
FedVS: Towards Federated Vector Similarity Search with Filters
Zeheng Fan
SKLCCSE Lab

Beihang University
Beijing, China

fanzh@buaa.edu.cn

Yuxiang Zeng
SKLCCSE Lab

Beihang University
Beijing, China

yxzeng@buaa.edu.cn

Zhuanglin Zheng
SKLCCSE Lab

Beihang University
Beijing, China

zzlin@buaa.edu.cn

Binhan Yang
SKLCCSE Lab

Beihang University
Beijing, China

yangbh@buaa.edu.cn

Yongxin Tong
SKLCCSE Lab

Beihang University
Beijing, China

yxtong@buaa.edu.cn

Abstract
Vectors are used to represent unstructured data with their embed-
dings and associated attributes. Similarity search over large-scale
vector datasets has gained significant interest from both industry
and academia. It aims to identify the 𝑘 nearest neighbors to a query
object from vectors that satisfy a given attribute filter constraint.
Despite its popularity, most solutions focus on single-sourced data
and overlook the need for vector retrieval across federated datasets.
To fill this gap, we introduce a new problem, federated vector sim-
ilarity search with filters, which enables privacy-preserving vec-
tor retrieval over multi-sourced data held by mutually untrusted
providers. While some solutions can be adapted, they struggle with
low recall, excessive search latency, or high communication cost. To
address these challenges, we propose FedVS, a privacy-preserving
framework enhanced with indexing and pruning based on Trusted
Execution Environment (TEE). We also provide a comprehensive
theoretical analysis, including complexity, security, and approxima-
tion guarantees for recall. Moreover, we deploy our solution over
real-world vector databases and conduct extensive experiments.
The results demonstrate that our solution outperforms state-of-the-
art methods in both effectiveness and efficiency.

CCS Concepts
• Information systems→ Nearest-neighbor search; Data fed-
eration tools; Combination, fusion and federated search.

Keywords
Similarity Search, Vector Retrieval, Nearest Neighbor Search

ACM Reference Format:
Zeheng Fan, Yuxiang Zeng, Zhuanglin Zheng, Binhan Yang, and Yongxin
Tong. 2025. FedVS: Towards Federated Vector Similarity Search with Filters.
In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery
and Data Mining V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3711896.3736958

KDD Availability Link:
The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.15504203.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3736958

Figure 1: Vector similarity search over federated datasets

1 Introduction
Similarity search has been studied in various areas, such as datamin-
ing, databases, and information retrieval [15, 25, 61]. The develop-
ment of Retrieval-Augmented Generation (RAG) techniques [14, 28]
has spurred a new line of research in similarity search, known as
vector similarity search [43, 74] or nearest neighbor search with
filters [26, 34]. This new search paradigm is inspired by a hybrid
data type (i.e., vector) that integrates both high-dimensional embed-
dings and structured attributes. By specifying a query vector and a
filter constraint on structured attributes, it identifies 𝑘 objects from
large-scale datasets based on two criteria: (1) their attributes must
match the filter and (2) they are the 𝑘 nearest neighbors (kNNs) to
the query vector within the set of filtered data objects.
Vector Similarity Search over Single-Sourced Data. Both in-
dustry and academia have developed efficient solutions to vec-
tor similarity search. For example, industrial systems for vector
databases [45, 61], vector retrieval engines [7, 9, 65], and knowl-
edge graphs [43] have offered robust supports to this query. Recent
research [26, 34, 63, 67, 68, 74, 78] has also proposed diverse in-
dexes and optimization methods aimed at balancing search time
and answer recall. However, these solutions focus on single-sourced
vector data and cannot address the challenge involved in searching
across multi-sourced datasets (a.k.a. federated datasets).
Vector Similarity Search over Federated Dataset. With the en-
actment of data protection regulations (e.g., GDPR [59] and CCPA
[3]), vector similarity search over federated datasets needs to simul-
taneously consider effectiveness, efficiency, and privacy. As shown in
Fig. 1, three medical institutions provide collaborative drug develop-
ment [41], and a researcher wants to investigate a specific drug test
using biological sample data. Using embeddings of this biological
sample and the drug type as a filter, vector similarity search over
federated datasets can efficiently retrieve relevant drug test results
without compromising the data privacy of each medical institution
during the search. Other application scenarios include federated
RAG [13, 64, 76], joint financial risk assessment [2], cross-platform
recommendation system [50], etc.

https://doi.org/10.1145/3711896.3736958
https://doi.org/10.5281/zenodo.15504203
https://doi.org/10.5281/zenodo.15504203
https://doi.org/10.1145/3711896.3736958

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Zeheng Fan, Yuxiang Zeng, Zhuanglin Zheng, Binhan Yang, and Yongxin Tong.

To perform vector similarity search in these scenarios, each data
provider can initially identify 𝑘 candidates from their local datasets.
However, to derive the final answer, they cannot directly share
these candidate objects with each other, as this would compromise
their data privacy. Instead, additional privacy protection must be
adopted, which can inevitably impact the effectiveness or efficiency.
Thus, the main challenge is how to strike a balance between
effectiveness and efficiency while ensuring privacy preservation.
Limitations of Alternative Methods. Despite the absence of ded-
icated studies on this problem, existing methods for federated kNN
search [23, 51, 73, 75, 76] can potentially be extended to address this
challenge. These methods adopt either encryption [33] or secure
multi-party computation [27] to securely find kNNs to a given query
object. However, encryption-based methods [23, 76] are computa-
tionally expensive, as they require encrypting the whole dataset
and performing searches over encrypted vectors. The other meth-
ods [51, 73, 75], which were originally designed for 2D locations
or sequence data, exhibit inefficiency or low recall when handling
high-dimensional vectors (see our experiments in Sec. 4).
Our Solution. To address these limitations, we propose a new two-
phase framework called FedVS. Both phases leverage a dedicated
hardware, Trusted Execution Environment (TEE) [39], to protect
data privacy during the searches. In Phase I, each provider submits
to the TEE the discrete distribution of distances from their initial
candidates to the query vector. Then, TEE derives a distance thresh-
old for each provider to effectively remove numerous far-away
candidates. In Phase II, the refined candidates from all providers
are collected by TEE to securely determines the final answer. More-
over, when multi-sourced data is non-IID, attribute filters can easily
make each provider’s contribution to the final answer highly un-
balanced. Thus, assuming uniformly 𝑘 initial candidates at each
provider may result in redundant computations. To tackle this issue,
we also devise a lightweight index to pre-estimate each provider’s
contribution before performing any search.
Contribution. In summary, our main contributions are as follows:

• To the best of our knowledge, this is the first work to study
federated vector similarity search with filters.
• To solve this problem, we propose a privacy-preserving
framework and further enhance its efficiency through opti-
mizations based on indexing and pruning.
• Wepresent a comprehensive theoretical study of our solution,
covering the approximation guarantee for recall, time and
communication complexity, and security analysis.
• We conduct experiments on four benchmark datasets, com-
peting against six baselines extended from state-of-the-art
methods [51, 73, 75]. The evaluations are deployed on the
industrial vector database Milvus [5]. In the experiments,
our solution outperforms all baselines by a large margin.

2 Problem Statement
This section first introduces the key concepts used throughout the
paper and then formally defines the studied problem.

2.1 Basic Concepts
Unstructured data objects are often represented as vectors using
their embeddings and associated attributes [26, 34, 43, 63, 67, 74].

Definition 1 (Vector Data). A vector data object 𝑣 (“vector” as
short) usually consists of two main components:

(i) Embedding is denoted by a point 𝑣 .𝑒 = (𝑒1, 𝑒2, · · · , 𝑒𝑑) ∈ R𝑑
in a 𝑑-dimensional space, where each 𝑒𝑖 represents the 𝑖-th coordinate.

(ii) Attributes are represented by a set of 𝑐 structured attributes
𝑣 .𝑎 = (𝑎1, 𝑎2, · · · , 𝑎𝑐) associated with this object, where each attribute
𝑎𝑖 can be either numerical or categorical data.

The dateset D denotes a collection of such vectors that share the
same embedding space and attribute schema.

The embedding captures the intrinsic features of the correspond-
ing entity in a continuous space, while the structured attributes
provide additional context or metadata associated with the entity.
These components complement each other, making this data type
highly effective for representing unstructured information. As a re-
sult, it has been widely adopted in vector databases [45, 61], vector
retrieval engines [7, 9, 65], and knowledge graphs [43].

In these systems, a distance function dist(·, ·) quantifies the simi-
larity between two embeddings, while an attribute filter restricts
vectors based on specific search criteria for their attributes.

Definition 2 (Attribute Filter). An attribute filter (“filter” as
short) is represented by a conjunctive boolean predicate 𝑃 = 𝑝1 ∧𝑝2 ∧
· · · ∧ 𝑝ℎ . Each condition 𝑝𝑖 is a binary comparison statement in the
form 𝑣 .𝑎𝑖 ⊙ 𝑐𝑜𝑛𝑠𝑡𝑖 , where ⊙ is one of the comparison operators from
{≤, ≥, <, >,=} and 𝑐𝑜𝑛𝑠𝑡𝑖 is a constant.

A vector 𝑣 satisfies the attribute filter if and only if the predicate
𝑃 (𝑣) evaluates to true, meaning all conditions 𝑝𝑖 are satisfied:

𝑃 (𝑣) = true ⇔ ∀𝑖 ∈ [1, ℎ], 𝑝𝑖 (𝑣 .𝑎𝑖) = true (1)

Example 1. Each medical institution in Fig. 1 manages a vector
dataset with each drug test result containing an embedding of biolog-
ical data and a drug type. To search for relevant drug test results, a
researcher can specify a attribute filter like “Drug == ALTO-100”.

Vector data are ubiquitous and multi-sourced. Inspired by fed-
erated learning [18, 69, 70], we focus on large-scale vector data
distributed across multiple data providers, i.e., federated dataset
[38, 51, 55, 75] defined in Def. 3 as follows.

Definition 3 (Federated Dataset). A federated dataset 𝐹 con-
sists of𝑚 data providers, each holding a vector dataset D𝑖 with the
same data schema. These data providers collaboratively provide a
vector retrieval service over their union dataset D =

⋃D𝑖 .
Due to data protection regulations, competitive concerns, or the

need to protect business secrets, these data providers are prohibited
from directly sharing their dataset without any protection.

2.2 Problem Definition
Based on above concepts, we formally define the Federated Vector
Similarity Search with filters (FVSS) problem as follows:

Definition 4 (Federated Vector Similarity Search with
Filters). Given a federated dataset 𝐹 , a query vector 𝑞, a positive
integer 𝑘 , and an attribute filter 𝑃 , this problem aims to retrieve 𝑘 data
objects, denoted as Res, that are the most similar to 𝑞 from the vectors
in 𝐹 satisfying the filter 𝑃 . In other words, the result Res should meet
the following two constraints:
• Filter constraint: For any vector 𝑣 ∈ Res, its attributes must
satisfy the predicates in the filter 𝑃 , i.e., 𝑃 (𝑣) = true.

FedVS: Towards Federated Vector Similarity Search with Filters KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

(a) Phase I: Federated candidate refinement (b) Phase II: Federated top-k selection

Figure 2: Illustration of our framework FedVS

• kNN constraint: Let D− denotes the set of vectors satisfying
the filter constraint. Then, Res is a collection of 𝑘 Nearest
Neighbors (kNNs) of 𝑞 in D− , i.e.,
∀𝑣 ∈ Res,∀𝑜 ∈ (D− \ Res), dist(𝑣, 𝑞) ≤ dist(𝑜, 𝑞) (2)

Additionally, data privacy must be protected during the search process,
and the security constraints include:

(i) The query user can only learn query results Res, without any
knowledge about private data from the data providers.

(ii) The data providers can only learn information derived from
their own vector data such as distance and ids, with no access to other
providers’ private data.

AttackerModel. Following common assumptions in previous stud-
ies [51, 60, 75], we assume the attackers are semi-honest [27]. Under
this model, the query user and data providers will faithfully execute
the designated search algorithm but may attempt to infer as much
private information as possible during the retrieval.

Example 2. A toy example of the FVSS problem is illustrated in
Fig. 1. Suppose we use Euclidean distance to measure the similarity
between embeddings. This FVSS query aims to find 𝑘 = 3 nearest
neighbors to the query vector 𝑞 = [0, 0, · · · , 0] among three medical
institutions’ records that match the filter “Drug == ALTO-100”. Results
are highlighted in blue in the left tables of Fig. 1.

Remark. The high dimensionality of embeddings makes fulfilling
the kNN constraint more susceptible to the “curse of dimensionality”
[56]. Consequently, recent solutions [14, 16, 19, 45, 47, 48, 73] for
vector retrieval have shifted focus towards approximate methods
rather than exact solutions. Motivated by this trend, we primarily
focus on approximate solutions that maximize the recall of query
answers Res relative to exact results Exact, defined as Eq. (3):

recall =
|Exact⋂Res|
|Exact| =

|Exact⋂Res|
𝑘

(3)

3 Our Framework FedVS
This section introduces an efficient and secure framework FedVS for
the FVSS problem. Specifically, Sec. 3.1 first provides an overview
of secure primitives that we use. Then, Sec. 3.2 presents the general

framework along with its theoretical analysis. Finally, Sec. 3.3 and
3.4 elaborate on our optimizations (with detailed pseudo-code in
Appendix A).

3.1 Preliminary of Security Basics
Privacy-enhancing techniques, homomorphic encryption [12] and
secure multi-party computation [27], are widely used in federated
learning [18, 70] or federated queries [49, 55]. However, these tech-
niques are computationally intensive, which can significantly re-
duce search efficiency when utilized to maintain security.

By contrast, our framework leverages a hardware-assisted Trusted
Execution Environment (TEE) [39], which has received growing
attention for its potential to offer both security and scalability. TEE
offers a secure and isolated area within the CPU andmemory, where
private data can be processed with strong confidentiality guaran-
tees. Intel’s SGX [66] is one of the leading industrial products of
TEEs. As shown in Fig. 2, the central server of the vector retrieval
service is equipped with SGX. This dedicated hardware facilitates
efficient processing of private data from providers.

3.2 General Framework: FedVS
Leveraging Intel’s SGX [66], we devise a two-phase framework for
the FVSS problem. In the following, we first introduce the main
idea, then delve into each phase, and finally analyze its recall ap-
proximation, complexity, and security guarantee.

3.2.1 Main Idea. Our framework is structured into two phases:
(i) Federated Candidate Refinement. This phase securely

estimates the 𝑘th nearest distance to 𝑞 and reduces the number of
local candidates at each data provider to fewer than 𝑘 .

(ii) Federated Top-K Selection. This phase securely picks the
top-𝑘 nearest vectors to 𝑞 from the refined candidates.

In both phases, plaintext operations at local vector databases are
accelerated using efficient vector indexes like HNSW [5, 34, 63].
Secure operations involving private data from multiple providers
are isolated within a hardware-supported TEE like Intel’s SGX [66].
3.2.2 Phase I: Federated Candidate Refinement. Fig. 2a illustrates
this phase. Specifically, each provider performs local search at their

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Zeheng Fan, Yuxiang Zeng, Zhuanglin Zheng, Binhan Yang, and Yongxin Tong.

own dataset to obtain 𝑘 candidates. These candidates’ distance dis-
tributions are then represented using discretized intervals. Finally,
SGX estimates the upper bound of the 𝑘th nearest distance to the
query vector 𝑞 through binary-search across all providers’ intervals.

Lines 1–17 of Alg. 1 detail this procedure with two key steps:
(i) Partition Initial Candidates’ Distances. In line 2, each

provider 𝑖 retrieves initial candidates 𝑐𝑎𝑛𝑑𝑖 from their local dataset
D𝑖 using pre-built vector indexes. These candidates are sorted
based on their distances to 𝑞 in ascending order. Lines 4–7 divide
the sorted sequence of 𝑘 distances into

√
𝑘 intervals 𝑇𝑖 , where each

interval is denoted by the minimum and maximum distances within
it. Then, each provider sends 𝑇𝑖 to SGX through a secure channel.

(ii) Estimate 𝑘th Nearest Distance. Lines 9–16 estimate the
𝑘th nearest distance 𝛾 to 𝑞 among all candidates {𝑐𝑎𝑛𝑑𝑖 } via binary
search. Initially, 𝑙 and 𝑢 are set as the lower and upper bounds of 𝛾 ,
respectively. For each possible value 𝑟 to estimate 𝛾 , line 12 com-
putes the index 𝑧𝑖 of the interval from𝑇𝑖 that covers 𝑟 . Considering
intervals up to 𝑧𝑖 as candidates results in 𝑧𝑖 ·

√
𝑘 candidates for

provider 𝑖 . If the total number of such candidates reaches 𝑘 , the
upper bound 𝑢 is decreased to 𝑟 ; otherwise, the lower bound 𝑙 is
increased to 𝑟 . Line 15 derives the global upper bound 𝛾 of 𝛾 by
setting it to the maximum right endpoint of intervals in each 𝑇𝑖
covering 𝑢. To prevent information leakage, line 16 derives the cor-
responding local upper bound 𝛾𝑖 for provider 𝑖 . Finally, SGX informs
each provider with the distance threshold 𝛾𝑖 .
3.2.3 Phase II: Federated Top-K Selection. Fig. 2b illustrates the
main process of this phase, corresponding to lines 18–28 of Alg. 1.

In lines 18–21, each data provider 𝑖 removes candidates whose
distances to 𝑞 exceed their received threshold 𝛾𝑖 and submits the
remaining distances L𝑖 back to SGX through a secure channel.

Lines 22–26 use an𝑚-sized min-heap to determine the number
of partial answers 𝐾𝑖 from provider 𝑖 that will be included in the
final result Res. Initially, this heap 𝑄 is populated with the head
(shortest) distance from each L𝑖 . Then, in lines 24–26, 𝑄 is popped
𝑘 times, each time extracting the current shortest distance 𝑑∗ from
provider 𝑖∗. This indicates that the 𝑗 th nearest neighbor to 𝑞 comes
from provider 𝑖∗, so the next candidate from provider 𝑖∗ is pushed
into 𝑄 . Finally, SGX informs each provider 𝑖 to submit their local
𝐾𝑖 nearest neighbors to 𝑞 and collects these vectors into Res.
3.2.4 Theoretical Analysis. Next, we analyze the recall approxima-
tion, complexity, and security guarantee of our framework.
Recall Analysis. To prove the recall guarantee, we first establish
Lemma 1 and 2 to demonstrate the correctness of each phase.

Lemma 1. In Alg. 1, Phase I ensures that the 𝑘 nearest neighbors
to 𝑞 among all providers’ initial candidates will not be removed.

Proof. Suppose Cand =
⋃
𝑐𝑎𝑛𝑑𝑖 . We can proof that if each data

provider only discards vector data that dist(𝑞, 𝑣) > 𝛾 , then the 𝑘
nearest neighbors to 𝑞 among Cand will not be removed. We prove
this by contradiction. Suppose that one of the 𝑘 nearest neighbors to
𝑞, denoted as 𝑣∗, is removed during phase II which initially comes
from 𝑐𝑎𝑛𝑑𝑖 . Thenwe have dist(𝑣∗, 𝑞) > 𝛾 . Additionally, denote right
endpoint of the interval covering 𝑟 from 𝑇𝑖 as 𝛾𝑖 , we have 𝛾𝑖 ≤ 𝛾 .
it’s calculated in 𝐴𝑙𝑔. 1 that there exists 𝑧𝑖 intervals with the right
endpoint lower than 𝛾𝑖 which indicates that at least 𝑧𝑖 ·

√
𝑘 vectors’

distance to 𝑞 is lower than 𝛾𝑖 among 𝑐𝑎𝑛𝑑𝑖 . Thus there exists at
least

∑𝑚
𝑖=1 (𝑧𝑖 ·

√
𝑘) ≥ 𝑘 vector data with distance to 𝑞 lower than

Algorithm 1: Our framework FedVS
Input: federated dataset 𝐹 and vector search (𝑞, 𝑘, 𝑃)
Output: search result Res
// Phase I: Federated Candidate Refinement

1 foreach data provider 𝑖 ← 1 to𝑚 do // Perform in parallel
2 𝑐𝑎𝑛𝑑𝑖 ← vector similarity search (𝑞, 𝑘, 𝑃) locally in D𝑖 ;
3 Sort candidates 𝑐𝑎𝑛𝑑𝑖 based on their distances to 𝑞;
4 foreach distance interval 𝑗 ← 1 to

√
𝑘 do

5 𝑣 𝑗 ← (
√
𝑘 (𝑗 − 1) + 1)th vector in 𝑐𝑎𝑛𝑑𝑖 ;

6 𝑢 𝑗 ← (
√
𝑘 (𝑗 − 1) +

√
𝑘)th vector in 𝑐𝑎𝑛𝑑𝑖 ;

7 Append interval [dist(𝑣 𝑗 , 𝑞), dist(𝑢 𝑗 , 𝑞)] to set 𝑇𝑖 ;

8 SGX receives intervals 𝑇𝑖 from provider 𝑖;
9 𝑙 ← 0, 𝑢 ← longest distance among intervals in {𝑇𝑖 };

10 while 𝑢 > 𝑙 do // Binary-search in SGX
11 𝑟 ← (𝑙 + 𝑢)/2;
12 𝑧𝑖 ← binary-search interval in each 𝑇𝑖 that covers 𝑟 ;
13 if

∑𝑚
𝑖=1 (𝑧𝑖 ·

√
𝑘) ≥ 𝑘 then Upper bound 𝑢 ← 𝑟 ;

14 else Lower bound 𝑙 ← 𝑟 ;
15 𝛾 ← max{right endpoint of interval in 𝑇𝑖 covering 𝑢};
16 𝛾𝑖 ← right endpoint of interval in 𝑇𝑖 covering 𝛾 ;
17 SGX sends distance threshold 𝛾𝑖 to 𝑖th data provider;

// Phase II: Federated Top-K Selection

18 foreach data provider 𝑖 ← 1 to𝑚 do // Perform in parallel
19 Remove any vector 𝑣 ∈ 𝑐𝑎𝑛𝑑𝑖 such that dist(𝑣, 𝑞) > 𝛾𝑖 ;
20 L𝑖 ← sort candidates’ distances {dist(𝑣, 𝑞) | 𝑣 ∈ 𝑐𝑎𝑛𝑑𝑖 };
21 SGX receives sorted distances L𝑖 from provider 𝑖;
22 Heap 𝑄 ← pop the head distance from each L𝑖 ;
23 𝐾𝑖 maintains #(partial answers) in Res from provider 𝑖;
24 foreach 𝑗 ← 1 to 𝑘 do // Top-K in SGX
25 Pop shortest distance 𝑑∗ from provider 𝑖∗ out of 𝑄 ;
26 𝐾𝑖∗ ← 𝐾𝑖∗ + 1, push next distance from L𝑖∗ into 𝑄 ;
27 SGX sends non-negative integer 𝐾𝑖 to data provider 𝑖;
28 return Res← collect 𝐾𝑖 nearest vectors from provider 𝑖;

𝛾 . As dist(𝑣∗, 𝑞) > 𝛾 , we derive that there exists at least 𝑘 vector
data closer to 𝑞 than 𝑣∗. This corollary leads to a contradiction.
Therefore, Lemma 1 holds. □

Lemma 2. In Alg. 1, Phase II ensures that the 𝑘 nearest neighbors
to 𝑞 among all providers’ remaining candidates will be selected.

Proof. We also prove the Lemma 2 by contradiction. Suppose
there exists 𝑣− ∈ Res and 𝑣∗ ∉ Res with dist(𝑣−, 𝑞) > dist(𝑣∗, 𝑞).
Suppose 𝑣∗ is in𝑄 when 𝑣− is popped. Then, we know dist(𝑣∗, 𝑞) ≥
dist(𝑣−, 𝑞), as𝑄 is a min-heap. Suppose 𝑣∗ is in L 𝑗 as 𝑣− is popped.
There must exist a vector 𝑣∗0 that satisfies dist(𝑣

∗
0, 𝑞) ≤ dist(𝑣∗, 𝑞)

and dist(𝑣∗0, 𝑞) ∈ 𝑄 according to line 26 in Alg. 1. As 𝑣− is the
closest vector to 𝑞 in 𝑄 , thus dist(𝑣∗, 𝑞) ≥ dist(𝑣−, 𝑞) which leads
to a contradiction. Therefore, phase II will exactly choose the 𝑘
nearest neighbors to𝑞 from all providers’ remaining candidates. □

Based on these lemmas, Theorem 1 establishes the approximation
guarantees for the answer recall of our framework.

FedVS: Towards Federated Vector Similarity Search with Filters KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Theorem 1. If the initial candidates 𝑐𝑎𝑛𝑑𝑖 are obtained by vector
search at data provider 𝑖 with recall rate 𝛿𝑖 (𝛿𝑖 ∈ [0, 1]), the overall
recall rate of Alg. 1 is at least min𝑖 𝛿𝑖 .

Proof. To derive a meaningful worst-case recall, our proof re-
lies on a mild assumption: for each provider 𝑖 , their respective 𝑘
nearest vectors 𝑘𝑁𝑁𝑖 to 𝑞 appear in the initial candidates 𝑐𝑎𝑛𝑑𝑖
with uniform probability 𝜌𝑖 . This assumption broadly aligns with
the randomness inherent in existing approximate solutions for vec-
tor retrieval [16]. Consequently, the number 𝑋𝑖 = |𝑘𝑁𝑁𝑖 ∩ 𝑐𝑎𝑛𝑑𝑖 |
follows a binomial distribution with success probability 𝜌𝑖 , and
its expectation is E[𝑋𝑖] = 𝑘 · 𝜌𝑖 . The prerequisite of this theorem
ensures that 𝑋𝑖 ≥ 𝑘 · 𝛿𝑖 , indicating 𝜌𝑖 ≥ 𝛿𝑖 (for each provider 𝑖).

In the worst case, all vectors in the exact answer Exact come
from the provider with the lowest 𝜌𝑖 . Then, Lemma 1 and Lemma 2
ensure that (𝑘 · min𝑖 𝜌𝑖) vectors in the search result Res are also
contained in Exact. Thus, the overall recall is at least min𝑖 𝛿𝑖 . □

Practical Implication. Theorem 1 aligns with the bucket effect
[46]: a bucket’s total capacity is mainly determined by its shortest
board. To achieve high recall, each provider should therefore adopt
an effective solution (e.g., Milvus [5]) for local vector search.
Complexity Analysis. Complexity is analyzed from two aspects:

(i) Computational Time: Let 𝑇 denote the time cost for lo-
cal vector retrieval. In Phase I, lines 1–7 take O(𝑇 + 𝑘 log𝑘) time,
and lines 8–17 take O(𝑚 log𝑑𝑚𝑎𝑥 log𝑘) time, where 𝑑𝑚𝑎𝑥 is the
maximum candidate distance. Phase II takes O(𝑚 + 𝑘 log𝑚) time.
Thus, we derive that the overall time complexity is O(𝑇 + 𝑘 log𝑘 +
𝑘 log𝑚 +𝑚 log𝑑𝑚𝑎𝑥 log𝑘).

(ii) Communication Overhead: In Phase I, SGX receives 2𝑚
√
𝑘

interval endpoints. In Phase II, it receives
∑
𝑖 |L𝑖 | distances and 𝑘

vectors, each with 𝑑 dimensions and 𝑐 attributes. Thus, the overall
communication overhead is O(𝑚

√
𝑘 +∑𝑖 |L𝑖 | + (𝑐 + 𝑑)𝑘).

Security Guarantee. Alg. 1 satisfies the security constraints:
(i) The query user receives only the search result containing

exactly 𝑘 vectors and learns no additional information.
(ii) All private data is processed within a hardware-enabled TEE,

Intel SGX [66], ensuring robust security. Each data provider knows
only the distance threshold defined by their own candidates, and
there is no communication between providers. This ensures that
no information leakage occurs between data providers.

3.3 Reducing Communication Overhead
In the communication overhead, the median term

∑
𝑖 |L𝑖 | can be

approaching𝑚𝑘 in the worst case. To mitigate this, we propose an
optimized method for the SGX procedure in Phase I of Alg. 1.

3.3.1 Main Idea. We optimize lines 8–17 of Alg. 1 from two aspects:
(i) Simplified Representation for Intervals. Since distance

thresholds 𝛾𝑖 are determined solely by right endpoints of intervals,
providers no longer send the left endpoints. This simplification
reduces the communication cost of interval transmission by 50%.

(ii) Tighter Distance Threshold. To achieve a tighter distance
threshold, we replace the binary search in lines 9–15 with a min-
heap based search. This𝑚-sized heap 𝑄∗ maintains the minimum
right endpoint across all intervals from 𝑚 providers. With this
change,

∑
𝑖 |L𝑖 | is reduced from𝑚𝑘 to 𝑘 +𝑚

√
𝑘 in the worst case.

Figure 3: Illustration of contribution pre-estimation
3.3.2 Algorithm Details. In Phase I of Alg. 1, lines 1–7 and 16–17
remain unchanged under this optimization.

The major changes occur in lines 8–15. Specifically, in line 8,
each provider 𝑖 sends only the right endpoints of intervals𝑇𝑖 to SGX.
Lines 9–15 are replaced with the following heap based search. An
𝑚-sized min-heap𝑄∗ is initialized with the first right endpoint from
each provider. The heap is then processed by performing

√
𝑘 pops.

Whenever a right endpoint is popped from𝑄∗, we immediately refill
𝑄∗ with the next right endpoint from the same provider, except for
the last pop. Finally, the last right endpoint popped from𝑄∗, which
belongs to provider 𝑖∗, determines the distance upper bound 𝛾 .
Remark. This heap-based search takes O((𝑚 +

√
𝑘) log𝑚) time.

Consequently, it reduces the time complexity of Phase I into O(𝑇 +
𝑘 log𝑘+(𝑚+

√
𝑘) log𝑚). Moreover, the communication cost

∑
𝑖 |L𝑖 |

depends on the number of right endpoints that have been inserted
into 𝑄∗. This number comprises the popped endpoints (i.e.,

√
𝑘)

and remaining endpoints in 𝑄∗ (i.e.,𝑚 − 1). Thus, this optimization
also reduces the communication cost into O(𝑘 +𝑚

√
𝑘). Additionally,

optimized framework can achieve the same recall as Alg. 1, which
will be explained in Appendix A.1.

3.4 Pruning via Contribution Pre-Estimation
Both existing solutions [51, 73, 75] and our Alg. 1 select 𝑘 nearest
vectors to 𝑞 as initial candidates at each provider. However, due to
the non-IID property of federated data [37], only a few providers
make meaningful contributions to the final answer. Leveraging the
non-IIDness, we pre-estimate each provider’s contribution to the
final answer and eliminate redundant candidates.

3.4.1 Main Idea. Our estimation considers two primary factors:
(i) Distance to Query Vector. Providers with shorter nearest

distance to query vectors tend to contribute more in final answers.
(ii) Selectivity ofAttribute Filter. Providerswhose local datasets

exhibit higher selectivity for attribute filters are more likely to make
major contributions to the final answer.

To derive these information without conducting local vector
searches, we devise a lightweight and learning-enhanced index in
Sec. 3.4.2 and propose an effective estimation method in Sec. 3.4.3.

3.4.2 Construct Auxiliary Index. Wepropose a Cluster-based Learned
Index, called CLI, to hold distance information and structured at-
tributes in each provider’s local dataset with two key steps:

(i) Cluster Vectors. First, we adopt a balanced clustering al-
gorithm over embeddings to partition vectors D𝑖 into multiple
clusters {C𝑗 }. For each cluster C𝑗 , we sort its vectors based on their
distances to the centroid 𝑜 𝑗 in ascending order.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Zeheng Fan, Yuxiang Zeng, Zhuanglin Zheng, Binhan Yang, and Yongxin Tong.

(ii) Build Learned Index. For vectors within each cluster C𝑗 , we
construct a multi-dimensional learned index [30] (e.g., PGM-index
[8]) over their structured attributes. Besides, we perform systematic
sampling on computed distances to the centroid and store these
distances at intervals of

√︁
|C𝑗 | (i.e.,

√︁
|C𝑗 |, 2

√︁
|C𝑗 |, · · · , up to |C𝑗 |)

within our index. This index CLI facilitates the estimation of the
selectivity and the 𝑘th nearest distance to 𝑞, as will be detailed later.

3.4.3 Federated Contribution Pre-Estimation. To collaboratively
pre-estimate each provider’s contribution to the final answer (de-
noted by number 𝑘𝑖), our solution involves four essential steps:

(i) Identify Nearby Clusters. Given a local dataset partitioned
into Φ clusters {C1, C2, · · · , CΦ}, each provider identifies the cluster
whose centroid 𝑜𝑖 is the closest to 𝑞, and selects additional nearby
clusters for estimation. The selected clusters C∗ are defined as:

C∗ =
{
C𝑗 | dist(𝑜 𝑗 , 𝑞) ≤ (1 + 𝛼) ·minΦ𝑖=1 dist(𝑜𝑖 , 𝑞)

}
(4)

where the parameter 𝛼 ∈ [0, 1] tunes the threshold for determining
whether a cluster is considered sufficiently nearby.

(ii) Estimate Selectivity. In this step, we map the conjunctive
predicate 𝑝1 ∧ 𝑝2 ∧ · · · ∧ 𝑝ℎ of the filter 𝑃 into a multi-dimensional
search window. We then execute range counting searches within
each cluster C𝑗 ∈ C∗ using the pre-built multi-dimensional learned
index [30]. For cluster C𝑗 , 𝑐𝑛𝑡 𝑗 denotes the exact count, and 𝑐𝑛𝑡 𝑗 is
the range count through learned index. The selectivity denoted as
𝑠𝑒𝑙 can be estimated as follows:

𝑠𝑒𝑙 =

��{𝑣 | 𝑣 ∈ C𝑗 ∧C𝑗 ∈ C∗∧ 𝑃 (𝑣) = true
}��∑

C𝑗 ∈C∗ |C𝑗 |

=

∑
C𝑗 ∈C∗ 𝑐𝑛𝑡 𝑗∑
C𝑗 ∈C∗ |C𝑗 |

≈
∑
C𝑗 ∈C∗ 𝑐𝑛𝑡 𝑗∑
C𝑗 ∈C∗ |C𝑗 |

(5)

The approximation in Eq. (5) holds due to the bounded worse-case
error of PGM-index [31], indicating the accuracy of our estimation.

(iii) Estimate kth Nearest Distance. Based on the selectivity
in Eq. (5), the top 𝑘

𝑠𝑒𝑙
nearest vectors in C∗ to the query vector 𝑞 are

expected to contain enough vectors satisfying the filter constraints.
For a vector 𝑣 in the cluster C𝑗 ∈ C∗, the upper bound on the
distance between 𝑣 and 𝑞 is derived by the triangle inequality:

dist(𝑞, 𝑣) ≤ dist(𝑞, 𝑜 𝑗) + dist(𝑜 𝑗 , 𝑣) (6)

Our index CLI has stored distances between
√
𝑘 sampled vectors 𝑣𝑖

and centroid 𝑜 𝑗 . Thus, we only need to find the smallest distance
𝛾∗ such that the conditions in Eq. (7) and Eq. (8) are met:

∀C𝑗 ∈ C∗, 𝑧 𝑗 = arg min
𝑣𝑖 ∈C𝑗

{
𝑖 | 𝛾∗ ≤ dist(𝑞, 𝑜 𝑗) + dist(𝑜 𝑗 , 𝑣𝑖)

}
(7)

𝑘

𝑠𝑒𝑙
≤

∑︁
C𝑗 ∈C∗

(
𝑧 𝑗 ·

√︃
|C𝑗 |

)
(8)

To efficiently compute 𝛾∗, we adopt the aforementioned method in
Sec. 3.3 with two key modifications: the distance upper bound as
defined in Eq. (6) and diversified interval sizes

√︁
|C𝑗 |.

(iv) Jointly Estimate Contribution. Each provider 𝑖 submits
their estimated𝑘th nearest distance𝛾∗

𝑖
to SGX. Intuitively, providers

with smaller 𝛾∗
𝑖
are likely to contribute more significantly in the

final answer. To retain high recall, the provider with the minimum
𝛾∗
𝑖
remains with 𝑘 initial candidates. Accordingly, SGX estimates

Table 1: Statistics of datasets (distance function: L2)

Dataset Card. Dim. Embedding Attribute Partition

WIT 5 × 104 2048 Image Image Size IID
YT-Audio 106 128 Audio Category Dirichlet
YT-Rgb 106 1024 Video Category Dirichlet
DEEP 107 96 Image Synthetic Quantity

the other providers’ contributions as in Eq. (9), and sends integer
𝑘𝑖 ≤ 𝑘 to each provider for subsequent local vector retrieval.

𝑘𝑖 = 𝑘 ·
min𝑖 𝛾∗𝑖
𝛾∗
𝑖

(9)

4 Experimental Study
We deploy our experimental study on six cloud servers over in-
dustrial vector databases, Milvus v2.5.2 [5]. The main hardware
includes Intel Xeon(R) Platinum 8361HC CPUs and 32GB of RAM.
One server is equipped with Intel’s SGX SDK. They are intercon-
nected with a public network bandwidth of up to 10Mbit/s.

4.1 Experimental Setup
Dataset. We adopt four real-world datasets from prior studies
[26, 67, 68, 78]: WIT [10], YT-Audio [11], YT-Rgb [11], and DEEP
[1]. These datasets feature cardinalities of up to 10 million vectors
and dimensionalities of up to 2048. Each vector in the first three
datasets has a single attribute, while each vector in DEEP includes
two attributes. To test both IID and non-IID scenarios, we allocate
datasets into providers using various partition methods in federated
learning [17, 24, 29, 42]: (1) WIT is uniformly divided; (2) YT-Audio
and YT-Rgb are partitioned based on Dirichlet distributions with
parameter 𝛽 = 0.5; (3) DEEP employs a classic quantity-based parti-
tion [37]. We generate the query workloads by following previous
researches [26, 68, 78] for vector similarity search with filters.
Parameter Setting.We evaluate the impacts of query parameter 𝑘
ranging from 32 to 256 and the number of providers𝑚 ranging from
5 to 20. The default values of 𝑘 and𝑚 are 128 and 5, respectively.
Compared Solution.We make two types of extensions to three
state-of-the-art methods, HuFu [51],Mr [73], and DANN* [75], to
solve our FVSS problem. These baselines mainly rely on indexes
which are inefficient for high-dimensional vector data and attribute
filter. In our first extension, we primarily substitute their local multi-
dimensional indexes with the same dedicated vector indexes as in
our solution. In the other extension, We use a “post-filter” strategy
to extend these methods as HuFu-Post, Mr-Post, and DANN*-Post.
Explicitly, we first identify 𝑘 nearest vectors without considering
filter constraint through Milvus in each data provider, then verify
filter constraint with one round of scanning, thus yielding poten-
tially fewer than 𝑘 initial candidates. Additionally, we implement
a plaintext baseline that selects the top-𝑘 nearest neighbors to 𝑞
in plaintext from the initial𝑚𝑘 candidates. To ensure a fair com-
parison, we implement all the solutions in C++ and utilize gRPC
v1.62.0 [4] for network communications.
Metric. The above methods are compared from three metrics:
(1) Answer recall represents accuracy of search results relative to
ground truths; (2) Search time quantifies average time for perform-
ing a federated vector similarity search with filters; (3) Communica-
tion cost is network traffic generated during the search procedure.
We also report our index construction time and size in Sec. 4.4.2.

FedVS: Towards Federated Vector Similarity Search with Filters KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 2: Query performance of our solution (FedVS) compared to one plaintext baseline (Plaintext) and six secure baselines,
with answer recall (%), communication cost (KB), and search time (ms) as metrics (↑: higher is better, ↓: lower is better). Among
secure solutions, the best result is marked in blue and the runner-up performance is underlined.

Compared
Algorithms

WIT Dataset [10] YT-Audio Dataset [11] YT-Rgb Dataset [11] DEEP Dataset [1]

Answer Comm. Search Answer Comm. Search Answer Comm. Search Answer Comm. Search
Recall ↑ Cost ↓ Time ↓ Recall ↑ Cost ↓ Time ↓ Recall ↑ Cost ↓ Time ↓ Recall ↑ Cost ↓ Time ↓

Plaintext 99.66 990 186.05 98.59 72 48.84 96.17 538 95.91 99.00 54 88.51

HuFu 93.42 15200 9871.37 97.62 1064 3991.67 96.15 8062 7602.56 97.00 804 4187.00
Mr 83.98 15281 5579.43 66.35 1006 652.78 81.87 8050 4064.27 95.16 791 768.44
DANN* 96.48 5703 4491.06 92.76 407 801.50 90.34 3173 2910.62 92.71 165 905.46

HuFu-Post 24.60 11024 10825.16 16.57 592 5369.70 18.32 4535 6679.56 24.03 467 5175.60
Mr-Post 8.35 10833 4870.95 18.06 566 549.09 20.94 4449 1957.18 4.88 370 578.88
DANN*-Post 8.00 5643 4342.08 22.94 371 757.08 23.95 2749 2505.94 4.62 278 811.33

FedVS 99.63 997 362.25 98.38 72 305.29 96.16 541 304.70 99.00 55 348.19

Table 3: Ranking of secure solutions based on their overall query performance

Metric Average rank across four datasets

Search time (from shortest to longest) FedVS < Mr-Post < DANN*-Post < Mr < DANN* < HuFu < HuFu-Post
Answer Recall (from highest to lowest) FedVS > HuFu > DANN* > Mr > HuFu-Post > DANN*-Post > Mr-Post

Figure 4: Answer recall vs. search time on four datasets

4.2 Overall Query Performance
Table 2 presents the overall query performance. From these results,
we have made the following observations.
Result of Recall. We first observe that our solution FedVS consis-
tently achieves the highest recall among secure solutions. Across
four datasets, the recall of FedVS is up to 6.21%, 32.03%, and 6.29%
higher than HuFu,Mr, and DANN*, respectively. Even compared
with insecure baseline Plaintext, FedVS decreases the answer recall
by up to 0.21% in YT-Audio, 0.03% inWIT, and only 0.01% in YT-Rgb
while maintaining the same recall in DEEP. Another observation is
that the baselines implemented with “post-filter” strategy generally

have lower recall. This is because the post-filtering may reduce the
answer size to less than 𝑘 . These results also indicate that HuFu,
Mr, and DANN* are strong competitors in terms of recall.
Result of Efficiency. In terms of efficiency, our solution takes
the shortest search time and lowest communication cost across all
secure baselines. Specifically, the communication cost of our FedVS
is 5.65–15.32×, 5.15–14.77×, 5.08–14.90×, and 3.05–14.61× lower
than the six secure baselines onWIT, YT-Audio, YT-Rgb, and DEEP
datasets, respectively. Additionally, FedVS is up to 27.25×, 15.40×,
and 12.39× faster than HuFu,Mr, and DANN*, respectively. Com-
pared to the insecure baseline, existing secure baselines are at least
6.54× slower, while FedVS is at most 6.25× slower. Moreover, the
communication cost of FedVS is close to that of Plaintext, whereas
other secure methods require at least 3.05× more communications.

Besides, Fig. 4 is the scatter diagram of each secure method based
on its average results of 100 queries on four datasets. The closer a
method is to the bottom-right corner, the better its performance.
Based on this diagram, we can easily obtain the ranks of these
secure solutions in terms of search time and recall on each dataset,
which is shown in Table 3. According to this overall rank, our
solution FedVS outperforms all existing baselines in terms of both
effectiveness and efficiency across the datasets.

4.3 Impact of Query Parameters
The following experiment evaluates the performance of each secure
solution under varying query parameter settings for integer 𝑘 and
the number of data providers𝑚. We exclude HuFu-Post,Mr-Post,
and DANN*-Post from these comparisons, because their recall is
significantly lower than that of HuFu,Mr, andDANN*. Due to page
limitations, we only present the results on the YT-Audio dataset
here and please refer to the other results in Appendix B.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Zeheng Fan, Yuxiang Zeng, Zhuanglin Zheng, Binhan Yang, and Yongxin Tong.

32 64 128 256
k

55

70

85

100

An
sw

er
 R

ec
al

l (
%

)

32 64 128
96
97
98
99

32 64 128 256
k

10
1

10
2

10
3

C
om

m
. C

os
t (

KB
)

32 64 128 256
k

10
2

10
3

10
4

Se
ar

ch
 T

im
e

(m
s)

(a) Impact of 𝑘

2 5 10 20
m

55

70

85

100

An
sw

er
 R

ec
al

l (
%

)

5 10 20
96

98

100

2 5 10 20
m

10
1

10
2

10
3

10
4

C
om

m
. C

os
t (

KB
)

2 5 10 20
m

10
1

10
2

10
3

10
4

10
5

Se
ar

ch
 T

im
e

(m
s)

(b) Impact of𝑚

Figure 5: Impact of query parameters on YT-Audio dataset

Impact of Query Parameter 𝑘 . When varying 𝑘 in Fig. 5a, the
recall of FedVS and HuFu almost remains unchanged while the
recall of DANN* shows minor fluctuations. By contrast, the recall
of Mr increases as 𝑘 grows. Regarding the changes in the value
of 𝑘 , our solution always achieves the highest recall. For instance,
the recall of FedVS is up to 2.46%, 38.63%, and 7.50% higher than
that of HuFu, Mr, and DANN*, respectively. This improvement
demonstrates the robustness of our solution in the effectiveness.

In terms of query efficiency, the communication overhead and
search time of any method generally increase as 𝑘 increases. This
is reasonable, since a larger 𝑘 implies more nearest neighbors in
the result set, thereby requiring higher computational and com-
munication cost. The baselines, Mr and HuFu, often have higher
communication overhead and longer search latency than DANN*
and FedVS. Overall, our solution still requires the shortest search
time and lowest communication cost. It is up to 25.18×, 15.72×, and
14.60× faster than HuFu,Mr, and DANN*, respectively.
Impact of #(Data Providers)𝑚.When involvingmore data providers
in Fig. 5b, FedVSmaintains a relatively stable recall between 97.00%
and 98.79% while the recall of HuFu and DANN* exhibit certain
fluctuations in 90.16%–97.62% and 92.76%–95.77%, respectively. By
comparison, the recall of Mr drops dramatically as 𝑚 increases.
This may be because its contribution evaluation algorithm may
introduce larger errors with more data providers. Under different
settings of𝑚, HuFu always ranks first in terms of recall, and the
improvement over the runner-up method is 0.76%–3.18%.

The communication cost and search time increase with a growing
number of data providers𝑚. This trend complies with the compu-
tational and communication complexity of these secure methods,

Figure 6: Results of ablation study on optimization #1
where a larger𝑚 requires more secure computations across data
providers. Despite these changes, our FedVS is always the most
efficient solution. The baselines, HuFu,Mr, and DANN*, are up to
66.59×, 6.12×, and 3.06× slower than FedVS, respectively. Moreover,
when𝑚 grows from 2 to 20, the communication cost of FedVS only
increases by 29.96%, while that of others increases by up to 17.88×.

4.4 Ablation Study
The following ablation studies assess the effectiveness of our opti-
mization methods introduced in Sec. 3.3 and Sec. 3.4.
4.4.1 Optimization #1: Reducing Communication Overhead. This
ablation experiment assesses the effectiveness of the optimization
method described in Sec. 3.3 (“optimization #1” as short). Fig. 6
shows the query performance of our framework with and without
optimization #1, using the YT-Audio and YT-Rgb datasets parti-
tioned into twenty data providers. The communication cost re-
ported here excludes the input query and output answer, as they
remain constant regardless of whether this optimization is applied.

Using optimization #1, our framework effectively reduces both
the search time and communication overhead. For example, 7.32%
search time and 22.33% communication cost are saved in the YT-Rgb
dataset. Meanwhile, the recall remains unchanged. These results
clearly validate the functionality of this optimization.

(a) YT-Audio (b) YT-Rgb (c) DEEP

Figure 7: Results of ablation study on optimization #2

4.4.2 Optimization #2: Pruning via Contribution Pre-Estimation. To
evaluate our pruning strategy proposed in Sec. 3.4, we conduct an-
other ablation experiment on YT-Audio, YT-Rgb, andDEEP datasets
with five data providers. Since optimization #2 aims to reduce the
initial candidate size, we directly report the sizes with and without
this pruning strategy in our framework FedVS.
Impact on Initial Candidate Size. As shown in Fig. 7, optimiza-
tion #2 can reduce the initial candidate size at each provider by up
to 15.19%–68.56% in these datasets with minimal impact on recall.
Then, each local vector database now needs to search fewer local
candidates and hence has lower computational cost.

FedVS: Towards Federated Vector Similarity Search with Filters KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 4: Construct our auxiliary index CLI

Dataset YT-Audio YT-Rgb DEEP

Clustering Time 28s 150s 6778s
Index Build Time 31ms 18ms 1789ms
Index Space Cost 17KB 51KB 346KB

Additional Cost for Auxiliary Index. Table 4 presents the av-
erage cost for our auxiliary index CLI. The DEEP dataset contains
10 million vectors, making it significantly larger than the other
datasets. Thus, we generate 100 clusters for DEEP and 10 clusters
for the other datasets using the method in [40]. Other more effi-
cient high-dimensional data clustering algorithms [21, 32, 35] are
orthogonal to our index. After clustering, it takes less than 2 sec-
onds and 1MB space to build an auxiliary index in each provider.
This demonstrates space and time efficiency of building the index.

4.5 Summary of Major Findings
The key findings from the experiments are summarized as follows:

• Among the secure solutions, our solution FedVS always
achieves both the highest recall and the best efficiency across
the datasets. Specifically, the recall of FedVS is up to 6.21%–
32.03% higher than that of HuFu,Mr, and DANN*, respec-
tively. Meanwhile, using our method, the communication
cost can be reduced by up to 15.32× and search time can be
saved by up to 27.25×.
• When using different query parameters, such as the size of
result set and the number of data providers, the query per-
formance of FedVS demonstrates greater robustness than
baselines. It consistently ranks first in recall, communication
cost, and search time. This highlights its superior perfor-
mance under various conditions.
• Our candidates refinement and contribution pre-estimation
algorithms effectively reduce the initial candidates, thus tak-
ing less communication cost than other secure solutions.
Moreover, HuFu andMr require multi-round secure multi-
party operations, eg. comparisons and summations. DANN*
performs secure top-k over more candidates, resulting in
higher time and communication complexity than ours.
• Among the state-of-the-art baselines adapted for our prob-
lem,HuFu is often more accurate thanMr andDANN*, while
Mr and DANN* exhibit better efficiency than HuFu.

5 Related Work
We review related work from the following two categories.
Vector Similarity Search with Filters. Prior studies on similarity
search have predominantly focused on computing exact or approx-
imate kNN search [19, 36, 44, 47, 48, 72]. Recently, vector data is
commonly used to represent unstructured data objects with their
embeddings and associated attributes [16, 61]. This hybrid data
type has spurred several studies [26, 34, 43, 63, 67, 74] into a new
form of similarity search: vector similarity search with filters.

Existing studies can be classified into three kinds: pre-filter, post-
filter, and hybrid index. Pre-filter solutions [62, 65] refine the vector
data by attribute filters before selecting kNNs among refined vectors.
Conversely, post-filter solutions [26, 71, 74] first identify kNNs from

the entire dataset and then verify them using filters. Hybrid index
based methods either fuse both embeddings and attributes into a
single distance function before indexing [63, 67], or they design
indexes with hybrid structures to store embeddings and attributes
[34, 43, 68, 78]. However, they all focus on singled-sourced data.
Federated kNN Search. Inspired by federated learning [18, 69, 70]
and privacy-preserving data mining [20, 57, 58], federated kNN
search has been studied in various applications, such as enhancing
RAG with multi-sourced data [23, 64, 76, 77], collaborative gene
searching [75], and cross-platform spatial crowdsourcing [52, 53].

To prevent privacy leakage between providers, most studies
employ either encryption [23, 76] or secure multi-party compu-
tation [51, 54, 73] during the kNN search. When handling high-
dimensional vectors, these solutions can be computationally expen-
sive. Among these studies, DANN* [75] leverages distance lower
bounds [39] to accelerate secure computations. However, their orig-
inal solutions do not support vector similarity search with filters.
Summary. Although vector similarity search with filters is widely
supported in industrial vector databases (e.g., Pinecone [6], Milvus
[5], and Qdrant [7]), existing work still offers limited supports for
this emerging type of vector retrieval over federated datasets. This
gap motivates us to propose a dedicated solution FedVS.

Furthermore, our optimization via contribution pre-estimation
(Sec. 3.4) is different from contribution estimation in federated learn-
ing (FL) [22]. In the latter, contribution estimation in FL quantifies
each participant’s impact during collaborative training [22]. By
contrast, our method aims to estimate each provider’s contribution
in the final result prior to the local search process.

6 Conclusion
Motivated by real-world application needs, this work introduces a
new problem called federated vector similarity search with filters.
This problem aims to identify kNNs to a query vector under an at-
tribute filter constraint from multi-source vector datasets. Existing
solutions are either inefficient or inaccurate to address this problem.
To overcome these limitations, we propose a two-phase framework
FedVS and devise two optimizations via indexing and pruning. We
also analyze the recall guarantee, computational and communica-
tion complexity, and security. Extensive experiments demonstrate
that our solution achieves consistently better query performance
than state-of-the-art methods. Overall, FedVS accelerates search
time by up to 27.25× and reduces communication overhead by up
to 15.32×, while maintaining the highest recall.

Acknowledgments
We are sincerely grateful to anonymous reviewers for their con-
structive comments. This work was partially supported by National
Key Research and Development Program of China under Grant
No. 2023YFF0725103, National Science Foundation of China (NSFC)
(Grant Nos. 62425202, U21A20516, 62336003), the Beijing Natural
Science Foundation (Z230001), the Fundamental Research Funds
for the Central Universities No. JK2024-03, the Didi Collaborative
Research Program and the State Key Laboratory of Complex & Crit-
ical Software Environment (SKLCCSE). Yuxiang Zeng and Yongxin
Tong are the corresponding authors.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Zeheng Fan, Yuxiang Zeng, Zhuanglin Zheng, Binhan Yang, and Yongxin Tong.

References
[1] 2023. The DEEP Dataset. https://big-ann-benchmarks.com/neurips23.html
[2] 2024. Applying Vector Databases in Finance for Risk and Fraud Analy-

sis. https://zilliz.com/learn/applying-vector-databases-in-finance-for-risk-and-
fraud-analysis

[3] 2024. California Consumer Privacy Act (CCPA). https://oag.ca.gov/privacy/ccpa
[4] 2024. gRPC. https://grpc.io/
[5] 2024. Milvus. https://milvus.io
[6] 2024. Pinecone. https://www.pinecone.io/
[7] 2024. Qdrant. https://qdrant.tech/
[8] 2024. The PGM-Index. https://pgm.di.unipi.it/
[9] 2024. Weaviate. https://weaviate.io/
[10] 2024. WIT dataset. https://github.com/google-research-datasets/wit
[11] 2024. YouTube Dataset. https://research.google.com/youtube8m/download.html
[12] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. 2018. A Survey

on Homomorphic Encryption Schemes: Theory and Implementation. ACM
Comput. Surv. 51, 4 (2018), 79:1–79:35.

[13] Parker Addison, Minh-Tuan H. Nguyen, Tomislav Medan, Jinali Shah, Moham-
mad T. Manzari, Brendan McElrone, Laksh Lalwani, Aboli More, Smita Sharma,
Holger R. Roth, Isaac Yang, Chester Chen, Daguang Xu, Yan Cheng, Andrew Feng,
and Ziyue Xu. 2024. C-FedRAG: A Confidential Federated Retrieval-Augmented
Generation System. CoRR abs/2412.13163 (2024).

[14] Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. 2023. Retrieval-based
Language Models and Applications. In ACL. 41–46.

[15] Gérard Biau and Luc Devroye. 2015. Lectures on the Nearest Neighbor Method.
Springer.

[16] Sebastian Bruch. 2024. Foundations of Vector Retrieval. Springer.
[17] Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li, and Bolin Ding. 2022.

pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning.
In NeurIPS.

[18] Jingxue Chen, Hang Yan, Zhiyuan Liu, Min Zhang, Hu Xiong, and Shui Yu. 2024.
When Federated Learning Meets Privacy-Preserving Computation. ACM Comput.
Surv. 56, 12 (2024), 319:1–319:36.

[19] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. In NeurIPS. 5199–5212.

[20] Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and Michael Y.
Zhu. 2002. Tools for Privacy Preserving Data Mining. SIGKDD 4, 2 (2002), 28–34.

[21] Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, An-
dres Muñoz Medina, David Saulpic, Chris Schwiegelshohn, and Sergei Vassilvit-
skii. 2022. Scalable Differentially Private Clustering via Hierarchically Separated
Trees. In KDD. 221–230.

[22] Yue Cui, Chung-ju Huang, Yuzhu Zhang, Leye Wang, Lixin Fan, Xiaofang Zhou,
and Qiang Yang. 2024. A Survey on Contribution Evaluation in Vertical Federated
Learning. CoRR abs/2405.02364 (2024).

[23] Yichao Du, Zhirui Zhang, Bingzhe Wu, Lemao Liu, Tong Xu, and Enhong Chen.
2023. Federated Nearest Neighbor Machine Translation. In ICLR.

[24] Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg,
Chaoyang He, Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Mar-
foq, Erum Mushtaq, Boris Muzellec, Constantin Philippenko, Santiago Silva,
Maria Telenczuk, Shadi Albarqouni, Salman Avestimehr, Aurélien Bellet, Aymeric
Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi, Giovanni
Neglia, Marc Tommasi, and Mathieu Andreux. 2022. FLamby: Datasets and
Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings.
In NeurIPS.

[25] Karima Echihabi, Themis Palpanas, and Kostas Zoumpatianos. 2021. New Trends
in High-D Vector Similarity Search: AI-driven, Progressive, and Distributed.
PVLDB 14, 12 (2021), 3198–3201.

[26] Joshua Engels, Benjamin Landrum, Shangdi Yu, Laxman Dhulipala, and Julian
Shun. 2024. Approximate Nearest Neighbor Search with Window Filters. In
ICML.

[27] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Pragmatic Intro-
duction to Secure Multi-Party Computation. Foundations and Trends in Privacy
and Security 2, 2-3 (2018), 70–246.

[28] Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin,
Tat-Seng Chua, and Qing Li. 2024. A Survey on RAG Meeting LLMs: Towards
Retrieval-Augmented Large Language Models. In SIGKDD. 6491–6501.

[29] Tiantian Feng, Digbalay Bose, Tuo Zhang, Rajat Hebbar, Anil Ramakrishna,
Rahul Gupta, Mi Zhang, Salman Avestimehr, and Shrikanth Narayanan. 2023.
FedMultimodal: A Benchmark for Multimodal Federated Learning. In SIGKDD.
4035–4045.

[30] Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. 2020. Why Are Learned
Indexes So Effective?. In ICML, Vol. 119. 3123–3132.

[31] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. PVLDB 13, 8 (2020),
1162–1175.

[32] Yujian Fu, Cheng Chen, Xiaohui Chen, Weng-Fai Wong, and Bingsheng He. 2024.
Optimizing the Number of Clusters for Billion-Scale Quantization-Based Nearest
Neighbor Search. IEEE Trans. Knowl. Data Eng. 36, 11 (2024), 6786–6800.

[33] Oded Goldreich. 2001. The Foundations of Cryptography - Volume 1: Basic Tech-
niques. Cambridge University Press.

[34] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy,
Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro, Premku-
mar Srinivasan, Amit Singh, and Harsha Vardhan Simhadri. 2023. Filtered-
DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with
Filters. In WWW. 3406–3416.

[35] Chaoyu Gong, Yongbin Liu, Di Fu, Yong Liu, Pei-hong Wang, and Yang You.
2022. Self-reconstructive evidential clustering for high-dimensional data. In
ICDE. 2099–2112.

[36] Shunsuke Kanda and Yasuo Tabei. 2020. Dynamic Similarity Search on Integer
Sketches. In ICDM. 242–251.

[37] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. 2022. Federated Learning
on Non-IID Data Silos: An Experimental Study. In ICDE. 965–978.

[38] Shuyuan Li, Yuxiang Zeng, Yuxiang Wang, Yiman Zhong, Zimu Zhou, and
Yongxin Tong. 2024. An Experimental Study on Federated Equi-Joins. IEEE
Trans. Knowl. Data Eng. 36, 9 (2024), 4443–4457.

[39] Xiaoguo Li, Bowen Zhao, Guomin Yang, Tao Xiang, Jian Weng, and Robert H.
Deng. 2023. A Survey of Secure Computation Using Trusted Execution Environ-
ments. CoRR abs/2302.12150 (2023).

[40] Hongfu Liu, Ziming Huang, Qi Chen, Mingqin Li, Yun Fu, and Lintao Zhang.
2018. Fast Clustering with Flexible Balance Constraints. In BigData. 743–750.

[41] Dandan Lu, Ming Li, Yi Liao, Guihua Tao, and Hongmin Cai. 2022. Verifiable
privacy-preserving queries on multi-source dynamic DNA datasets. IEEE Trans-
actions on Cloud Computing 11, 2 (2022), 1927–1939.

[42] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In AISTATS, Vol. 54. 1273–1282.

[43] Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi, Ihab F.
Ilyas, Umar Farooq Minhas, Jeffrey Pound, and Theodoros Rekatsinas. 2023. High-
Throughput Vector Similarity Search in Knowledge Graphs. SIGMOD 1, 2 (2023),
197:1–197:25.

[44] Marius Muja and David G. Lowe. 2009. Fast Approximate Nearest Neighbors
with Automatic Algorithm Configuration. In VISAPP. 331–340.

[45] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database
management systems. VLDB J. 33, 5 (2024), 1591–1615.

[46] Laurence J. Peter and Raymond Hull (Eds.). 2011. The Peter Principle: Why Things
Always Go Wrong. Harper Business.

[47] Ninh Pham and Tao Liu. 2022. Falconn++: A Locality-sensitive Filtering Approach
for Approximate Nearest Neighbor Search. In NeurIPS.

[48] Parikshit Ram and Kaushik Sinha. 2019. Revisiting kd-tree for Nearest Neighbor
Search. In SIGKDD. 1378–1388.

[49] Donghyun Sohn, Xiling Li, and Jennie Rogers. 2024. Everything You Always
Wanted to Know About Secure and Private Database Systems (but were Afraid
to Ask). IEEE Data Eng. Bull. 47, 2 (2024), 3–20.

[50] Zehua Sun, Yonghui Xu, Yong Liu, Wei He, Lanju Kong, Fangzhao Wu, Yali Jiang,
and Lizhen Cui. 2025. A Survey on Federated Recommendation Systems. IEEE
Trans. Neural Networks Learn. Syst. 36, 1 (2025), 6–20.

[51] Yongxin Tong, Xuchen Pan, Yuxiang Zeng, Yexuan Shi, Chunbo Xue, Zimu Zhou,
Xiaofei Zhang, Lei Chen, Yi Xu, Ke Xu, and Weifeng Lv. 2022. Hu-Fu: Efficient
and Secure Spatial Queries over Data Federation. PVLDB 15, 6 (2022), 1159–1172.

[52] Yongxin Tong, Jieying She, Bolin Ding, Libin Wang, and Lei Chen. 2016. Online
mobile Micro-Task Allocation in spatial crowdsourcing. In ICDE. 49–60.

[53] Yongxin Tong, Yuxiang Zeng, Bolin Ding, Libin Wang, and Lei Chen. 2021. Two-
Sided Online Micro-Task Assignment in Spatial Crowdsourcing. IEEE Trans.
Knowl. Data Eng. 33, 5 (2021), 2295–2309.

[54] Yongxin Tong, Yuxiang Zeng, Yang Song, Xuchen Pan, Zeheng Fan, Chunbo Xue,
Zimu Zhou, Xiaofei Zhang, Lei Chen, Yi Xu, Ke Xu, and Weifeng Lv. 2025. Hu-Fu:
efficient and secure spatial queries over data federation. VLDB J. 34, 2 (2025), 19.

[55] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Boyi Liu, Yexuan Shi, Shuyuan Li, Ke
Xu, and Weifeng Lv. 2023. Federated Computing: Query, Learning, and Beyond.
IEEE Data Eng. Bull. 46, 1 (2023), 9–26.

[56] Csaba D. Toth, Joseph O’Rourke, and Jacob E. Goodman (Eds.). 2017. Handbook
of Discrete and Computational Geometry, Third Edition. Chapman and Hall/CRC.

[57] Jaideep Vaidya and Chris Clifton. 2004. Privacy-Preserving Data Mining: Why,
How, and When. IEEE Secur. Priv. 2, 6 (2004), 19–27.

[58] Jaideep Vaidya, Yu Zhu, and Christopher W. Clifton. 2006. Privacy Preserving
Data Mining. Advances in Information Security, Vol. 19. Springer.

[59] Paul Voigt and Axel Von dem Bussche. 2017. The EU General Data Protection
Regulation (GDPR): A Practical Guide. Vol. 10. Springer International Publishing.

[60] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei
Lapets, and Azer Bestavros. 2019. Conclave: secure multi-party computation on
big data. In EuroSys. 3:1–3:18.

[61] Jianguo Wang, Eric Hanson, Guoliang Li, Yannis Papakonstantinou, Harsha
Simhadri, and Charles Xie. 2024. Vector Databases: What’s Really New and

https://big-ann-benchmarks.com/neurips23.html
https://zilliz.com/learn/applying-vector-databases-in-finance-for-risk-and-fraud-analysis
https://zilliz.com/learn/applying-vector-databases-in-finance-for-risk-and-fraud-analysis
https://oag.ca.gov/privacy/ccpa
https://grpc.io/
https://milvus.io
https://www.pinecone.io/
https://qdrant.tech/
https://pgm.di.unipi.it/
https://weaviate.io/
https://github.com/google-research-datasets/wit
https://research.google.com/youtube8m/download.html

FedVS: Towards Federated Vector Similarity Search with Filters KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

What’s Next? PVLDB 17, 12 (2024), 4505–4506.
[62] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-

angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,
Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua
Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built
Vector Data Management System. In SIGMOD. 2614–2627.

[63] Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and
Jiongkang Ni. 2023. An Efficient and Robust Framework for Approximate Nearest
Neighbor Search with Attribute Constraint. In NeurIPS.

[64] Shuai Wang, Ekaterina Khramtsova, Shengyao Zhuang, and Guido Zuccon. 2024.
FeB4RAG: Evaluating Federated Search in the Context of Retrieval Augmented
Generation. In SIGIR. 763–773.

[65] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and
Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards Query
Fusion for Structured and Unstructured Data. PVLDB 13, 12 (2020), 3152–3165.

[66] Newton Carlos Will and Carlos Alberto Maziero. 2023. Intel Software Guard
Extensions Applications: A Survey. ACM Comput. Surv. 55, 14s (2023), 322:1–
322:38.

[67] Wei Wu, Junlin He, Yu Qiao, Guoheng Fu, Li Liu, and Jin Yu. 2022. HQANN:
Efficient and Robust Similarity Search for Hybrid Queries with Structured and
Unstructured Constraints. In CIKM. 4580–4584.

[68] Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, and Christian S. Jensen.
2024. iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering
Nearest Neighbor Search. CoRR abs/2409.02571 (2024).

[69] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. FederatedMachine
Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 10, 2 (2019),
12:1–12:19.

[70] Xuefei Yin, Yanming Zhu, and Jiankun Hu. 2022. A Comprehensive Survey
of Privacy-preserving Federated Learning: A Taxonomy, Review, and Future
Directions. ACM Comput. Surv. 54, 6 (2022), 131:1–131:36.

[71] Shangdi Yu, Joshua Engels, Yihao Huang, and Julian Shun. 2023. PECANN:
Parallel Efficient Clustering with Graph-Based Approximate Nearest Neighbor
Search. CoRR abs/2312.03940 (2023).

[72] Haoyu Zhang and Qin Zhang. 2020. MinSearch: An Efficient Algorithm for
Similarity Search under Edit Distance. In SIGKDD. 566–576.

[73] Kaining Zhang, Yongxin Tong, Yexuan Shi, Yuxiang Zeng, Yi Xu, Lei Chen, Zimu
Zhou, Ke Xu, Weifeng Lv, and Zhiming Zheng. 2023. Approximate k-Nearest
Neighbor Query over Spatial Data Federation. In DASFAA. 351–368.

[74] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi
Chen, Yinxuan He, Yuqing Yang, Fan Yang, Mao Yang, and Lidong Zhou. 2023.
VBASE: Unifying Online Vector Similarity Search and Relational Queries via
Relaxed Monotonicity. In OSDI. 377–395.

[75] Xinyi Zhang, Qichen Wang, Cheng Xu, Yun Peng, and Jianliang Xu. 2024.
FedKNN: Secure Federated k-Nearest Neighbor Search. SIGMOD 2, 1 (2024),
V2mod011:1–V2mod011:26.

[76] Dongfang Zhao. 2024. FRAG: Toward Federated Vector Database Management for
Collaborative and Secure Retrieval-Augmented Generation. CoRR abs/2410.13272
(2024).

[77] Zeqi Zhu, Zeheng Fan, Yuxiang Zeng, Yexuan Shi, Yi Xu, Mengmeng Zhou, and
Jin Dong. 2024. FedSQ: A Secure System for Federated Vector Similarity Queries.
PVLDB 17, 12 (2024), 4441–4444.

[78] Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. 2024. SeRF: Seg-
ment Graph for Range-Filtering Approximate Nearest Neighbor Search. SIGMOD
2, 1 (2024), 69:1–69:26.

A Detailed Pseudo-Code for Our Optimizations
A.1 Optimization #1: Reducing Communication

Overhead
Alg. 2 presents all the technical details of the optimization method
described in Sec. 3.3. This optimization primarily focuses on Phase
I of our framework FedVS.

After local vector similarity search and candidates sorting from
lines 2–3, each provider now only needs to send

√
𝑘 distances to

SGX which are denoted as the right endpoints of the intervals in
Phase I of Alg. 1. Then, SGX calculates the distance threshold with
a min-heap 𝑄∗. In line 8, each head (shortest) distance from 𝑇𝑖

is pushed into 𝑄∗. Then, lines 10–12 illustrate the process of
√
𝑘

rounds of pop and insert as described in Sec. 3.3.2.
This optimization also satisfies Lemma 1, since the min-heap

based selection process is similar to Phase II of our framework. In

Algorithm 2: Reducing Communication Overhead
Input: federated dataset 𝐹 and vector search (𝑞, 𝑘, 𝑃)
Output: distance threshold 𝛾𝑖 for each data provider
// Phase I: Federated Candidate Refinement

1 foreach data provider 𝑖 ← 1 to𝑚 do // Perform in parallel
2 𝑐𝑎𝑛𝑑𝑖 ← vector similarity search (𝑞, 𝑘, 𝑃) locally in D𝑖 ;
3 Sort candidates 𝑐𝑎𝑛𝑑𝑖 based on their distances to 𝑞;
4 foreach distance interval 𝑗 ← 1 to

√
𝑘 do

5 𝑣 𝑗 ←
√
𝑘 · 𝑗th vector in 𝑐𝑎𝑛𝑑𝑖 ;

6 Append dist(𝑣 𝑗 , 𝑞) to set 𝑇𝑖 ;

7 SGX receives set 𝑇𝑖 from provider 𝑖;
8 Min-heap 𝑄∗ ← pop the head distance from each 𝑇𝑖 ;
9 𝑡𝑖 denotes id of the distance to be popped from provider 𝑖;

10 foreach 𝑗 ← 1 to
√
𝑘 do

11 𝛾 ← pop shortest distance 𝑑∗ from provider 𝑖∗ out of𝑄∗;
12 𝑡𝑖∗ ← 𝑡𝑖∗ + 1, push next distance from 𝑇𝑖∗ into 𝑄∗;
13 𝛾𝑖 ← the shortest distance from 𝑇𝑖 not smaller than 𝛾 ;
14 SGX sends distance threshold 𝛾𝑖 to 𝑖th data provider;

Alg. 2, we can exactly pop
√
𝑘 shortest distances from {𝑇𝑖 } during

lines 10–12 according to Lemma 2. Each distance from {𝑇𝑖 } repre-
sents the right endpoint of a

√
𝑘-sized distance interval. Thus, at

least 𝑘 vectors are remained during the candidate refinement with
final threshold 𝛾 and denote as candidates of 𝑘 nearest neighbors
to 𝑞. In other words, the threshold 𝛾 is guaranteed to be the upper
bound of the 𝑘th nearest distance to the query vector 𝑞.
Discussion. With this optimization, our FedVS can be extended
to prevent memory access-pattern disclosure, which serves as one
of the most common vulnerabilities for TEE hardware. As both
federated top-k selection and optimized candidate refinement relies
on a min-heap for search. We can replace the min-heap with an
oblivious priority queue, which can protect the interval variables
like size of heap during process, thus preventing access-pattern
leakage when performing our FedVS.

A.2 Optimization #2: Pruning via Contribution
Pre-Estimation

In the following, we present the technical details of the optimization
method described in Sec. 3.4 from two aspects: auxiliary index
construction and federated contribution pre-estimation.

Auxiliary Index Construction (Pre-processing). Alg. 3 il-
lustrates the details of constructing our auxiliary index CLI. First,
each data provider generates Φ clusters in line 2. Then, they build
multi-dimensional learned index for each cluster with its structured
attributes in lines 3–4. For enhancing accuracy for the subsequent
contribution pre-estimation,

√
𝑘 distances between vectors and the

centroid of each cluster are reserved in lines 5–8. The index is
pre-processed before performing any vector retrieval.

Federated Contribution Pre-Estimation.Alg. 4 illustrates our
federated contribution pre-estimation algorithm from four steps.
Firstly, we choose the nearby cluster(s) through Eq. (4) in line 2.
Then, by using pre-built CLI, we calculate the number of data
objects that satisfy the attribute filter and derive the selectivity in
line 3. Lines 5–15 estimate the upper bound of the top 𝑘

𝑠𝑒𝑙
distances

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Zeheng Fan, Yuxiang Zeng, Zhuanglin Zheng, Binhan Yang, and Yongxin Tong.

Algorithm 3: Construct Auxiliary Index
Input: data federation 𝐹 , clusters’ number Φ
Output: auxiliary indexes
// Pre-processing

1 foreach data provider 𝑖 ← 1 to𝑚 do // Perform in parallel
2 {C1, C2, . . . , CΦ} ← clustering D𝑖 into Φ clusters;
3 foreach 𝑗 ∈ [1,Φ] do
4 𝑖𝑛𝑑𝑒𝑥 𝑗 ← build multi-dimensional learned index on

structured attributes from C𝑗 ;
5 foreach 𝑣 ∈ C𝑗 do // 𝑜 𝑗 is the centroid of C𝑗
6 𝑅 𝑗 = 𝑅 𝑗 ∪ dist(𝑜 𝑗 , 𝑣);
7 sort 𝑅 𝑗 in ascending order;
8 store the

√︁
|C𝑗 |𝑡ℎ, 2

√︁
|C𝑗 |𝑡ℎ, . . . , |C𝑗 |𝑡ℎ distance and

|C𝑗 | locally;

Algorithm 4: Federated Contribution Pre-Estimation
Input: data federation 𝐹 , a FVSS query (𝑞, 𝑘, 𝑃)
Output: pruned query parameter 𝑘𝑖 for each data provider

1 foreach data provider 𝑖 ← 1 to𝑚 do // Perform in parallel
// Identify Nearby Clusters

2 C∗ ← clusters from {C} satisfying Eq. (4);
// Estimate Selectivity

3 𝑠𝑒𝑙 ← calculate Eq. (5) with auxiliary index for each
cluster C ∈ C∗;

4 𝑘0 ← 𝑘/𝑠𝑒𝑙 ;
// Estimate kth Nearest Distance

5 foreach cluster C𝑗 ∈ C∗ do
6 𝐷 𝑗 ← sorted stored distance in C𝑗 ;
7 𝑅 𝑗 = {dist(𝑞, 𝑜 𝑗) + 𝑑𝑖𝑠 | 𝑑𝑖𝑠 ∈ 𝐷 𝑗 };
8 Min-heap 𝑄 ← pop the shortest distance of each 𝑅 𝑗 ;
9 𝑡 𝑗 denotes id of the next distance to be popped from 𝑅 𝑗 ;

10 𝑐𝑛𝑡 ← 0;
11 while 𝑐𝑛𝑡 < 𝑘0 do
12 𝛾∗

𝑖
← pop shortest distance from cluster 𝑗∗ out of 𝑄 ;

13 𝑡 𝑗∗ ← 𝑡 𝑗∗ + 1, push next distance from 𝑅 𝑗∗ into 𝑄 ;
14 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 +

√︁
|C𝑗∗ |

15 submit 𝛾∗
𝑖
to SGX;

// Jointly Estimate Contribution

16 foreach data provider 𝑖 ← 1 to𝑚 do
17 𝑘𝑖 ← calculate pruned 𝑘 according to Eq. (9);
18 send 𝑘𝑖 to data provider 𝑖 for vector similarity search;

from vectors in C∗. In line 5–7, we prepare
√︁
|C𝑗 | thresholds with

stored distances according to the distance upper bound formulated
in Eq. (6). It can be derived that the 𝑖th threshold of 𝑅 𝑗 is the upper
bound of 𝑖

√︁
|C𝑗 |th nearest distance to 𝑞 among vectors in C𝑗 . Thus,

we only need to choose a minimum threshold that includes totally
larger than 𝑘

𝑠𝑒𝑙
vectors among all clusters from C∗ (described by

Eq. (7) and Eq. (8)). Lines 8–14 correspond to the detailed process
through a min-heap which differs from Alg. 2 solely on the number

32 64 128 256
k

70

80

90

100

An
sw

er
 R

ec
al

l (
%

)

32 64 128 256
k

10
2

10
3

10
4

C
om

m
. C

os
t (

KB
)

32 64 128 256
k

10
2

10
3

10
4

Se
ar

ch
 T

im
e

(m
s)

(a) Impact of 𝑘

2 5 10 20
m

70

80

90

100

An
sw

er
 R

ec
al

l (
%

)

2 5 10 20
m

10
3

10
4

10
5

C
om

m
. C

os
t (

KB
)

2 5 10 20
m

10
3

10
5

Se
ar

ch
 T

im
e

(m
s)

(b) Impact of𝑚

Figure 8: Impact of query parameters on YT-Rgb dataset

of rounds. Finally, SGX collects each provider’s upper bound as
their contribution and utilizes Eq. (9) to calculate pruned results 𝑘𝑖 .
B Additional Experimental Results
Fig. 8 illustrates the results of our experiment on the YT-Rgb dataset
concerning impact of query parameters.

Impact of Query Parameter 𝑘 . As shown in Fig. 8a, when the
integer 𝑘 increases from 32 to 256, both FedVS and HuFu maintain
more stable recall than the others, which is up to 22.20% higher
than other secure methods. As for the communication overhead
and search time, they both increase as 𝑘 increases, which is similar
to the experimental pattern in Fig. 5a. Moreover, regardless of the
values of 𝑘 , FedVS requires lower communication overhead and
shorter search time than HuFu, Mr, and DANN*. For example, the
search time of FedVS is up to 25.18×, 15.72×, and 14.60× shorter
than that of HuFu,Mr and DANN*, respectively.

Impact of #(Data Providers)𝑚. As illustrated in Fig. 8b, when
𝑚 grows from 2 to 20, the recall of FedVS, HuFu, and DANN*
exhibit fluctuations within the ranges of 89.73%–96.16%, 89.75%–
96.15%, and 87.50%–92.10%, respectively. Among these solutions,
FedVS and HuFu still achieve the highest accuracy, with merely
identical answer recall. In terms of communication cost and search
time, our FedVS is also the most efficient. For example, FedVS is up
to 72.72×, 18.21×, and 13.14× faster than HuFu, Mr, and DANN*.
Moreover, we can also observe that the communication overhead
of any algorithm gets higher as𝑚 increases due to higher network
communications for secure computations.

Summary Overall, the experimental results of varying query
parameters 𝑘 and𝑚 demonstrate a robust query performance of
our solution FedVS. In each query parameter setting, FedVS would
lead to better effectiveness and efficiency than existing solutions.

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Basic Concepts
	2.2 Problem Definition

	3 Our Framework FedVS
	3.1 Preliminary of Security Basics
	3.2 General Framework: FedVS
	3.3 Reducing Communication Overhead
	3.4 Pruning via Contribution Pre-Estimation

	4 Experimental Study
	4.1 Experimental Setup
	4.2 Overall Query Performance
	4.3 Impact of Query Parameters
	4.4 Ablation Study
	4.5 Summary of Major Findings

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Detailed Pseudo-Code for Our Optimizations
	A.1 Optimization #1: Reducing Communication Overhead
	A.2 Optimization #2: Pruning via Contribution Pre-Estimation

	B Additional Experimental Results

