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Abstract
Metro passenger flow prediction is crucial for effective urban
transportation management. However, its practical adoption is
hindered by data silos from distributed automatic fare collection
(AFC) systems, compromising prediction accuracy. While feder-
ated graph learning facilitates privacy-preserving collaboration,
existing methods struggle with the unique challenges of cross-
line metro passenger flow prediction, particularly in handling
time-evolving spatial correlations and heterogeneous temporal
correlations. To address these challenges, we present FedMetro,
a novel metro passenger flow prediction system based on federated
graph learning. We introduce a federated dynamic graph learn-
ing approach with cross-attention mechanisms to capture spatial-
temporal correlations in passenger flow. Additionally, we propose
a dynamic mask-based communication compression method to
mitigate communication bottlenecks in federated inference. Exten-
sive evaluations on three real-world metro AFC datasets demon-
strate that FedMetro significantly outperforms baseline methods,
achieving up to 17.08% higher accuracy while reducing feder-
ated inference communication overhead by 77.99%. Practical de-
ployments further confirm its effectiveness in delivering accurate
station-level predictions across metro lines. Our code is available
at https://github.com/AlexMufeng/FedMetro.

CCS Concepts
• Computing methodologies→ Learning paradigms.
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Federated Learning; Metro Passenger Flow Prediction; Spatial-
Temporal Graph Neural Network

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3737218

ACM Reference Format:
Tianlong Zhang, Xiaoxi He, Yuxiang Wang, Yi Xu, Rendi Wu, Zhifei Wang,
and Yongxin Tong. 2025. FedMetro: Efficient Metro Passenger Flow Predic-
tion via Federated Graph Learning. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V.2 (KDD ’25), Au-
gust 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3711896.3737218

1 Introduction
Metro passenger flow prediction plays a crucial role in urban trans-
portation management, enabling applications such as station con-
gestion alerts [1], timetable optimization [2], and transportation
recommendations [3]. Accurate metro passenger flow prediction re-
lies heavily on Spatial-Temporal Graph Neural Networks (STGNNs),
which leverage the spatial-temporal patterns embedded in Auto-
matic Fare Collection (AFC) data to model complex correlations
across metro networks [1, 3–8].

However, the practical implementation faces significant privacy
barriers. The AFC data contains sensitive trip information pro-
tected under regulations like General Data Protection Regulation
(GDPR) [9], leading to strict data isolation. As shown in Fig. 1, the
Beijing metro system [10] operates 29 lines and maintains separate
AFC databases for each line. These privacy constraints limit data
sharing across lines, hindering effective mining and utilization of
global spatial correlations within the metro network.

Federated graph learning has emerged as a promising paradigm
for privacy-preserving training of STGNNs, enabling collaborative
modeling of spatial-temporal correlations [11–18]. However, exist-
ing federated graph learning approaches are not directly applicable
to the accurate prediction of metro passenger flow, as they face the
following three significant challenges.

Time-evolving Spatial Correlations. As shown in Fig. 2, the
passenger flow spatial correlations between stations are dynamic,
where both topological connections and edge weights evolve over
time. However, existing federated graph learning methods rely on
static topologies, which can be either predefined [12–16] or data-
driven [17, 18]. This limitation prevents the dynamic adaptation of
spatial correlations, making it challenging to capture the evolving
inter-station metro passenger flow correlations.

https://doi.org/10.1145/3711896.3737218
https://doi.org/10.1145/3711896.3737218
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Figure 1: Each line of the Beijingmetro has its own automatic
fare collection system, resulting in serious data silos.

···

Time� + 1 � + 2 � + ��

Figure 2: Time-evolving passenger flow spatial correlations
across metro stations.

Heterogeneous Temporal Correlations. As shown in Fig. 3,
Pingguoyuan Station experiences a clear morning peak, Zhichunlu
Station has an evening peak, while Beijing Railway Station shows no
significant peaks. The metro passenger flow at these three stations
exhibits heterogeneous temporal correlations. Moreover, unlike
traffic prediction, metro systems are segmented by lines rather
than regions, which further intensifies the heterogeneous temporal
correlations of passenger flow across different metro lines.

Communication Bottlenecks in Federated Inference.Metro
passenger flow prediction relies on communication across lines to
learn global correlations, resulting in significant overhead. Notably,
during federated inference, learning these global correlations in-
troduces a communication bottleneck, which impacts the real-time
prediction needs of downstream tasks, such as congestion alerts.

In this paper, we introduce FedMetro, a novel federated metro
passenger flow prediction system that enables accurate and effi-
cient predictions in real-world distributed scenarios. We propose
a federated dynamic graph learning method that employs cross-
attention to generate dynamic node embeddings for each station,
effectively capturing the evolving passenger flow spatial-temporal
correlations without sharing raw AFC data, ensuring compliance
with privacy regulations. This method effectively models the global
metro passenger flow correlations, overcoming the challenges of
time-evolving spatial correlations and the heterogeneity of tempo-
ral correlations, thereby improving the accuracy of metro passenger
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Figure 3: Heterogeneous temporal correlations of metro pas-
senger flow between three different stations.

flow predictions. Furthermore, we significantly reduce communi-
cation overhead by dynamically sparsifying the spatial correlation
graph, while maintaining high prediction accuracy and effectively
addressing communication bottlenecks in federated inference.

The main contributions of the paper are as follows:
• To the best of our knowledge, this is the first research to
apply federated graph learning for metro passenger flow
prediction, addressing privacy constraints in the distributed
AFC systems of large urban metro networks.
• We introduce FedMetro, a novel system that adapts to the
time-evolving spatial correlations and heterogeneous tempo-
ral correlations of metro passenger flow, while overcoming
communication bottlenecks in federated inference.
• Evaluations show that FedMetro reduces communication
overhead by 77.99% and outperforms state-of-the-art meth-
ods in accuracy. Deployment results demonstrate its excep-
tional prediction performance for stations with heteroge-
neous temporal correlations in real-world applications.

In the rest of this paper, we first introduce the datasets and prob-
lem definitions in Sec. 2. Next, we present our proposed solution in
Sec. 3. We then conduct extensive experiments in Sec. 4 and discuss
the practical deployment in Sec. 5. Finally, we review related works
in Sec. 6 and conclude in Sec. 7.

2 Preliminaries
2.1 Metro Automatic Fare Collection (AFC) Data
Metro companies utilize Automatic Fare Collection (AFC) systems
to streamline fare transactions and track real-time passenger flow
data [5]. These AFC systems generate records when passengers tap
smart cards or scan QR codes at station gates for entry or exit events.
Each AFC record includes a user ID, timestamp, event type (entry
or exit), metro line name, and metro station name. Tab. 1 provides
several examples of AFC records. However, in accordance with
data protection regulations like the GDPR [9], AFC data for each
metro line is stored independently. At transfer stations, the data are
jointly managed by the operating companies of the involved lines.
To facilitate prediction tasks, metro operation times are commonly
divided into fixed-length intervals (e.g. 15-minute segments), with
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Table 1: Examples of AFC records.

User ID Timestamp Event Type Line Station

BIAEFDCBI 2017/06/03 20:14:30 entry L1/L10 GuoMao
BCHIDEBCC 2017/06/04 09:12:10 entry L1 SiHui
CFCBFCGGC 2017/06/05 20:31:25 exit L5/L6 DongSi

passenger flow counts within each interval [3]. Our AFC datasets
were collected from three major cities in China: Beijing, Shanghai,
and Hangzhou, whose metro systems are highly representative of
large urban metro networks.

2.2 Graph Modeling of Federated Metro
Passenger Flow

The metro AFC data is represented as a chronological sequence
𝑿1,𝑿2, . . . ,𝑿𝑇 , where each signal graph 𝑿𝑡 ∈ R𝑁×𝐹 captures the
observations at the 𝑡-th timestep. Here, 𝑁 represents the number
of stations and 𝐹 represents the feature dimension (e.g. passenger
flow). Due to privacy constraints, Metro AFC data is stored inde-
pendently by each metro line. Consider 𝑀 metro lines, denoted
as C = C1, C2, ..., C𝑀 . Each metro line C𝑖 maintains a local dataset
D𝑖 = {G𝑖 ,𝑿1:𝑇

𝑖
}, where G𝑖 = {V𝑖 , E𝑖 } represents the local spatial

correlations graph with 𝑁𝑖 stations. The global graph G =
⋃𝑀
𝑖=1 G𝑖

is constructed by combining all local graphs, with the total number
of stations given by 𝑁 =

∑𝑀
𝑖=1 𝑁𝑖 .

Signal Graph. The signal graphs 𝑿1:𝑇 ∈ R𝑇×𝑁×𝐹 are naturally
partitioned across the metro lines as:

𝑿1:𝑇 =


𝑿1
1 · · · 𝑿𝑇1
.
.
.

. . .
.
.
.

𝑿1
𝑀
· · · 𝑿𝑇

𝑀

 (1)

where 𝑿1:𝑇
𝑖
∈ R𝑇×𝑁𝑖×𝐹 is the local signal graph for the 𝑁𝑖 nodes

over 𝑇 time intervals. This partitioned representation naturally
aligns with the administrative divisions of metro operations, where
each line controls its infrastructure and data.
Spatial Correlations Graph. The graph G𝑖 = {V𝑖 , E𝑖 } repre-
sents the passenger flow correlations network of the metro system,
with nodesV (|V| = 𝑁 ) and edges E defining spatial correlations
between stations. The adjacency matrix 𝑨 encodes global spatial
correlations and is crucial for accurate modeling:

𝑨 =


𝑨11 · · · 𝑨1𝑀
.
.
.

. . .
.
.
.

𝑨𝑀1 · · · 𝑨𝑀𝑀

 , (2)

where 𝑨𝑖 𝑗 ∈ R𝑁𝑖×𝑁 𝑗 corresponds to the correlation between sta-
tions inV𝑖 andV𝑗 . The matrix𝑨 is typically constructed using one
of the following approaches:
• A predefined physical connectivity graph based on the metro
structural topology [3];
• Multiple predefined graphs integrating the metro structural
topology with additional factors such as weather, holidays,
and points of interest (POIs) [5];
• Data-driven topology learning, where station passenger flow
correlations are learned from the AFC data [7, 8, 19].

Among these, data-driven topology learning is considered state-of-
the-art because it allows the model to capture the spatial correla-
tions of passenger flow between stations more comprehensively,
making it particularly suitable for large metro systems.

2.3 Federated Metro Passenger Flow Prediction
We propose a client-server federated learning framework where𝑀
metro lines operate as distributed clients, collaboratively optimizing
a predictive model through coordinated aggregation by a central
server [20]. This framework allows for the decentralized training
of a model that captures metro passenger flow dynamics while
preserving the privacy of each line’s data.
Problem Definition. Given a current prediction timestep 𝑡 ∈
{𝜏 − 𝑇in + 1, · · · , 𝜏}, we aim to learn a predictive function F (·)
that maps a sequence of 𝑇in historical observations to the next 𝑇out
future observations:

�̂� (𝜏+1) :(𝜏+𝑇𝑜𝑢𝑡 ) ← F (𝑿 (𝜏−𝑇𝑖𝑛+1) :𝜏 ) (3)

Privacy Constraint. To ensure data privacy, the server does not
have access to the local datasetsD𝑖 of any client. Additionally, each
client, C𝑖 , is prohibited from sharing its own graph signals 𝑿1:𝑇

𝑖
or its local graph structure G𝑖 with other clients, ensuring that
sensitive passenger flow data and station-specific patterns remain
confidential. This privacy constraint supports collaborative learning
without the need for centralized data collection, maintaining the
operational independence of different metro lines.

3 FedMetro System
3.1 System Overview
To achieve efficient federated metro passenger flow prediction,
we propose a novel system named FedMetro. As shown in Fig. 4,
we use a client-server federated learning framework[20, 21]. The
server is responsible for global correlations and training parameters
aggregation, while the client consists of three modules: ① Dynamic
Embedding and Mask Generation; ② Communication Compression;
③ Correlations Recovery and Training.

Specifically, we use cross-attention to capture the passenger
flow temporal correlations for each station by matching current
observations 𝑿𝑡

𝑖
with historical patterns 𝑿1:𝑡

𝑖
. Then, we model

the dynamic global spatial correlations between stations across
metro lines by constructing an embedding 𝑬𝑡

𝑖
for each metro line at

each timestamp. Next, we propose a communication compression
method. We sparsify 𝑯 𝑡

𝑖
with dynamic masks 𝑀𝑡

𝑖
derived from

historical patterns, then aggregate 𝑬𝑡
𝑖
⊤ to obtain the compressed

result 𝑨𝑮𝑮𝑡
𝑖
, reducing communication overhead. After that, each

client uploads the local correlations 𝑨𝑮𝑮𝑡
𝑖
to the server. The server

aggregates the global correlations and returns it to the clients. Each
client then performs dimensional recovery and proceeds with local
spatial-temporal graph convolution training. Finally, after the local
training rounds, each client sends training parameters to the server
for aggregation and updating of global parameters.
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Figure 4: An overview of FedMetro system.

3.2 Dynamic Embedding and Mask Generation
Metro passenger flow prediction faces challenges due to time-
evolving spatial correlations and heterogeneous temporal correla-
tions. To address this, we use cross-attention that integrates multi-
scale information from the historical time dimension, enablingmore
effective modeling of dynamic spatial-temporal correlations.
Historical Pattern Mining. To efficiently represent the histor-
ical passenger flow data, we apply down-sampling and patching
techniques to compress the data 𝑿1:𝑡

𝑖
into 𝑿

𝑝

𝑖
. For each station’s

passenger flow data, we first perform 1D average pooling along
the temporal dimension with kernel size 𝑘 and stride 𝑘 . The down-
sampled data is then divided into 𝑝 non-overlapping patches, which
reduces the number of tokens.

For the current timestamp 𝑡 , we use cross-attention to capture
the pattern correlations between the current observation 𝑿𝑡

𝑖
of

client 𝑖 and the historical patch data 𝑿𝑝
𝑖
:

𝑸 = 𝑿𝑡𝑖𝑾𝑖,𝑄 , 𝑲 = 𝑽 = 𝑿
𝑝

𝑖
𝑾𝑖,𝐾 + 𝒆𝑝𝑜𝑠 (4)

where𝑾𝑖,𝑄 and𝑾𝑖,𝐾 are learnable parameter matrices, and 𝒆𝑝𝑜𝑠 is
the position embedding. We then apply cross-attention along the
temporal dimension to mine the pattern dependencies:

𝑫𝑡𝑖 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲 , 𝑽 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑸𝑲⊤
√
𝑑
)𝑽 (5)

𝑫𝑡
𝑖
is used to generate both dynamic embedding and mask later.

Dynamic Embedding Generation.As mentioned in Sec. 2.2, data-
driven topology learning methods are ideal for constructing the
spatial correlations graph 𝑨:

𝑨 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑅𝑒𝐿𝑈

(
𝑬 · 𝑬⊤

) )
(6)

where each row of 𝑬 ∈ R𝑁×𝑑𝐸 represents the learnable embed-
ding of a metro station. The Adaptive Graph Convolution Net-
works (AGCN) [7] incorporate this data-driven topology learning

approach into the GCN layer:

𝑯 (𝑙 ) = 𝜎
( (
𝑰𝑵 + 𝑅𝑒𝐿𝑈

(
𝑬 · 𝑬⊤

) )
· 𝑯 (𝑙−1) · 𝑬 ·𝑾 + 𝑬 · 𝒃

)
(7)

In this context, 𝑯 (𝑙−1) ∈ R𝑁×𝐹 (𝑙−1) and 𝑯 (𝑙 ) ∈ R𝑁×𝐹 (𝑙 ) represent
the input and output features of the 𝑙-th layer. 𝑰𝑁 denotes the iden-
tity matrix, and 𝜎 (·) is the nonlinear activation.𝑾 ∈ R𝑑×𝐹 (𝑙−1)×𝐹 (𝑙 )

and 𝒃 ∈ R𝑑×𝐹
(𝑙 )

represent the trainable weight and bias pool.
Through the computation of the dot product between 𝑬 and𝑾 , a
personalized set of parameters is learned for each station to adap-
tively capture the spatial correlations.

However, the AGCN learns only a static spatial correlations
graph during training, which does not account for the rapidly
changing metro passenger flow. To address this issue, we utilize
cross-attention to construct a dynamic spatial correlations graph
by learning a node embedding 𝑬𝑡

𝑖
for each timestamp in client 𝑖:

�̂�𝑡𝑖 = 𝑫𝑡𝑖𝑾𝑖,𝐸 , 𝑬𝑡𝑖 = 𝑬𝑖 + �̂�𝑡𝑖 (8)

where �̂�𝑡
𝑖
is the time increment embedding, which captures the

temporal changes of 𝑬 at each timestep.𝑾𝑖,𝐸 ∈ R𝑑𝐷×𝑑𝐸 represents
the learnable model parameters.
Dynamic Mask Generation. For the subsequent communication
compression, we generate a dynamic mask matrix 𝑴𝑡

𝑖
for each

client 𝑖 using the 𝑫𝑡
𝑖
obtained from cross-attention:

𝑶𝑡𝑖 = 𝑫𝑡𝑖𝑾𝑖,𝑂 , 𝑧 ∼ U(0, 1),
𝑠 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (log 𝑧 − log(1 − 𝑧) + log (𝑜)) /𝛽,
𝑠 = 𝑠 (𝜁 − 𝛾) + 𝛾, 𝑚 = min (1,max (0, 𝑠))

(9)

where 𝑾𝑖,𝑂 ∈ R𝑑𝐷×𝐹 denotes a trainable parameter matrix.
𝑧 is sampled from a uniform distribution. To address the non-
differentiability of the Bernoulli distribution, we adopt the hard
concrete distribution as a continuous relaxation [22, 23]. 𝑠, 𝑠, 𝑜,𝑚
are the elements of the matrices 𝒔, 𝒔,𝑾𝑖,𝑂 ,𝑴𝑡

𝑖
∈ R𝑁𝑖×𝐹 . 𝛽 is the

temperature value and (𝜁 − 𝛾) is the interval.
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Algorithm 1: Dynamic Embedding and Mask Generation

input :Data sequence 𝑿1:𝑡
𝑖

on C𝑖 ;
Personalized node embeddings 𝑬𝑖 on C𝑖 ;

output :Dynamic embedding 𝑬𝑡
𝑖
and mask 𝑴𝑡

𝑖
on C𝑖 ;

1 Compress 𝑿1:𝑡
𝑖

into historical patch data 𝑿𝑝
𝑖
;

2 //Historical Pattern Mining according to Eq. (4) and Eq. (5)
3 𝑫𝑡

𝑖
← 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑿𝑡

𝑖
,𝑿

𝑝

𝑖
);

4 //Dynamic Embedding Generation according to Eq. (8)
5 𝑬𝑡

𝑖
← 𝑬𝑖 + 𝑫𝑡𝑖𝑾𝑖,𝐸 ;

6 //Dynamic Mask Generation according to Eq. (9)
7 𝑶𝑡

𝑖
← 𝑫𝑡

𝑖
𝑾𝑖,𝑂 ;

8 𝑴𝑡
𝑖
← 𝐻𝑎𝑟𝑑𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 (𝑶𝑡

𝑖
);

9 return (𝑬𝑡
𝑖
,𝑴𝑡

𝑖
);

This subsection introduces the Dynamic Embedding and Mask
Generation module in FedMetro. As shown in Algorithm 1, both the
embedding and the mask are derived from the dynamic representa-
tion 𝑫𝑡

𝑖
, which is learned through a cross-attention mechanism. For

each metro station of client 𝐶𝑖 , the node embeddings are person-
alized to address the heterogeneous temporal correlations across
different stations. Moreover, by leveraging a dynamic graph, both
the embedding and the mask evolve over time at each timestep 𝑡 ,
enabling the model to effectively capture the time-varying spatial
correlations in metro passenger flow prediction.

3.3 Global Spatial Correlations Learning
Spatial Correlation Modeling. Inspired by FedGTP [18], we ex-
tend AGCN to the federated learning setting:

𝑯 (𝑙 )
𝑖

= 𝜎

(
𝒁𝑡𝑖 (𝑯

(𝑙−1) ) · 𝑬𝑡𝑖 ·𝑾𝑖 + 𝑬
𝑡
𝑖 · 𝒃𝑖

)
(10)

where 𝒁𝑡
𝑖
denotes the spatial correlations in client 𝑖 . For brevity,

we omit the layer ID:

𝒁𝑡𝑖 (𝑯 ) = 𝑯𝑖 +
𝑀∑︁
𝑗=1

(
𝑅𝑒𝐿𝑈

(
𝑬𝑡𝑖 · (𝑬

𝑡
𝑗 )
⊤
)
· 𝑯 𝑗

)
(11)

Here, both 𝑬𝑡
𝑖
∈ R𝑁𝑖×𝑑𝐸 and 𝑯𝑖 ∈ R𝑁𝑖×𝐹 need to be uploaded.

However, 𝐻 (0)
𝑖

= 𝑋 𝑡
𝑖
violates the privacy constraints of the original

signal graph. Furthermore, in practical deployments, the large num-
ber of stations 𝑁𝑖 for each metro line hinders scalability. Therefore,
we next introduce a spatial correlations compression method.
Global Spatial Correlation Aggregation. To efficiently construct
the global spatial correlations 𝒁𝑖 while adhering to the privacy
constraints, we redesign its computation to minimize the size of
intermediate results uploaded to the server:

𝒁𝑡𝑖 (𝑯 ) = 𝑯𝑖 + 𝑅𝑒𝐿𝑈
(
𝑬𝑡𝑖

)
·
𝑀∑︁
𝑗=1

((
𝑅𝑒𝐿𝑈

(
𝑬𝑡𝑖

)⊤ · 𝑯𝑖 )) (12)

However, directly decomposing ReLU limits the model’s ability to
capture complex nonlinear relationships. Studies [18, 24] show that
Poly-approx ReLU with polynomials via Taylor expansion reduces
training errors. Therefore, we use a 𝐾-order polynomial function

to approximate the activation and preserve non-linearity:

P𝐾 (𝑥) =
𝐾∑︁
𝑘=0

𝑝𝑘𝑥
𝑘 (13)

Therefore, the spatial correlation 𝒁𝑖 (𝑯 ) is represented as:

𝒁𝑡𝑖 (𝑯 ) = 𝑯𝑖 +
𝑀∑︁
𝑗=1

(
𝐾∑︁
𝑘=0

(
𝑝𝑘 ·

(
𝑬𝑡𝑖 · (𝑬

𝑡
𝑗 )
⊤
)𝑘 )
· 𝑯 𝑗

)
= 𝑯𝑖 +

𝐾∑︁
𝑘=0

𝑝𝑘 · F𝐾 (𝑬𝑡𝑖 ) ·
𝑀∑︁
𝑗=1

((
F𝐾

(
𝑬𝑡𝑗

))⊤
· 𝑯 𝑗

) (14)

Here, F𝐾 (·) decomposes the spatial correlations graph without
information loss by applying the 𝑘-th Cartesian power to each row.

To reduce communication overhead, we sparsify 𝐻𝑡
𝑖
with the

mask matrix 𝑴𝑡
𝑖
, retaining core values and filtering out noise to

compress the intermediate results uploaded to the server:

𝐴𝐺𝐺𝑡𝑖 =
(
F𝐾

(
𝑬𝑡𝑖

) )⊤ · (𝑯𝑖 ⊙ 𝑴𝑡
𝑖

)
(15)

Ultimately, client 𝑖 uploads the intermediate result 𝐴𝐺𝐺𝑡
𝑖
∈

R𝑑
𝐾
𝐸
×𝐹 to the server. The server aggregates the 𝐴𝐺𝐺𝑡

𝑖
to obtain

the global aggregation result 𝐴𝐺𝐺𝑡 :

𝐴𝐺𝐺𝑡 =

𝑀∑︁
𝑖=1

(
𝐴𝐺𝐺𝑡𝑖

)
(16)

Communication Analysis. We conduct a theoretical analysis of
the total communication overhead for each client uploading inter-
mediate results to the server at time 𝑡 . In the unoptimized AGCN
global spatial correlation learning process, the total communication
cost is 𝑁 × 𝑑𝐾

𝐸
+ 𝑁 × 𝐹 . After optimization, the communication

overhead is reduced to (𝑑𝐾
𝐸
× 𝐹 )/𝑆 , where 𝑆 is the average com-

pression ratio of 𝐴𝐺𝐺𝑡
𝑖
. The dimension 𝐹 is much smaller than the

number of nodes 𝑁 . Our method is particularly effective for metro
systems in large cities like Beijing and Shanghai, where the number
of stations 𝑁 is large, improving the scalability of federated graph
learning for passenger flow prediction.

3.4 Federated Training and Inference
Spatial-Temporal Fusion. We combine the restructured global
spatial correlationwith temporal modeling to capture time-evolving
metro passenger flow patterns. Specifically, we replace the MLP
layer in GRU with the global spatial correlation:

𝒁𝑡𝑖 (𝑯 ) = 𝑯𝑖 +
𝐾∑︁
𝑘=0

𝑝𝑘 · F𝐾 (𝑬𝑡𝑖 ) · 𝐴𝐺𝐺
𝑡 (17)

At the timestep 𝑡 , the federated training process of FedMetro is
defined as:

𝒛𝑡𝑖 = 𝜎
(
𝒁𝑖 [𝑿𝑡𝑖 | |𝑯

𝑡−1] · 𝑬𝑡𝑖 ·𝑾𝑖,𝒛 + 𝑬
𝑡
𝑖 · 𝒃𝑖,𝒛

)
,

𝒓𝑡𝑖 = 𝜎
(
𝒁𝑖 [𝑿𝑡𝑖 | |𝑯

𝑡−1] · 𝑬𝑡𝑖 ·𝑾𝑖,𝒓 + 𝑬
𝑡
𝑖 · 𝒃𝑖,𝒓

)
,

�̃� 𝑡𝑖 = 𝑡𝑎𝑛ℎ

(
𝒁𝑖 [𝑿𝑡𝑖 | | (𝒓

𝑡 ⊙ 𝑯 𝑡−1)] · 𝑬𝑡𝑖 ·𝑾𝑖,�̃� + 𝑬
𝑡
𝑖 · 𝒃𝑖,�̃�

)
,

𝑯 𝑡𝑖 = 𝒛𝑡𝑖 ⊙ 𝑯 𝑡−1𝑖 + (1 − 𝒛𝑡𝑖 ) ⊙ �̃� 𝑡𝑖

(18)

All learnable parameters in Eq. (18) can be optimized end-to-end
through backpropagation through time. During local training, each
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client𝐶𝑖 performs multiple training iterations according to Eq. (18).
Afterward, each client𝐶𝑖 uploads the weight pool𝑊𝑖 and bias pool
𝑏𝑖 to server for parameter aggregation [25], resulting in the global
parameters𝑊 , 𝑏 and 𝑃 .
TrainingObjectives.Due to significant spatial differences between
metro lines, which lead to notable variations in passenger flow, there
exist substantial non-IID(independent and identically distributed)
regional characteristics. Therefore, we formulate the personalized
federated learning objective [26]:

L𝐹𝑒𝑑𝑀𝑒𝑡𝑟𝑜 =

𝑀∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑁𝑖

𝑁

(
L

(
F ,Θ𝑖 ,𝑯 𝑡𝑖 ⊙ 𝑴𝑡

𝑖

)
+ 𝜆



𝐴𝐺𝐺𝑡𝑖 

0)
(19)

where L denotes the federated loss function of model F with
learnable parameters Θ. 𝜆 represents the regularization weight for
the 𝐿0-norm of AGG𝑡

𝑖
to enforce communication compression.

Federated Inference. During inference, the server only assists
each client 𝐶𝑖 in learning the global spatial correlation as Eq. (17).
Our compression using the mask matrix𝑀𝑡

𝑖
effectively reduce the

communication overhead of the local spatial correlation 𝐴𝐺𝐺𝑡
𝑖

uploaded by each client 𝐶𝑖 to the server. Moreover, in practical
deployment, we set a threshold for the communication compres-
sion ratio to balance the trade-off between prediction accuracy and
communication overhead. This effectively solves the communica-
tion bottleneck in federated inference and allows more time for
subsequent station congestion alerts and emergency measures.

3.5 System Implementation
The previous subsections presented introduce the main modules
of FedMetro, which enable efficient metro passenger flow predic-
tion via dynamic graphs and mask mechanisms under a federated
framework. We now detail the design and implementation of the
FedMetro system, as outlined in Algorithm 2. In this system, 𝑀
metro lines operate as distributed clients that collaboratively opti-
mize a predictive model under the coordination of a central server.
In each training round, client C𝑖 performs local learning of dynamic
node embeddings and corresponding mask matrices according to
Algorithm 1. The node embeddings are then transformed via Poly-
approx ReLU, and communication compression is applied to derive
𝑨𝑮𝑮𝑡

𝑖
. These compressed representations are aggregated at the

server to compute the global spatial correlations 𝑨𝑮𝑮𝑡 , which are
broadcast back to all clients. Each client uses this global information
to perform local spatial-temporal graph convolution training, as
defined in Eq. (18). After several local training, each client uploads
its model parameters. Finally, The server applies the FedAVG [25]
to aggregate these parameters and update the global model.

4 Experiments
4.1 Experimental Settings
Datasets. We evaluate FedMetro on three real-world metro
datasets collected from Beijing (BJMetro), Shanghai (SHMetro),
and Hangzhou (HZMetro). Following realistic deployment scenar-
ios, each dataset is partitioned according to metro line, containing
both inflow and outflow records aggregated at 15-minute intervals.
The dataset statistics are summarized in Tab. 2.

Algorithm 2: FedMetro Framework

input :Data sequence 𝑿1:𝑡
𝑖

for each C𝑖 ;
The number of global and local rounds 𝑅𝑔, 𝑅𝑙 ;

output :Trained model weights (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 , 𝑬𝑖 ) for each C𝑖 ;
1 Initialize global model weights with (𝑾 (0)𝑔 , 𝒃 (0)𝑔 , 𝑷 (0)𝑔 );
2 Initialize personalized node embeddings with {𝑬 (0)

𝑖
}𝑀
𝑖=1;

3 for global round in global rounds 𝑅𝑔 do
4 for each client C𝑖 in clients C𝑀 do
5 Receives global model weights from server to update

(𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 );
6 for local round in local rounds 𝑅𝑙 do
7 for timestep 𝑡 in timesteps do
8 //Dynamic Embedding and Mask Generation
9 (𝑬𝑡

𝑖
,𝑴𝑡

𝑖
) ← Algorithm 1 (𝑿1:𝑡

𝑖
, 𝑬𝑖 );

10 //Poly-approx ReLU according to Eq. (8)

11 F𝐾 (𝑬𝑡𝑖 ) ←
{
𝑓𝑘 (𝑬𝑡𝑖 )

}𝐾
𝑘=0;

12 //Communication Compression
13 𝑨𝑮𝑮𝑡

𝑖
← F⊤

𝐾
(𝑬𝑡
𝑖
) · (𝑯 𝑡

𝑖
⊙ 𝑴𝑡

𝑖
);

14 //server: Global Correlation Aggregation
15 𝑨𝑮𝑮𝑡 ← 𝑆𝑒𝑐𝑢𝑟𝑒𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛({𝑨𝑮𝑮𝑡

𝑖
}𝑀
𝑖=1);

16 //Correlation Recovery and Training
17 Forwards spatial-temporal correlation

modeling according to Eq. (18);
18 Update (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 , 𝑬𝑖 ) through gradient

descent.

19 Sends (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 ) to server;
20 //server: Parameters Aggregation

21 (𝑾 , 𝒃, 𝑷 ) ← 𝐹𝑒𝑑𝐴𝑣𝑔({𝑾 (0)
𝑖

, 𝒃 (0)
𝑖
, 𝑷 (0)
𝑖
}𝑀
𝑖=1);

22 return (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 , 𝑬𝑖 ) for each C𝑖 ;

Table 2: Statistics of datasets.

BJMetro SHMetro HZMetro

City Beijing, China Shanghai, China Hangzhou, China
Lines 15 14 3
Stations 276 288 80
Edges 906 958 248
Period 2016/02/29–2016/04/02 2016/07/01–2016/09/30 2019/01/01–2019/01/25

• BJMetro: Collected from Beijing metro AFC systems be-
tween February 29 and April 2, 2016. The 2016 Beijing metro
network comprised 15 lines serving 276 stations.
• SHMetro: Collected from ShanghaimetroAFC systems. This
dataset contains 811.8 million transaction records collected
from July 1 to September 30, 2016. During this period, 288
stations were actively operational.
• HZMetro: Collected from Hangzhou metro AFC system be-
tween January 1-25, 2019. This dataset represents the metro
network with 80 stations and 248 physical edges.

Baselines. We establish two baseline categories to evaluate the
performance of FedMetro. The first category of baselines comprises
local GCN-based methods for predicting metro passenger flow.
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Table 3: Performance comparison of our method and baselines.

Method BJMetro SHMetro HZMetro

Inflow Outflow Inflow Outflow Inflow Outflow

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Graph-WaveNet 46.73 89.35 41.58% 45.16 82.61 59.93% 34.02 84.90 51.79% 33.07 86.03 49.38% 33.79 70.34 37.85% 31.66 68.15 44.51%
PVCGN 55.16 120.97 29.50% 56.87 137.75 29.36% 30.44 67.88 38.68% 30.02 77.32 34.61% 33.10 65.29 36.17% 30.23 65.66 29.41%
STDGRL 37.98 75.89 28.22% 39.34 73.17 27.66% 30.10 62.43 25.44% 30.88 75.88 28.30% 31.76 57.92 22.54% 33.33 71.40 25.21%
MFVSTGNN 39.04 82.77 36.54% 38.60 104.49 74.17% 28.55 60.47 29.66% 29.19 80.93 42.79% 28.22 47.44 40.50% 29.34 60.39 40.59%
FedGTP 31.87 62.11 25.38% 36.31 83.55 27.69% 32.16 67.32 26.59% 31.98 74.15 28.77% 28.02 49.80 20.41% 28.41 56.39 24.51%
FedMetro (Ours) 29.70 58.84 21.73% 30.11 65.59 23.15% 27.97 56.15 23.75% 29.13 68.56 26.82% 26.21 46.53 19.46% 27.36 54.42 22.67%

Improvement 6.81% 5.26% 14.38% 17.08% 10.36% 16.31% 2.03% 7.14% 6.64% 0.21% 7.54% 5.23% 6.46% 1.92% 4.65% 3.70% 3.49% 7.51%

• Graph WaveNet [19]: A spatial-temporal model that cap-
tures spatial correlations via adaptive adjacency matrices
constructed from learnable node embeddings.
• PVCGN [5]: An encoder-decoder model with dual-branch
gated recurrent units (GC-GRU and FC-GRU), where the
GC-GRU captures local station dependencies and FC-GRU
models global metro dynamics.
• STDGRL [8]: A state-of-the-art approach for local metro
passenger flow prediction based on dynamic graph to capture
the distinct patterns of different stations

The second category of baselines includes federated graph
learning-based methods for traffic prediction.

• MFVSTGNN [27]: A federated graph learning framework
with client-specific graph representation learning.
• FedGTP [18]: A state-of-the-art federated graph learning-
based traffic prediction method that fully utilizes inter-client
spatial dependencies for accurate predictions.

We conducted all the experiments under the same setup. To meet
the requirements of practical deployment applications, we used the
previous 6 intervals to predict the next 6 intervals.
Metrics.We adopt three widely-used metrics in our experiments:
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE). Lower values of these
metrics reflect better prediction performance.
Experimental Environment. All experiments are implemented
in PyTorch 1.13.1 on Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz
and four NVIDIA A100 GPUs with 40GB memory.

4.2 Performance Comparison with Baselines
Tab. 3 presents the overall performance of our method and base-
lines on three different datasets. The best results for each metric
are highlighted in bold, and the second-best results are underlined.
We observe that FedMetro outperforms all baselines across all eval-
uation metrics, with metro passenger flow prediction accuracy
improving by up to 17.08%. This improvement showcases the ef-
fectiveness and robustness of our approach in handling complex
metro systems. Additionally, the results show that federated graph
learning methods outperform local GCN-based approaches in most
cases. This performance gap can be attributed to the inherent limita-
tions of local GCN-based methods, which are constrained to making
flow predictions for individual metro lines due to privacy concerns
in real-world applications. In contrast, federated learning enables
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Figure 5: The results of communication compression study.
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Figure 6: The results of node embedding dimension study.

cross-line prediction by leveraging shared knowledge across mul-
tiple metro lines while preserving data privacy. This capability is
crucial for accurate and privacy-preserving metro passenger flow
prediction, as it allows for a more holistic understanding of passen-
ger movement patterns across the entire metro network.

4.3 Communication Compression Study
To explore the trade-off between precision and compression in
FedMetro, we introduce a sparsification threshold to control the
sparsity level of the intermediate results 𝐴𝐺𝐺 (𝜏 )

𝑖
uploaded by each

client 𝐶𝑖 to the server. Based on the experimental results from
BJMetro, shown in Fig. 5, we observe that increasing the sparsifica-
tion threshold improves the communication compression ratio, with
only a minimal decline in prediction accuracy. Specifically, when
the threshold is unlimited, the sparsity of the 𝐴𝐺𝐺𝜏

𝑖
uploaded by

each client𝐶𝑖 can reach up to 93.99%, resulting in a communication
compression ratio of 77.99%. As illustrated in Tab. 3, even at such a
high compression level, our model still significantly outperforms
all baseline models in terms of prediction accuracy.
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Figure 7: Ablation study on BJMetro.
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Figure 8: Ablation study on SHMetro.
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Figure 9: Ablation study on HZMetro.

4.4 Node Embedding Dimension Study
The node embedding dimension 𝑑𝐸 is a key hyperparameter that
directly affects prediction accuracy and model capacity. We eval-
uate its impact on the BJMetro dataset, as shown in Fig. 6. The
findings reveal that when 𝑑𝐸 = 2, prediction accuracy is suboptimal.
However, as 𝑑𝐸 increases to 4, there is a noticeable improvement in
prediction accuracy. We attribute this improvement to the person-
alized nature of passenger flow at different metro stations. As 𝑑𝐸
increases further, the improvement in prediction accuracy becomes
marginal, indicating that the model has reached an optimal balance
between accuracy and capacity.

4.5 Ablation Study
To clearly isolate the contribution of each component in FedMetro,
we conduct ablation studies on the Dynamic Embedding Gener-
ation, Dynamic Mask Generation, and Historical Pattern Mining

Figure 10: Visualization of Beijing metro passenger flow pre-
diction results. Larger nodes indicate heavier congestion and
red ones mark abnormal peak flow.

modules. Fig. 7, Fig. 8 and Fig. 9 reveal that these modules are
complementary and indispensable. Removing Dynamic Embedding
Generation causes the most severe degradation across MAE, RMSE,
and MAPE, highlighting the need for dynamic node embeddings
to capture time-evolving spatial correlations. Excluding Dynamic
Mask Generation collapses the compression rate and marginally
degrades accuracy, indicating that the on-demand dynamic mask
not only reduces communication overhead but also filters noise to
reinforce global correlation learning. Eliminating Historical Pattern
Mining impairs both accuracy and compression, as its long-range
cross-attention supplies critical context for dynamic embeddings
and masks under heterogeneous temporal correlations.

5 Deployment
We implemented FedMetro on a socket-based architecture in which
each metro line operates as an independent federated client during
both training and inference. FedMetro has been successfully de-
ployed in the Beijing metro system, providing congestion alerts that
help the operator dispatch security staff and enact crowd-control
measures. Additionally, FedMetro offers an interactive visualisation
dashboard. As illustrated in Fig. 10, each station appears as a node
whose radius and colour jointly encode its congestion level. Users
can interact with the dashboard to explore detailed flow trends. To
verify that station-level accuracy improves after the deployment,
we comparison FedMetro with FedGTP, the current SOTA federated
graph-learning method that satisfies the privacy constraints.

As shown in Fig. 11, the passenger peaks at Beijingzhan Station
are aligned with train arrivals rather than the regular commuting
rush hours. Consequently, its spatial correlations with neighbouring
stations evolve rapidly over time. The dynamic embedding adapts
to time-evolving passenger flow spatial correlations across metro
stations much better than FedGTP, yielding lower prediction errors.
As shown in Fig. 12, FedMetro markedly outperforms FedGTP in
forecasting the evening-peak surge, demonstrating its ability to
capture sudden demand anomalies promptly.
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Figure 11: Comparison of deployment performance at Bei-
jingzhan Station.
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Figure 12: Comparison of deployment performance at
Zhichunlu Station.

6 Related Work
6.1 Metro Passenger Flow Prediction
Metro passenger flow prediction is a typical spatial-temporal task
in transportation systems. [28–39]. Unlike ride-hailing demand pre-
diction [18, 20, 40], which is typically performed at the region or
roadway level, it focuses on metro station nodes. Here, passenger-
flow correlations are driven by line topology and transfer struc-
tures rather than by simple geometric distance. Early studies used
convolutional neural networks (CNNs) and recurrent neural net-
works (RNNs) to capture spatial-temporal patterns. However, these
hybrid models are limited by Euclidean space assumptions and
struggle to represent complex spatial dependencies in metro net-
works. The emergence of spatial-temporal graph neural networks
(STGNNs) represented a significant advancement by integrating
graph reasoning with temporal modeling. Early STGNNs relied on
physical-topology graphs, which model the static structure of the
metro network, but subsequent enhancements incorporated multi-
modal data (e.g., weather, air quality) [3] and predefined correlation
graphs [1, 4–6]. Adaptive STGNNs went a step further by learning
node-specific embeddings that allow the graph itself to emerge from
data [7, 19]. Most recently, dynamic STGNNs have been proposed
to track the evolving relationships among stations [8, 22, 41, 42].

However, existing metro passenger flow prediction methods pre-
dominantly adopt centralized training paradigms, which conflict
with real-world privacy regulations like GDPR [9] that enforce
localized data processing. This fragmentation disrupts inter-line
passenger flow correlations and degrades prediction accuracy. Our
proposed FedMetro system addresses this fundamental contradic-
tion through federated graph learning, enabling global spatial cor-
relation modeling while preserving data privacy.

6.2 Federated Graph Learning
Federated graph learning has emerged as a critical solution for
privacy-preserving spatial-temporal prediction, with current re-
search primarily focused on its application to spatial-temporal
graph neural networks (STGNNs) [11]. Based on the construction
paradigm of spatial correlation graphs, existing methods can be
categorized into three classes: 1) Non-topology federated graph
learning ignoring spatial dependencies via FedAvg-based tempo-
ral parameter aggregation [25], inherently limited in capturing
global correlations [27, 43]; 2) Predefined-topology federated graph
learning constructing fixed graphs through physical topologies [12–
14] or community detection on public topology data [15, 16]; 3)
Adaptive-topology federated graph learning implicitly modeling
global spatial correlations through distributed GNN parameter ag-
gregation and gradient-based topology propagation [17, 18, 44].

However, the aforementioned methods still require frequent
transmission of high-dimensional gradient matrices during infer-
ence. In large cities like Beijing, where the metro system comprises
29 lines and 522 stations, this poses a significant communication
bottleneck in practical deployment scenarios. FedMetro introduces
a novel communication compression scheme using dynamic mask
matrices, effectively eliminating this deployment bottleneck while
maintaining spatial correlation learning capabilities.

7 Conclusion
In this paper, we propose FedMetro, a metro passenger flow pre-
diction system based on federated graph learning, leveraging dis-
tributed Automatic Fare Collection (AFC) systems organized by
metro lines. We introduce a novel federated dynamic graph learning
approach to model time-evolving global spatial correlations, and
employ cross-attention mechanisms to address heterogeneous tem-
poral correlations. Additionally, we propose a dynamic mask-based
communication compression method to reduce federated inference
overhead. Extensive evaluations on three real-world metro AFC
datasets demonstrate the effectiveness of our approach. Notably,
FedMetro has been deployed in the Beijing metro system, enabling
station congestion prediction and timetable optimization.
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