.93% 3.57% 5.73% 1.35% 4.63% 3.78%

NYC-Taxi

ST-GSP 18.59 6.26 22.84% 19.24 6.50 22.43% 19.46 6.54 22.85% 20.60 7.02 23.18% 22.69 7.40 25.07% 21.43 7.23 23.87%

DeepSTN+ 5.96 2.72 15.05% 6.84 3.41 18.05% 6.63 2.92 15.06% 7.68 3.66 17.93% 14.34 4.99 19.38% 13.16 5.23 21.40%

ST-SSL 15.34 4.3 14.84% 17.37 4.49 15.02% 14.88 4.15 13.98% 17.71 4.65 15.14% 17.57 5.38 17.83% 19.49 5.62 18.14%

MUSE-Net 5.25 2.30 13.17% 5.91 2.66 13.69% 6.20 2.58 13.73% 6.54 2.94 14.57% 14.22 4.81 18.80% 13.00 4.92 19.01%

Improvement 11.91% 15.44% 11.25% 13.60% 21.99% 8.85% 6.49% 11.64% 1.79% 14.84% 19.67% 3.76% 0.84% 3.61% -5.44% 1.22% 5.93% -4.80%

TaxiBJ

ST-GSP 18.83 11.22 15.34% 18.95 11.30 15.49% 17.70 10.66 14.77% 17.94 10.81 15.00% 20.78 11.99 16.75% 20.87 12.08 16.94%

DeepSTN+ 4.34 3.15 6.63% 4.51 3.28 6.83% 4.63 3.31 6.95% 4.55 3.25 6.95% 17.96 10.49 15.22% 18.04 10.55 15.34%

ST-SSL 6.31 3.04 4.79% 6.60 3.08 4.82% 6.37 2.96 4.50% 6.69 3.02 4.47% 19.28 10.92 15.48% 19.39 10.95 15.57%

MUSE-Net 3.66 2.32 4.16% 3.65 2.28 4.09% 3.54 2.28 4.13% 3.52 2.27 4.16% 17.84 10.20 14.82% 17.90 10.26 14.93%
Improvement 15.67% 23.68% 13.15% 19.07% 25.97% 15.15% 23.54% 22.97% 8.22% 22.64% 24.83% 6.94% 0.67% 2.76% 2.63% 0.78% 2.75% 2.67%

TABLE IV
PEAK VS. NON-PEAK PERFORMANCE COMPARISON OF FOUR METHODS IN

THREE DATASETS, RESPECTIVELY.

Dataset Method

Peek Non-peak

Outflow Inflow Outflow Inflow

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

NYC-Bike

ST-GSP 5.66 25.35% 5.26 24.81% 3.23 25.52% 3.31 26.34%

DeepSTN+ 5.30 25.82% 4.87 24.71% 2.77 24.71% 2.72 24.47%

ST-SSL 8.20 23.92% 6.99 23.48% 2.91 24.19% 2.83 23.44%

MUSE-Net 4.77 21.14% 4.18 20.51% 2.42 21.36% 2.35 20.79%
Improvement 10.09% 11.63% 14.15% 12.65% 12.41% 11.71% 13.43% 11.30%

NYC-Taxi

ST-GSP 24.33 23.27% 27.55 24.55% 21.01 22.97% 19.74 23.65%

DeepSTN+ 20.10 27.25% 22.01 28.21% 16.76 27.02% 16.13 34.37%

ST-SSL 26.27 22.56% 38.60 22.65% 23.08 21.57% 19.24 20.90%

MUSE-Net 17.96 21.54% 19.03 21.28% 14.49 19.45% 12.64 19.03%
Improvement 10.65% 4.52% 13.52% 6.06% 13.55% 9.81% 21.63% 8.95%

TaxiBJ

ST-GSP 22.72 16.18% 22.86 16.35% 21.20 18.40% 21.31 18.55%

DeepSTN+ 19.48 14.24% 19.62 14.36% 16.93 16.22% 16.99 16.33%

ST-SSL 19.38 12.69% 19.40 12.71% 20.72 16.80% 20.73 16.84%

MUSE-Net 19.16 13.40% 19.25 13.48% 16.54 14.96% 16.63 15.08%
Improvement 1.13% -5.59% 0.77% -6.10% 2.29% 7.77% 2.12% 7.68%

We can observe that RNN-based models, such as RNN and

Seq2Seq, cannot perform well because they ignore the spatial

dependency of traffic flow. For CNN-based and GNN-based

models, the MUSE-Net can outperform DeepSTN+ and ST-

SSL by reducing the RMSE errors by 6% ∼ 23% and

16% ∼ 43%, respectively, in three datasets. This is because

CNN-based and GNN-based models overlook the temporal

sequential dependency, while the proposed method can capture

the correlation between short-term and long-term time series

via interactive representation. Among Attention-based models,

GMAN and STGSP are capable of extracting traffic flow

patterns adaptively; however, the MUSE-Net performs better

than these models. Compared to STGSP, the MUSE-Net can

produce 20% ∼ 35% improvements in three datasets in

terms of RMSE. The possible reason is that Attention-based

models learn an entangled representation of traffic flow, while

the MUSE-Net learns disentangled exclusive and interactive

representations jointly to better characterize the traffic flow

pattern. Moreover, the proposed method can achieve at least

11% improvement in RMSE compared to the disentangle-

based model (i.e., ST-Norm), which verifies the rationality of

MUSE-Net in modeling multi-periodicity.

TABLE V
WEEKDAY VS. WEEKEND PERFORMANCE COMPARISON OF FOUR

METHODS IN THREE DATASETS, RESPECTIVELY.

Dataset Method

Weekday Weekend

Outflow Inflow Outflow Inflow

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

NYC-Bike

ST-GSP 3.88 23.62% 3.86 24.53% 3.80 30.10% 3.60 29.30%

DeepSTN+ 3.66 23.13% 3.48 22.86% 3.74 29.97% 3.47 28.88%

ST-SSL 4.95 22.93% 4.38 22.61% 3.45 27.07% 3.21 25.63%

MUSE-Net 2.92 20.12% 2.72 19.77% 2.84 24.23% 2.75 23.10%
Improvement 20.22% 12.25% 21.84% 12.55% 17.68% 10.47% 14.33% 9.87%

NYC-Taxi

ST-GSP 21.28 22.24% 20.66 23.28% 22.77 24.68% 23.65 24.94%

DeepSTN+ 18.14 25.69% 18.29 32.45% 18.51 29.99% 18.42 34.56%

ST-SSL 24.39 20.53% 25.86 20.20% 22.28 24.45% 21.24 23.41%

MUSE-Net 15.01 18.91% 13.78 18.52% 15.51 22.12% 14.66 21.46%
Improvement 17.25% 7.90% 24.66% 8.34% 16.21% 9.52% 20.41% 8.31%

TaxiBJ

ST-GSP 21.21 18.40% 21.32 18.56% 22.24 16.73% 22.36 16.90%

DeepSTN+ 17.94 16.22% 18.00 16.33% 19.10 14.77% 19.22 14.87%

ST-SSL 20.13 16.19% 20.16 16.24% 21.34 15.00% 21.30 15.00%

MUSE-Net 16.64 15.00% 16.74 15.11% 18.31 13.71% 18.42 13.82%
Improvement 7.25% 7.35% 7.00% 6.95% 4.14% 7.12% 4.16% 7.06%

In comparison to one-step forecasting, multi-step forecast-

ing should consider not only the next step of traffic flow but

also several steps later. In our experimental setting, multi-

step forecasting is conducted to predict the traffic flow in 3

horizons (i.e., 1.5 hours later), and each horizon of traffic flow

is characterized by corresponding historical multi-periodic

traffic flow, including closeness, period, and trend data. Since

several multi-periodic traffic flows are not consecutive and

may exist semantic gaps, we select three multi-periodic-based

methods, i.e., DeepSTN [20], ST-GSP [16], and ST-SSL [17],

as baselines for comparison. Table III tabulates the multi-

step forecasting results of three methods. It can be seen that

our MUSE-Net obtains significant gains over the baselines in

three datasets. In contrast to ST-GSP that processes multi-

periodic flow sequentially, DeepSTN+, ST-SSL, and MUSE-

Net separate the closeness, period, and trend flow and process

each periodic flow individually, which can fully utilize specific

information of each multi-periodic sub-series to obtain better

performances. Moreover, DeepSTN+, ST-SSL, and MUSE-Net

exploit the global information of several multi-periodic data

for multi-step forecasting, such that the prediction of the first

2 horizons can be more accurate than the prediction of the
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(a) NYC-Bike (b) NYC-Taxi (c) TaxiBJ

Fig. 4. Predictive results of the different methods against the ground-truth in the NYC-Bike, NYC-Taxi, and TaxiBJ datasets, respectively.

last horizon. Compared to DeepSTN+ and ST-SSL, MUSE-

Net further captures exclusive and interactive traffic patterns,

leading to better multi-step forecasting performance.

Since people’s travel demand is different during peak and

non-peak periods, as well as during weekdays and weekends,

we further conduct experiments to evaluate the one-step pre-

diction performance of the MUSE-Net compared to STGSP

[16], DeepSTN+ [20], and ST-SSL [17], during the peak vs.

non-peak periods and weekday vs. weekend. For the peak

vs. non-peak experiment, we select the periods from 7:00

am to 9:00 am and the periods from 5:00 pm to 7:00 pm

as the peak periods, and the rest of the time as the non-

peak periods. For the weekday vs. weekend experiment, we

select the periods from Monday to Friday as weekdays, and

the rest of the time as weekends. Tables IV and Table V

tabulate the peak vs. non-peak and weekday vs. weekend

prediction results of four methods in the NYC-Bike, NYC-

Taxi, and TaxiBJ datasets, respectively. It can be seen that

the proposed MUSE-Net performs slightly worse than ST-

SSL on the TaxiBJ dataset during peak periods. The possi-

ble reason is that ST-SSL may benefit from self-supervised

learning with suitable augmentations and clusters. However,

the proposed MUSE-Net obtains 0.77% ∼ 21.63% RMSE

gains and 4.14% ∼ 24.66% RMSE gains over baselines for

peak vs. non-peak and weekdays vs. weekends comparisons,

respectively, demonstrating the robustness of MUSE-Net.

To further evaluate the effectiveness of our MUSE-Net,

we illustrate the prediction of the different methods against

the ground-truth in the NYC-Bike, NYC-Taxi, and TaxiBJ

datasets, respectively, as shown in Fig. 4. We can observe that

the proposed MUSE-Net is not only accurate in fitting the

ground-truth curves during non-peak periods but also better

in modeling the dynamics of ground-truth curves during peak

periods. These demonstrate the proposed method’s superiority

over the baselines in traffic forecasting.

D. Ablation Study (RQ 2)

To evaluate the effectiveness and contribution of each com-

ponent of the proposed MUSE-Net, we perform a comparative

ablation study by implementing four variants of the MUSE-

Net in three benchmark datasets:

• MUSE-Net-w/o-Spatial: drop the spatial module from our

model (i.e., the model without ResPlus network)

• MUSE-Net-w/o-MultiDisentangle: use cross-variate dis-

entanglement to replace multivariate disentanglement;

TABLE VI
THE ABLATION RESULTS OF OUR MUSE-NET IN THE NYC-BIKE,

NYC-TAXI, AND TAXIBJ DATASETS, RESPECTIVELY.

Dataset Flow Metric
MUSE-Net MUSE-Net MUSE-Net MUSE-Net

MUSE-Net-w/o- -w/o- -w/o- -w/o-
Spatial MultiDisentangle SemanticPushing SemanticPulling

NYC-Bike
outflow

RMSE 3.40 3.13 2.91 2.96 2.89
MAE 1.31 1.21 1.12 1.13 1.11

inflow
RMSE 3.43 3.01 2.76 2.80 2.73
MAE 1.32 1.19 1.08 1.08 1.06

NYC-Taxi
outflow

RMSE 16.28 17.22 15.57 16.05 15.16
MAE 6.29 5.80 5.67 5.86 5.40

inflow
RMSE 15.47 14.94 14.75 15.14 14.05
MAE 6.97 5.92 5.86 6.18 5.42

TaxiBJ
outflow

RMSE 23.26 17.92 17.60 17.38 17.16
MAE 14.11 10.82 10.63 10.45 10.28

inflow
RMSE 22.98 18.02 17.66 17.45 17.26
MAE 13.97 10.88 10.70 10.51 10.35

that is, we learn three different interactive representations

that share information across arbitrarily paired time sub-

series, such as ZCP sharing information across C and

P , instead of one interactive representation ZS sharing

information across all time sub-series.

• MUSE-Net-w/o-SemanticPushing: drop the semantic-

pushing module from our model (i.e., the overall objective

function without Eq. (9))

• MUSE-Net-w/o-SemanticPulling: drop the semantic-

pulling module from our model (i.e., the overall objective

function without Eq. (16))

Table VI tabulates the ablation experimental results com-

pared to the original MUSE-Net in the NYC-Bike, NYC-Taxi,

and TaxiBJ datasets. It can be seen that our proposed MUSE-

Net obviously achieves better results than its ablative variants,

demonstrating the effectiveness of each part of the MUSE-

Net. Moreover, we can draw the following observation. First,

MUSE-Net-w/o-Spatial obtains the worst performance with

7% ∼ 35% performance degradation compared to MUSE-Net,

indicating the importance of spatial dependency in traffic flow

forecasting. After dropping the spatial module, our MUSE-

Net, which can be regarded as a temporal-only method,

still achieves competitive performances over spatial-temporal

methods, such as STGSP [16], STGNN [25], and GMAN

[38], in three datasets (referred to Table II). This validates the

effectiveness of the proposed disentanglement for traffic flow

forecasting. Second, MUSE-Net-w/o-MultiDisentangle obtains

the second worst performance with 4% ∼ 13% performance

degradation compared to MUSE-Net. By using a multivariate

disentanglement module, the proposed MUSE-Net is able to

directly separate the common pattern shared across different
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Fig. 5. The visualized distribution of original and disentangled representations in the NYC-Bike, NYC-Taxi, and TaxiBJ datasets, respectively.

time sub-series from the private pattern existing in each time

sub-series. As a result, the MUSE-Net can be more powerful in

capturing the multi-periodicity of traffic flow. Third, the reg-

ularization terms, including semantic-pushing and semantic-

pulling, can stably boost the traffic flow prediction due to

their advantage in making the learned exclusive and interactive

representations independent and informative.

E. Independence Analysis for Disentanglement (RQ 3)
The MUSE-Net attempts not only to disentangle the multi-

periodic pattern into exclusive and interactive representations

but also to keep each representation away from the others via

semantic-pushing regularization. To validate the independence

of disentanglement, we perform an experiment of 2D distribu-

tion visualization by comparing original data with disentangled

representations. Specifically, we first learn the disentangled

representations (i.e., three exclusive representations and one

interactive representation) from the original multiple time

sub-series (i.e., closeness, period, and trend sub-series) and

then simultaneously project the original data and disentangled

representations into the 2D distribution via t-sne [57]. In this

way, we can verify independence by identifying the clusters of

different representations. Fig. 5 visualizes the 2D distributions

of original data and disentangled representations. It is obvious

that the original data of different time sub-series are mixed

up, indicating the entanglement among multiple original time

sub-series. On the contrary, each disentangled representation

keeps separated from the others, encouraging discrimination to

capture specific patterns in the different temporal dimensions.

This verifies that our proposed method can effectively disen-

tangle multi-periodicity patterns from traffic flow and ensure

the independence of each pattern.

F. Informativeness Analysis for Disentanglement (RQ 4)
Although the MUSE-Net can decouple multi-periodic pat-

terns into exclusive and interactive representations, do these

representations provide enough information for traffic flow

forecasting? Here, we conduct a similarity analysis to evaluate

the informativeness of disentangled representations on the

TaxiBJ dataset. Specifically, we first calculate the cosine sim-

ilarity between paired representations and then visualize the

similarity matrices via a heatmap. The similarity value ranges

from -1 to 1, which can describe how much information one

representation provides for another. The higher the similarity

value, the more information can be provided.

Fig. 6. The visualized similarity matrices of interactive representation with
respect to original closeness, period, and trend time sub-series, respectively,
in the TaxiBJ dataset.

Fig. 7. The visualized similarity matrices of closeness, period, and trend
exclusive representations and interactive representation with respect to future
traffic flow, respectively, in the TaxiBJ dataset.

We first conduct a similarity analysis to evaluate how

much information the interactive representation learns from

closeness, period, and trend sub-series. To this end, we cal-

culate and depict the similarity of interactive representation

with respect to original closeness, period, and trend sub-

series, as illustrated in Fig. 6. It is obvious that most points

in the three heatmaps are greater than zero, indicating that

interactive representation can learn enough useful information

from closeness, period, and trend sub-series. This verifies the

effectiveness of our proposed semantic-pulling regularization

on pulling the interactive representation towards the original

multiple time sub-series.

Furthermore, we conducted another similarity analysis to

evaluate how exclusive and interactive representations con-

tribute to the forecasting. Hence, we compute and visualize

the similarity for exclusive and interactive representations with

respect to future traffic flow. As depicted in Fig. 7, the color

(i.e., similarity distribution) of the interactive representation is

opposite to that of exclusive representations. This indicates that

the information of interactive representation is complementary

to that of exclusive representation. As a result, the incorpo-

ration of exclusive and interactive representations can provide

sufficient information to accurately predict future traffic flow.
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G. Interpretability of Disentangled Representations (RQ 5)

Since disentanglement provides the interpretation power of

representation learning, we further evaluate and demonstrate

the meanings of disentangled exclusive and interactive rep-

resentations. Specifically, we calculate the similarity matrix

between disentangled representations and future traffic flow.

The diagonal of the matrix represents the similarity between

the future traffic flow at time t and the corresponding represen-

tations. The value of similarity ranges from −1 to 1. The larger

the value, the more similar the disentangled representation and

the future traffic flow will be.

Fig. 8 depicts an example of traffic flow in the region (5,

4) of the TaxiBJ dataset. This traffic flow is collected from

6:30 pm on 11/10/2013 to 9:30 am on 12/10/2013, which can

be broken into peak periods (i.e., 6:30 pm-11:00 pm and 7:00

am-9:30 am) and non-peak periods (i.e., 11:30 pm-6:30 am).

It can be seen that the similarity values of three exclusive

representations are greater than zero during peak periods while

being less than zero during non-peak periods. This observation

indicates that exclusive representation reveals the traffic pat-

tern during peak periods. The possible reason is that exclusive

representation characterizing the private property is powerful

in modeling the unique data distribution, such as fluctuated

traffic flow. In addition, we notice that the similarity values of

interactive representation in non-peak periods are greater than

those in peak periods, indicating that interactive representation

tends to reveal the traffic pattern during non-peak periods. The

possible reason is that interactive representation is designed to

capture common patterns sharing a similar data distribution.

Thus, interactive representation can better model the normal

distribution, such as traffic flow during non-peak periods.

H. Parameter Sensitivity (RQ 6)

The proposed MUSE-Net mainly contains three parameters,

i.e., the trade-off parameter λ, the sampled dimensions of mean

and standard deviation k, and the representation dimension d.

To evaluate these three parameters, we first set λ, k, and k as

the values from candidate set
{
10−3 ∼ 103

}
, {16 ∼ 1024},

and {16 ∼ 320}, respectively. Then, we repeat the experiment

ten times and take the average results as the experimental

results to compare the parameters’ effects on our MUSE-

Net. Fig. 9 shows the RMSE values of MUSE-Net versus

different parameter values on the NYC-Bike dataset, where

the blue curve denotes the average results, and the light blue

background denotes the fluctuation range of the results. As

shown in Fig. 9 (a), the prediction performance becomes

unstable when λ is much greater or much lower than 1. This

is because λ trades off the amount of information captured by

interactive representation with that from exclusive represen-

tation. As λ increases, MUSE-Net learns limited information.

As λ decreases, MUSE-Net learns redundant information. Due

to this, we empirically set λ = 1 for all datasets to obtain the

best performance. From Fig. 9 (b), we can observe that the

MUSE-Net can achieve comparable prediction performance

over a wide range of k. The possible reason is that the mean

and standard deviation with small dimensions are sufficient to

Fig. 8. An example to interpret the traffic pattern meanings of closeness,
period and trend exclusive representations, and interactive representation for
forecasting, respectively.

(a) Parameter λ (b) Parameter k (c) Parameter d

Fig. 9. The RMSE results of our MUSE-Net versus different values of the
parameters λ, k and d in the NYC-Bike dataset.

represent the distributions of representations and to evaluate

the difference between various representations. Therefore, we

empirically set k = 128 for all datasets to obtain the best

performance. From Fig. 9 (c), it can be seen that the proposed

method is not sensitive to the parameter d and different

values of the representation dimension can achieve competitive

performance. Hence, we choose the parameter with the best

performance as the representation dimension, that is, d = 64.

VI. CONCLUSION

In this work, we investigate traffic flow forecasting

by proposing a novel disentanglement framework, namely

MUSE-Net, to alleviate distribution shift and interaction shift

problems. In particular, our MUSE-Net can not only handle

the disentangling under multiple variables but also encour-

age the disentangled representations to be independent and

informative. Moreover, we derive a lower bound estimator to

straightforwardly differentiate and optimize the disentangle-

ment problem. Comprehensive experimental results verify the

effectiveness of MUSE-Net in disentangling and demonstrate

the superiority of MUSE-Net over state-of-the-art traffic flow

forecasting methods.

Following mapping the data sensors to grids based on their

coordinates and intercepting the data into closeness, period,

and trend series, we can easily apply the proposed method

to other forecasting applications, such as population-level

epidemic forecasting, air-quality forecasting, and energy fore-

casting. Considering the power of disentanglement in multi-

periodicity learning, we believe that the proposed MUSE-Net

can be useful for a variety of forecasting applications.
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