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Abstract Data isolation has become an obstacle to

scale up query processing over big data, since sharing

raw data among data owners is often prohibitive due to

security concerns. A promising solution is to perform

secure queries over a federation of multiple data own-

ers leveraging secure multi-party computation (SMC)

techniques, as evidenced by recent federation studies on

relational data. However, existing solutions are highly

inefficient on spatial queries due to excessive secure dis-

tance operations for query processing and their usage of

general-purpose SMC libraries for secure operation im-

plementation. In this paper, we propose Hu-Fu, the first

system for efficient and secure spatial query processing

on a data federation. Hu-Fu seamlessly supports five

mainstream spatial queries at scale, while ensuring both

data and query privacy (i.e., sensitive spatial informa-

tion of data owners and query users). The idea is to

decompose the secure processing of a spatial query into

as many plaintext operations and as few secure opera-
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tions as possible, where fewer secure operators are in-

volved and all of them are implemented dedicatedly. As

a working system, Hu-Fu supports not only query input

in native SQL, but also heterogeneous spatial databases

(e.g., PostGIS, GeoMesa, and SpatialHadoop) at the

backend. Extensive experiments show that Hu-Fu usu-

ally outperforms the state-of-the-arts in running time

and communication cost while guaranteeing security.

Keywords Federated database · Spatial database ·
Query processing · Data privacy

1 Introduction

Efficient processing of spatial queries over large-scale

data is essential for a wide spectrum of smart city ap-

plications, such as taxi-calling [66] and logistics plan-

ning [68]. Although the volume of spatial data continues

to grow, it becomes increasingly difficult for these ap-

plications to take full advantage of the big spatial data

due to the data isolation problem (a.k.a. isolated data)

[43, 50, 52]. Spatial datasets at city or nation scale are

often privately possessed and separately owned by mul-

tiple parties, where sharing raw data among parties or

uploading raw data to a third party (e.g., a cloud) is

prohibitive due to legal regulations (e.g., GDPR [55])

or commercial reasons.

A promising paradigm to tackle the data isolation

problem is to perform secure queries over a data fed-

eration [14], which consists of multiple data owners

(a.k.a. data silos) who agree on the same schema and

manage their own data autonomously. Note that this

paradigm differs from conventional federated databases

[45] in the extra security requirement. In general, se-

cure query processing over data federation can be solved

by well-known techniques such as secure multi-party



2 Yongxin Tong, Yuxiang Zeng, Yang Song, et al.

computation (SMC) [24]. Yet, only recently did pioneer

studies such as SMCQL [14] and Conclave [56] take the

first step towards practice with efficient query execution

plans upon SMC libraries for (relational) data federa-

tion. Unsurprisingly, more applications are being built

on federations of spatial data owners.

Example 1 AMAP [3] (GaoDe Map in China) has united

over 8 Chinese travel companies into an integrated taxi-

calling platform to offer users the taxis resources from

all participating companies. A spatial data federation

can protect the distribution of taxis’ locations of each

company (i.e., data silo), which could be a business se-

cret, from leaking to others. This privacy concern for

data silos is commonly referred to as data privacy [28].

Example 2 During COVID-19, several mobile network

operators (e.g., China Mobile [4] and China Telecom [5])

cooperated as a data federation to identify individuals

who had contacts with infectious patients through their

location data [6]. Executing spatial queries (e.g., range

query) over a data federation helps identify contacts of

infectious patients across multiple organizations’ spa-

tial data without compromising privacy. Here, strict

privacy requirements go beyond the data privacy since

the locations of patients, which appear in queries, also

need protections. The privacy concern for spatial data

in queries is referred to as query privacy [28].

Due to legal regulations (e.g., GDPR [55]), protect-

ing data privacy is now common in real-life scenarios,

especially when spatial location implies the travel pat-

terns or personal trajectories of a user. Query privacy

is equally important, but perhaps gets less attention in

existing research on data federation. Query privacy also

has numerous real-world applications [17, 29], such as

navigation, location-based social networking, location-

based advertising, and POI search 1.

Nevertheless, directly adapting the state-of-the-art

data federation solutions [14, 56] to spatial data can be

inefficient. From our empirical study (Sec. 2.2) of a kNN

query on a real dataset, they are at least 142× slower,

and have at least 1, 216× higher communication cost

than plaintext query processing. There are two reasons

for such inefficiency. (i) Existing solutions process spa-

tial queries with excessive secure distance operations,

which occupy over 90% of the time cost. For example,

SMCQL [14] and Conclave [56] would securely sort spa-

tial objects by distances to the query point and pick the

top-k objects, where each sorting involves numerous se-

cure distance comparisons. (ii) Previous studies [14, 56]

are built on general-purpose SMC libraries, which may

1 Please refer to Appendix A for more detailed explanations
on these application scenarios

sacrifice the efficiency of specific operations for other

considerations. For example, our experiment shows that

the secure summation in ObliVM [42], the SMC library

adopted by SMCQL [14], can be accelerated by 15× via

dedicated implementations [23].

In this paper, we aim at efficient and secure spatial

queries over a data federation, which we call federated

spatial queries. We mainly study five queries (federated

range query, range counting, kNN query, distance join,

and kNN join) commonly seen in spatial database re-

search [21, 64] and follow the semi-honest adversary

model adopted by previous work [14, 56, 59]. Moreover,

we develop a more practical solution than [14, 56] by

eliminating the need for an honest broker and support-

ing more data silos (these studies support at most three

data silos whereas we tested up to ten).

To this end, we propose Hu-Fu [7], a system for effi-

cient and secure processing of federated spatial queries.

As explained above, secure operations are usually slow

and easily become the efficiency bottleneck. Thus, the

key idea of Hu-Fu is to decompose a federated spatial

query into as many plaintext operations while mini-

mizing secure distance-related operations without com-

promising privacy. The decomposition aims to achieve

two goals: (i) reduce the number of distance-related

operations to the minimum, and (ii) implement secure

operations faster than those in general-purpose SMC

libraries. To realize this idea and implement a prac-

tical system, Hu-Fu consists of three components: an

query rewriter with novel decomposition plans, a set of

drivers adaptable to heterogeneous databases and an

easy-to-use query interface with SQL support. Specifi-

cally, the query rewriter identifies a set of plaintext and

secure operators for the query execution plan to han-

dle the queries of interest. It ensures diverse privacy re-

quirements, as explained in Examples 1 and 2: data pri-

vacy only, or both data and query privacy. The drivers

provide implementations of secure operators with ded-

icated SMC protocols and plaintext operators as in-

terfaces on top of the heterogeneous spatial databases

adopted by different data silos. The query interface sup-

ports spatial queries in native SQL for easy usage.

Contribution. Our main contributions and results are

summarized as follows.

– To the best of our knowledge, Hu-Fu is the first

system on efficient and secure spatial queries over a

data federation, and is also available on GitHub [7].

– We devise novel decomposition plans for federated

spatial queries. After decomposition, an execution

plan involves only a limited number of secure op-

erators that can be effectively supported with fast

and dedicated implementations.
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– Hu-Fu is an efficient, easy-to-use system that sup-

ports query input in SQL and heterogeneous spa-

tial databases, e.g., PostGIS [10], Simba [64], Ge-

oMesa [27], SpatiaLite [11], and SpatialHadoop [21].

– Extensive evaluations show that Hu-Fu usually out-

performs the state-of-the-arts [14, 56] in efficiency.

Compared with two strong baselines, namely SMCQL-

GIS and Conclave-GIS, which are extended from

SMCQL [14] and Conclave [56] to spatial queries,

Hu-Fu is up to 4 orders of magnitude faster and 5

orders of magnitude lower in communication over-

head than SMCQL-GIS and Conclave-GIS with the

same security level.

Compared with the preliminary version [51] of this

work, we have made the following new contributions. (i)

We expand our scope to a new and challenging setting

where both data and query privacy must be preserved.

Hu-Fu also provides the corresponding SQL query inter-

face. (ii) The query rewriter is extended and optimized

to handle all five spatial queries in this new setting. (iii)

In drivers, two additional secure operators are tailored

to fulfill the extra privacy requirement. (iv) Extensive

evaluations are conducted to show the performance.

Roadmap. In the rest of this paper, we define our

problem scope and identify the inefficiency of existing

solutions in Sec. 2. We present an overview of Hu-Fu

in Sec. 3 and elaborate on the three functional compo-

nents in Sec. 4, Sec. 5, and Sec. 6. Finally, we present

the evaluations in Sec. 7, review the related work in

Sec. 8, and conclude in Sec. 9.

2 Problem Statement

This section clarifies our problem scope and highlights

the technical challenges when developing Hu-Fu.

2.1 Problem Scope

A data federation F (“federation” as short) consists

of n data silos {Fi} (“silos” as short), where each silo

holds massive spatial objects. Each spatial object o has a

location lo and (optionally) other attributes. The feder-

ation supports federated spatial queries over the spatial

objects of all silos under the following settings.

– Spatial Queries. The federation supports main-

stream spatial queries like range query, range count-

ing, kNN query, distance join, and kNN join [44, 64].

– Autonomous Databases. Each data silo is an au-

tonomous database that manages (e.g., deletes and

inserts its own spatial objects and prohibits sharing

its spatial objects in plaintext with the other data

silos [14–16, 56].

– Semi-honest Adversaries. Each silo honestly ex-

ecutes queries received and returns authentic re-

sults, but may attempt to infer data from other si-

los during query execution. This assumption is com-

mon in query processing over a data federation [14–

16, 56].

Moreover, the query processing methods should con-

sider the following requirements thoughtfully.

– Efficiency Requirements.We care about the run-

ning time and communication cost to execute exact

queries over multiple silos. Short running time is of-

ten desirable since real-life applications may process

massive queries and expect prompt responses. Min-

imal communication cost is critical in distributed

query processing [45] and secure query processing

[28]. Approximate query processing over data fed-

eration [16, 20, 69] is out of our scope because ap-

plications such as contact tracing require accurate

results. We consider multiple silos as aligned with

real-world applications. Similar to existing solutions

[14, 56], the storage efficiency, which mainly depends

on silos themselves, is not our primary concern.

– Privacy Requirements.We consider two different

types of privacy requirements [24, 28].

(1) Data privacy : each data silo should not deduce

any sensitive data from others, and no additional

sensitive data should be revealed to the query

user, except for the final query answer.

(2) Query privacy (optional): the spatial location of

a user’s query cannot be revealed to data silos.

Remark. In practice, the need for query privacy may

vary across applications. For example, in scenarios such

as a passenger requesting a taxi-calling service through

AMAP [3], query privacy may be unnecessary. This is

because the platform ultimately needs to know the pas-

senger’s pickup location. Conversely, in situations like

performing contact tracings based on a patient’s loca-

tion, query privacy becomes crucial to prevent the dis-

closure of sensitive spatial information to data silos.

For ease of presentation, we classify federated spatial

queries into two kinds: asymmetric queries (which re-

quire data privacy only) and symmetric queries (which

require both data privacy and query privacy).

To satisfy the privacy requirements, some existing

systems [14, 56] assume the existence of a trusted broker

responsible for collecting partial answers, which may

contain sensitive data, from each silo. In reality, even

if brokers (e.g., Acxiom [2]) charge high fees for their

data broker services, there is still a risk of them leaking

sensitive data for personal gain [1]. Thus, we explore

solutions without reliance on a trusted broker.
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2.2 Main Challenges

Federated queries can be realized by secure multi-party

computation (SMC) [24], as in prior studies for rela-

tional data [14, 56]. Nevertheless, our empirical study

shows that they are highly inefficient on spatial queries.

2.2.1 Inefficiency on Federated Spatial Queries

As an illustrative study, we perform an asymmetric fed-

erated kNN query by extending SMCQL [14] and Con-

clave [56], two representative solutions to secure query

processing on (relational) data federations.

Overview of Existing Solutions. The common frame-

work [14, 56] for secure query processing over a data

federation decomposes query execution into plaintext

queries within each silo and secure computations of the

partial results across silos. Existing solutions differ in

the SMC techniques used for secure operations, with

garbled circuits (GC) and secret sharing (SS) as the

mainstreams [24]. For example, SMCQL-GIS [14] uses

a prevalent GC based library, ObliVM [42], to support

two silos. Conclave-GIS [56] adopts an SS based tech-

nique (Sharemind [18]), which enables query processing

on three silos.

Setup. SMCQL-GIS [14] and Conclave-GIS [56] are ex-

tended to asymmetric federated kNN queries as follows.

Following the “plaintext + secure” processing pipeline,

each silo first conducts a plaintext kNN query and re-

turns the k nearest points (along with their distances)

to the query point. Then, the final kNNs are derived by

a top-k operation from these returned points, which are

securely sorted by their distances to the query point. We

experiment with two silos with k = 16. Other details of

experimental setups are elaborated in Sec. 7.1.

Result. Fig. 1 plots the (average) running time and

communication cost to process an asymmetric feder-

ated kNN query leveraging existing solutions [14, 56].

The results are averaged over 50 queries. Compared

with Public, i.e., plaintext kNN query execution with-

out any privacy protection, the secure counterpart in-

curs 142× to 212× longer running time and 1, 216×
to 22, 510× higher communication cost. Although the

method SMCQL-GIS yields shorter running time and

lower communication overhead than Conclave-GIS, it

is limited to scenarios with only two silos due to its re-

liance on garbled circuits (GC). Yet it still takes 2.86

seconds to answer a federated spatial query, which can

hurt user experiences in applications where query time

efficiency is critical.

Table 1: Percentage of time spent for plaintext or secure

operations in an asymmetric federated kNN query.

Existing Solution Plaintext Secure

SMCQL-GIS [14] 0.14% 99.86%
Conclave-GIS [56] 0.10% 99.90%
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Fig. 1: Inefficiency of Conclave-GIS and SMCQL-GIS

on asymmetric federated kNN query, where SMCQL-

GIS and Conclave-GIS are our extensions on SMCQL

[14] and Conclave [56] to spatial queries (see Sec. 7.1).

2.2.2 Understanding the Efficiency Bottleneck

Prior studies are inefficient on federated spatial queries

for the following reasons.

– Excessive Secure Distance Operations. When

processing the test query, over 99% time is spent

on secure operations (e.g., secure distance compar-

isons) as shown in Table 1. Specifically, SMCQL-

GIS and Conclave-GIS adopt sorting to find kNNs

among nk candidates by using O(nk log(nk)) se-

cure distance comparisons. A single secure distance

comparison in SMCQL-GIS takes 209 ms, while in

Conclave-GIS it takes 248 ms, which equals the time

required for at least 106 plaintext comparisons.
– Reliance on General-Purpose Libraries. Ex-

isting methods use general-purpose libraries to im-

plement secure operations (e.g., ObliVM [42] in SM-

CQL [14]). General-purpose libraries sometimes sac-

rifice efficiency for generalization or compatibility.

For example, the secure summation used in Hu-Fu

can be 16× faster than that in ObliVM (see Sec. 7).

As will be shown in Sec. 4, federated spatial queries

can be processed with only a few secure operations.

This facilitates acceleration by dedicated protocols

specifically tailored for these secure operations.

Takeaway. Our study shows that existing secure query

processing solutions (e.g., [14, 56]) for data federations

are inefficient for spatial queries. The inefficiency comes

from (i) massive secure distance operations, and is ex-

acerbated by (ii) adopting general-purpose libraries for

these SMC operations. In response, we propose Hu-Fu,

a solution with (i) a novel execution plan for federated

spatial queries that involve notably fewer secure oper-
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Fig. 2: Foundation architecture of Hu-Fu.

ations (see Sec. 4) and (ii) each secure operator can be

implemented in high efficiency via dedicated methods

(see Sec. 5). As next, we give an overview of Hu-Fu and

elaborate on its functional modules in the following.

3 Hu-Fu Overview

Hu-Fu is a solution that enables efficient and secure spa-

tial queries over a data federation. It addresses the in-

efficiency of federated spatial query processing via two

modules: (1) a novel query rewriter that decomposes

federated spatial queries into plaintext and secure op-

erators, with the former executed within each silo and

the latter across silos; (2) drivers that implement these

operators as plaintext and secure primitives leverag-

ing dedicated algorithms and optimizations. Hu-Fu also

contains a transparent query interface to support fed-

erated spatial queries written in native SQL. We will

briefly explain its architecture and workflow as follows.

3.1 Architecture

Fig. 2 shows the architecture of Hu-Fu, which consists of

three modules: query rewriter, drivers, and query inter-

face. From a functional perspective, the query rewriter

and drivers optimize the query efficiency, and the query

interface improves the usability of Hu-Fu.

Query Rewriter (Sec. 4). It decomposes mainstream

spatial queries (federated range query, range counting,

kNN query, distance join, and kNN join) into plaintext

operators (executed within silos) and secure operators

Fed ServerFed ServerFed ServerFed ServerUser Hu-Fu Query 
Interface & Rewriter

Federated 
Spatial Query

Parse Query

Rewrite and 
Optimize Query 

Basic Operators
Plaintext Primitives

Local Result
Secure 

Primitives
Final Result

Query Result

Systems
Hu-Fu
Drivers

Spatial
Silo 1

Silo 2
Silo n

Fig. 3: Illustration of Hu-Fu workflow.

(executed across silos). We define three plaintext oper-

ators (plaintext range query, range counting, and kNN

query) and five secure operators (secure summation,

count comparison, set union, distance comparison, and

location perturbation) as the basic operators. We also

design novel execution plans that decompose these fed-

erated spatial queries into basic operators.

Drivers (Sec. 5). Hu-Fu’s drivers implement the basic

operators defined in the query rewriter as efficient prim-

itives that can adapt to heterogeneous spatial databases

at the backend. Each operator is implemented by a spe-

cific primitive. Specifically, secure operators are imple-

mented as secure primitives with dedicated optimiza-

tions [18, 23, 35, 37]. Plaintext operators are imple-

mented as plaintext primitives on top of the underlying

spatial databases, which support various systems, e.g.,

PostGIS [10], SpatiaLite [11], MySQL [8], GeoMesa [27],

Simba [64] and SpatialHadoop [21].

Query Interface (Sec. 6). This module (1) provides

a transparent and unified federation view to users, and

(2) supports both asymmetric and symmetric federated

spatial queries written in SQL. We implement the query

interface by extending the schema manager and parser

of Calcite [19]. We also provide interfaces such as JDBC

for easy integration of Hu-Fu to users’ programs.

3.2 Workflow

Fig. 3 depicts the workflow of Hu-Fu for querying a

data federation of n silos. The query interface and query

rewriter are deployed on the user’s machine to provide

a portal for spatial services, while each silo runs a driver

that interacts with its underlying spatial database.

In the workflow, a user’s SQL-based federated spa-

tial query is first parsed by the query interface. Then,

the query rewriter transforms and optimizes the query

into a sequence of plaintext and secure operators. These

operators are executed as primitives by the drivers:
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plaintext primitives run locally on spatial databases

to produce intermediate results, while secure primitives

assemble these partial results to obtain the final answer,

which is returned to the user via the query interface.

4 Query Rewriter

This section presents the design of the query rewriter

in Hu-Fu, which decomposes a federated spatial query

into basic operators to form the query execution plan.

Specifically, we first introduce the involved basic op-

erators in Sec. 4.1. Next, we explain the overall de-

composition strategies in Sec. 4.2. Then, we introduce

the rewriter of asymmetric federated spatial queries in

Sec. 4.3 from two categories: radius-known and radius-

unknown queries. Since asymmetric federated spatial

queries do not assume query privacy, we also propose ef-

ficient solutions to symmetric federated spatial queries

in Sec. 4.4. Finally, we discuss practical issues in Sec. 4.5.

4.1 Basic Operators

Our acceleration strategy is to decompose queries into

basic operators so that the majority of distance-related

operations occur within silos in plaintext, thereby re-

ducing the need for secure operations across silos. The

selection principle of basic operators is explained below.

4.1.1 Operator Selection Principles

There are two categories of basic operators in Hu-Fu:

plaintext and secure operators. The plaintext operators

handle local queries within each individual silo, while

the secure operators perform atomic computations over

sensitive data in a privacy-preserving manner.

– Plaintext Operators. They can involve the distance-

related operations compulsory in spatial queries, but

should be common operations widely supported by

diverse spatial databases.

– Secure Operators. They should avoid distance-

related operations unless strictly necessary, and ef-

ficiently implemented operators are preferable.

Adhering to these principles, we select three plain-

text operators and five secure operators, which will be

elaborated in Sec. 4.1.2 and Sec. 4.1.3, respectively.

4.1.2 Plaintext Operators

We define three plaintext operators: plaintext range query,

range counting, and kNN query. These operators are

performed within each silo Fi. Hence, they can be con-

ducted in plaintext without compromising security.

Definition 1 (Plaintext Range Query/Counting)

Given a silo Fi and a query range R, the plaintext

range query RQ(Fi,R) retrieves the spatial objects in

Fi that fall within R, and the plaintext range counting

RC(Fi,R) returns the number of such objects.

Definition 2 (Plaintext kNN Query) Given a silo

Fi, a query object q, and a positive integer k, the plain-

text kNN query kNN(Fi, q, k) retrieves the k nearest

spatial objects in Fi to the query object q.

The plaintext operators comply with the principles

described in Sec. 4.1.1, because they are supported by

almost all spatial databases. They are implemented as

plaintext primitives in Hu-Fu drivers, which we defer

to Sec. 5.1. The query range can be various shapes,

such as circles and rectangles. For ease of presentation,

we mainly focus on circular ranges in this section and

discuss extensions to other shapes in Sec. 4.5.

4.1.3 Secure Operators

We define five secure operators: summation, count com-

parison, set union, distance comparison, and location

perturbation. The first three secure operators are de-

signed to preserve data privacy, while the latter two

secure operators aim to protect query privacy.

Definition 3 (Secure Summation) Given n data si-

los {Fi} each holding a private value vi, this operator

SUM sums up these values, i.e., SUM(v1, · · · , vn) =∑n
i=1 vi, while protecting the privacy of vi in silo Fi

from all other silos Fj (∀j ̸= i).

Definition 4 (Secure Count Comparison) Given

n data silos {Fi} each holding a private count vi and

a public constant k, this operator CMP compares the

sum of these counts with k, i.e., CMP(v1, · · · , vn, k) =
sign(

∑n
i=1 vi − k), without leaking the sum

∑n
i=1 vi or

the count vi in silo Fi to any other silos Fj (∀j ̸= i).

Definition 5 (Secure Set Union) Given n data si-

los {Fi} each holding a set of spatial objects Si =

{oi1, · · · , oimi
}, this operator SUN computes the union

of spatial objects from all silos, i.e., SUN(S1, · · · , Sn) =

∪n
i=1Si, without leaking the spatial objects Si in silo Fi

to any other silos Fj (∀j ̸= i).

Definition 6 (Secure Distance Comparison) Given

a query user holding a private location lq, a data silo

holding a private location lo, and a distance threshold

r, this operator DCMP compares the distance between

lq and lo with the threshold r, i.e., DCMP(lq, lo, r) =

sign(dist(lq, lo)− r), without leaking the location of ei-

ther party (i.e., the user or silo) to the other.
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Definition 7 (Secure Location Perturbation) Given

a private location x ∈ R2, this operator GeoI obfuscates
it into a location z = GeoI(x) while satisfying (ϵ, δ)-

Geo-Indistinguishability (Geo-I) [60]. The privacy re-

quirement of (ϵ, δ)-Geo-I is satisfied iff the following in-

equality holds for any two locations x, x′ in the location

set and any location subset Z:

Pr[GeoI(x) ∈ Z] ≤ eϵdist(x,x
′) · Pr[GeoI(x′) ∈ Z] + δ (1)

where Pr[GeoI(x) ∈ Z] is the probability that the per-

turbed location belongs to the subset Z, and ϵ, δ repre-

sent the privacy preservation level of Geo-I.

ϵ-Geo-I [13] adapts the de facto standard privacy no-

tion, differential privacy [39], to protect location data,

where ϵ is known as the privacy budget. (ϵ, δ)-Geo-I

relaxes the definition of ϵ-Geo-I by allowing a small

failure probability δ. This way of relaxation has gained

widespread usages in (standard) differential privacy [39].

Remark. The secure operators comply with the princi-

ples in Sec. 4.1.1 since (1) most of them do not involve

distance operations (with the exception of secure dis-

tance comparison) and (2) all of them have dedicated

and efficient implementations (see Sec. 5.2 for details).

4.2 Overview of Our Decomposition Strategies

In the following, we formally define the federated spatial

queries and introduce our taxonomy to categorize them

(Sec. 4.2.1). We then elaborate on the main ideas of our

decomposition strategies for each category (Sec. 4.2.2).

4.2.1 Federated Spatial Queries and Taxonomy

Before diving into our decomposition strategies, we first

define the five federated spatial queries. The privacy

requirement below includes either data privacy alone

or both data and query privacy defined in Sec. 2.1.

Definition 8 (Federated Range Query/Counting)

Given a federation F of n data silos {Fi}, and a query

rangeR, a federated range query retrieves all spatial ob-

jects located within R, while a federated range counting

returns the number of such objects. Both queries need

to satisfy the privacy requirement.

Definition 9 (Federated Distance Join) Given a

federation F of n data silos {Fi}, an input dataset Q

of spatial objects, and a distance radius r, a federated

distance join retrieves all pairs of objects (q, o) where

q ∈ Q, o ∈ F such that the distance dist(lq, lo) ≤ r,

while satisfying the privacy requirement, i.e.,

Q ▷◁r F = {(q, o) | q ∈ Q, o ∈ F, dist(lq, lo) ≤ r}.

Definition 10 (Federated kNN Query/Join) Given

a federation F of n data silos {Fi}, a query object q,

and a positive integer k, a federated kNN query retrieves

the k nearest objects in F to the query object q, i.e.,

∀o ∈ kNN(q),∀o′ ∈ F \ kNN(q), dist(q, o) ≤ dist(q, o′).

When the query objects form an input dataset Q, a

federated kNN join retrieves all pairs of objects (q, o)

where q ∈ Q and o belongs to the kNN of q in F , i.e.,

Q ▷◁kNN F = {(q, o) | q ∈ Q, o ∈ kNN(q)}.

Both queries need to satisfy the privacy requirement.

Taxonomy. The above queries can be categorized from

two orthogonal dimensions: the scope of the privacy

requirement and whether the searching radius (of the

query range) is explicitly given. Specifically, based on

whether query privacy is included in the privacy re-

quirement, the queries are classified into asymmetric

and symmetric queries (see the differences in Sec. 2.1).

Based on whether the searching radius is explicitly given,

the queries are classified into radius-known and radius-

unknown queries. Intuitively, the federated range query,

range counting, and distance join belong to radius-known

queries, while the federated kNN query and kNN join

belong to radius-unknown queries.

4.2.2 Main Idea of Our Decomposition Strategies

Basic Principle. In Hu-Fu, the core principle of the

query rewriter is to decompose federated spatial queries

into as many plaintext operators and as few secure op-
erators as possible such that a large portion of the query

can be executed in plaintext without compromising se-

curity. At a high level, a federated spatial query is ini-

tially processed using plaintext operators within each

silo, and their results are then securely assembled to

form the final outcome. At the minimum, one secure

operator is compulsory, and additional secure operators

may be required if there are interactions across silos.

Based on the aforementioned basic operators and

taxonomy of queries, we now introduce the main ideas

of decomposing different categories of queries.

Main Idea for Asymmetric Queries with Data

Privacy Solely. Our idea is elaborated as follows:

– Radius-Known Queries. A radius-known query

(e.g., federated range query and range counting) can

be decomposed into the corresponding plaintext op-

erators within each silo and only one secure operator

(e.g., a secure set union or a secure summation) for

assembling the partial results across silos.
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– Radius-Unknown Queries. Each radius-unknown

query (e.g., federated kNN query) is viewed as an it-

erative process of trialing different search radii until

exactly k spatial objects are found within the cir-

cular search area. This execution can be converted

into multiple radius-known queries (e.g., federated

range counting), with the number of radius-known

queries minimized by a binary search. Each iteration

utilizes a secure operator to ensure data privacy.

Key Insight for Symmetric Queries with Both

Data and Query Privacy. When additionally con-

sidering query privacy, our key insights are as follows:

– Radius-Known Queries. A native solution em-

ploys a secure distance comparison operator for ev-

ery spatial object, but leads to excessive secure dis-

tance operations. Instead, we first obfuscate the sen-

sitive query location using a secure location pertur-

bation operator to create a noised location that can

be safely published to each silo. Then, leveraging

the previous idea for radius-known queries, each silo

identifies a small set of candidates. For each candi-

date, a secure distance comparison operator verifies

if its distance to the query location is within the

specified radius, while protecting query privacy.

– Radius-Unknown Queries. Similar to the afore-

mentioned ideas for decomposing radius-unknown

queries, we can still decompose them into a series of

radius-known queries.

4.3 Decomposing Asymmetric Queries with Data

Privacy Only

This subsection proposes our methods for decomposing

radius-known queries (Sec. 4.3.1) and radius-unknown

queries (Sec. 4.3.2), which only consider data privacy.

The decomposition plans are summarized in Table 2.

4.3.1 Decomposing Radius-Known Queries

Among the five queries, the federated range query, range

counting, and distance join are radius-known queries.

Decomposition Plan. (1) Federated range query

can be decomposed into n plaintext range queries, each

with a radius r, where each plaintext operator retrieves

the partial result within each one of the n silos. After-

wards, a secure set union operator assembles these par-

tial result while maintaining data privacy. (2) Similarly,

federated range counting can be decomposed into n

plaintext range counting operators to obtain n partial

counts. These partial counts will later be aggregated by

a secure summation operator. (3) Federated distance

join is equivalent to requesting federated range queries

|R| times, each of which follows the previous plan.

Complexity Analysis. Let TRQ and TRC denote the

time complexity of plaintext range query and range

counting, respectively. |S| denotes the size of returned

set. Based on the complexities of secure operators (see

Sec. 5.2), the time complexity and communication cost

of the radius-known queries are as follows. (1) Federated

range query takes O(TRQ+n+ |S|) time and O(n+ |S|)
communication cost. (2) Federated range counting takes

O(TRC + n3) time and O(n2) communication cost. (3)

Federated distance join takes O(|R| ·TRQ+n+ |S|) time

and O(n+ |S|) communication cost.

4.3.2 Decomposing Radius-Unknown Queries

Federated kNN query and kNN join are classified as

radius-unknown queries due to the absence of an ex-

plicitly given range. Their decomposition plan is to first

get an appropriate range and then filter the points in

the range, as explained in detail below.

Decomposition Plan. Similar to the relation between

federated range query and federated distance join in

Sec. 4.3.1, federated kNN join can be viewed as |R|
independent federated kNN queries. Hence, we mainly

explain how to decompose a federated kNN query.

– Basic Idea. Recall from Sec. 4.2, the strategy to de-

compose radius-unknown queries is to convert them

into multiple rounds of radius-known queries. We

first derive a radius r via a binary search and then

retrieve the spatial objects within this search range.

For each radius r, we securely check whether the

counting result is smaller than k. As long as r falls

between the kth and the (k + 1)th nearest distance

to the query object q, the spatial objects within this

range are precisely the k nearest neighbors.

– Algorithm Details. Alg. 1 illustrates the decom-

position of a federated kNN query. Lines 1-8 derive

the radius r. We initialize a lower bound (l = 0) and

upper bound (u = U) of the radius, where U can be

set as the spatial area’s diameter or a user-defined

value. A binary search is then performed to find

the appropriate radius until reaching the distance

precision ϵ0 (lines 2-9). In each iteration, r is set

to (l + u)/2. For each r, a plaintext range counting

operator is executed within each silo, and a secure

count comparison operator is invoked to compare

the total count with the integer k (lines 4-5). If the

total count is less than k (i.e., sign < 0), indicating

an undersized radius, l will be increased to r. Con-

versely, if the total count exceeds k (i.e., sign > 0),

u will be decreased to r. The binary search ensures

that the final radius r is sufficiently close to the kth
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Table 2: The number of basic operators in the decomposition plans of asymmetric federated spatial queries. Radius-

known queries only involve one type of secure operators (secure summation or set union). Radius-unknown queries

are executed in multiple rounds which additionally require secure count comparisons to ensure security.

Category
Federated

Spatial Query
#(Plaintext Operator) #(Secure Operator)

Range Query Range Counting Count Comparison Set Union/Summation

Radius-Known
Range Query n 0 0 1/0
Range Counting 0 n 0 0/1
Distance Join n|R| 0 0 |R|/0

Radius-Unknown
kNN Query n O(n logU) O(logU) 1/0
kNN Join n|R| O(n|R| logU) O(|R| logU) |R|/0

n is the number of silos, R is the input dataset in spatial joins, and U is the upper bound for the binary-search radius.

Algorithm 1: Asymmetric federated kNN query

Input: federation F , query object q, integer k
Output: the (exact) query answer ans

1 [l, u]← [0, U ], where U is a predefined upper bound;
2 while u− l ≥ ϵ0 do
3 r ← (l + u)/2, R← circle(q, r);
4 foreach silo Fi ∈ F do // perform in parallel
5 vi ← plaintext range counting RC(Fi,R);

6 sign← secure count comparison CMP({vi}, k);
7 if sign < 0 then l← r;
8 else if sign > 0 then u← r;
9 else break;

10 foreach silo Fi ∈ F do // perform in parallel
11 Si ← plaintext range query RQ(Fi, circle(q, r));

12 return ans ← secure set union SUN(S1, · · · , Sn);

nearest distance. Finally, a plaintext range query is

executed on each silo, and the partial results are

collected using a secure set union (lines 9-10).

In Alg. 1, the distance precision ϵ0 is initially set

based on the application requirement. For example, many

spatial applications (e.g., taxi-calling) have a minimum

distance precision requirement that is typically mea-

sured in meters. Then, ϵ0 can be set to 1 meter.

Complexity Analysis. Alg. 1 requires O(log U
ϵ0
) =

O(logU) iterations to obtain the final radius, where ϵ0
is a constant to denote this radius’s precision. In each

iteration, the plaintext range counting takes O(TRC)

time, and the secure count comparison takes O(n) time

and O(n2) communication cost. In lines 9-10, Alg. 1

performs a plaintext range query that takes O(TRQ)

time and a secure set union that takes O(n + k) time

and O(n + k) communication cost. Overall, the total

time complexity is O((TRC + n) · logU + TRQ + k), and

the communication cost is O(n2 · logU +k). Intuitively,

the complexity of federated kNN join is equal to that

of federated kNN query, multiplied by a factor |R|.

Example 3 Fig. 4 illustrates the procedure of Alg. 1

with a query point (4, 4) and k = 3 over 3 silos, where

the objects with the same color belong to the same silo.

The query rewriter decomposes this query into multi-

ple rounds of radius-known queries. In the 1st round, a

plaintext range counting with center (4, 4) and radius

4 is sent to each silo and a secure count comparison

with k is performed across silos. And we get 10 objects,

which is greater than k. Hence in the 2nd round, the ra-

dius decreases to 2 and is sent to each silo for plaintext

range counting and secure count comparison. There are

2 objects, which is fewer than k. Thus, in the 3rd round,

the radius increases to 3, and the procedure continues,

where the secure count comparison results implies that

sign = 0 and the search terminates. Finally, the ba-

sic operators, including the plaintext range query with

the center (4, 4) and radius 3 and secure set union, are

performed to retrieve the 3 query answers.

Optimization via Differential Privacy. We exploit

differential privacy [39] to further accelerate federated

kNN query and federated kNN join from two aspects.

– Tighten Predefined Upper Bound.We ask each

Fi to perform a plaintext kNN query operator and

return the kth object’s distance Ui to the query

point . Since directly returning such values may vi-

olate the data privacy requirement, we apply the

truncated Laplacian mechanism [15] on it. That is,

let each silo add a positive noise and obtain the per-

turbed value Ũi. We can tighten the upper bound as

the shortest distance in all silos, i.e., U = min{Ũi},
since there must be at least k objects in this range.

– Reduce Running Time and Communication

Cost in Secure Count Comparison. The se-

cure count comparison in Alg. 1 compares
∑n

1 vi
with k, resulting in O(n2) running time and com-

munication cost. However, when
∑n

1 vi differs sig-

nificantly from k, this can be reduced to O(n) by

using the Laplacian mechanism [39] in differential

privacy. This mechanism injects a noise into the lo-

cal count in each silo, and then perturbed counts are

aggregated in plaintext. If the perturbed total count
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Fig. 4: Running example for (asymmetric) federated kNN query (k = 3).

Algorithm 2: Symmetric federated range query

Input: federation F , query object q, radius r
Output: the (exact) query answer ans

1 q′ ← secure location perturbation GeoI(q);
2 r′ ← r + dist(lq, lq′), range R′ ← circle(q′, r′);
3 foreach silo Fi ∈ F do // perform in parallel
4 Candi ← plaintext range query RQ(Fi,R′)

5 for silo Fi ∈ F do // perform in parallel
6 foreach candidate spatial object o ∈ Candi do
7 sign← secure distance comparison

DCMP(lq, lo, r);
8 if sign ≤ 0 then ans← ans ∪ {o};

is much smaller or larger than k, we directly adjust

the threshold without running the secure operator.

4.4 Decomposing Symmetric Queries with both Data

Privacy and Query Privacy

This subsection presents our methods for decomposing

radius-known queries (Sec. 4.4.1) and radius-unknown

queries (Sec. 4.4.2) with both data and query privacy.

The decomposition plans are summarized in Table 3.

4.4.1 Decomposing Radius-Known Queries

Since query location must be protected in symmetric

queries, radius-known queries can no longer be decom-

posed into plaintext range query/counting within each

silo directly. Instead, we use the Geo-I mechanism [13,

60] to preserve the query privacy, as detailed below.

Decomposition Plan for Federated Range Query.

Alg. 2 presents the decomposition plan for federated

range queries. Initially, a secure location perturbation

operator is applied to generate an obfuscated object

q′. Next, the search radius is increased by the distance

from location lq to lq′ (line 2). This ensures that the

expanded query range, denoted by a circle centered at

q′ with a radius r′ = r + dist(lq, lq′), completely cov-

ers the intended query area. Within each silo, a plain-

text range query is then performed using the expanded

query range (line 3). As a result, each silo obtains a set

of candidates for the query answer. To refine these can-

didates, secure distance comparison operators are em-

ployed to filter out those outside the true query range

and collect the final answer while satisfying both data

privacy and query privacy (lines 4-7).

Example 4 Fig. 5a presents an illustrative example for

Alg. 2. Suppose the query object q is located at (2.5, 2.5)

and the radius r of the circular query range is 1.6. By

using the secure location perturbation operator, q is ob-

fuscated into q′ located at (4, 4), so the radius r′ is

increased to 1.6+
√
(2.5− 4)2 + (2.5− 4)2 = 3.7 (lines

1-2 of Alg. 2). After executing the plaintext range query

operator with the expanded query range, we identify 3,

2, and 5 candidates (marked in different colors) in all

three silos (line 3). Finally, each candidate is further

refined by the secure distance comparison operator.

Extension to Other Radius-Known Queries. The

decomposition plan for federated range counting is al-

most identical to Alg. 2. The key difference lies in line

7, where federated range counting only needs to aggre-

gate the counts. When dealing with federated distance

join, it is initially converted into a series of (symmetric)

federated range queries. Subsequently, each federated

range query is decomposed by Alg. 2.

4.4.2 Decomposing Radius-Unknown Queries

Similar to the binary search procedure in Alg. 1, a sym-

metric federated kNN query can be broken down into

multiple rounds of (symmetric) radius-known queries.

Besides, federated kNN join can still be decomposed

into a series of independent federated kNN queries. Thus,

we focus primarily on the necessary modifications for

federated kNN queries in the following.

Naive Decomposition Plan. A naive extension of

Alg. 1 can be time-consuming due to the trivial upper
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Table 3: The number of basic operators in the decomposition plans of symmetric federated spatial queries.

Category
Federated

Spatial Query
#(Plaintext Operator) #(Secure Operator)

Range Query kNN Query
Location

Perturbation
Distance

Comparison
Set

Union

Radius-Known
Range Query n 0 1 |Cand| 1
Range Counting n 0 1 |Cand| 0
Distance Join n|R| 0 |R| |R| · |Cand| |R|

Radius-Unknown
kNN Query O(n logU) n 1 + n O(|Cand| logU) 1
kNN Join O(n|R| logU) n|R| (1 + n)|R| O(|Cand| logU · |R|) |R|

n is the number of silos, |R| is the size of the input dataset R in spatial joins, U is the upper bound for the binary-
search radius, and |Cand| is the total number of candidate objects from all data silos.

(a) Example for federated range query by Alg. 2 (b) Example for federated kNN query by Alg. 3

Fig. 5: Examples for decomposing (symmetric) federated range query and kNN query

bound of the search radius. If the initial upper bound is

set too high, the decomposed radius-known queries will

require a large number of secure distance operations,

which becomes the major efficiency bottleneck.

Optimized Decomposition Plan. To overcome the

limitation of the naive method, we devise Alg. 3 to com-

pute a tighter upper bound based on the perturbed lo-

cation. Specifically, line 1 perturbs the query object q

into q′ privately. In line 2, plaintext kNN query is per-

formed in each silo to identify the k nearest neighbors to

q′. However, we cannot send the kth nearest distances

to the user’s client as the upper bound, since it leaks

information about locations in the data silos. Instead,

each silo obfuscates the kth nearest neighbor oi ∈ NNi

into a noised spatial object o′i (lines 3-4). In line 5, each

silo locally computes its own upper bound Ui and sends

it to the user’s client. Finally, the upper bound can be

safely set as the minimum value among {Ui} (line 6).

Example 5 Fig. 5b illustrates Alg. 3. In line 1, the query

object q located at (2.5, 2.5) is perturbed into the object

q′ located at (4, 4). Each silo then performs a plaintext

kNN query with k = 2 on q′. The top-2 nearest neigh-

bors in three silos are denoted by NN1-NN3, where oi
is the farthest object to q′ within NNi. For example,

the object o1 at (2, 4) has a distance of 2 to q′. How-

ever, revealing this distance directly may leak spatial

Algorithm 3: Compute tight upper bound for

optimizing symmetric federated kNN query

Input: federation F , query object q, integer k
Output: the upper bound U for binary-search radius

1 q′ ← secure location perturbation GeoI(q);
2 foreach silo Fi ∈ F do // perform in parallel
3 NNi ← plaintext kNN query kNN(Fi, q′, k)

4 oi ← argmaxo∈NNi
{dist(lo, lq′)};

5 o′i ← secure location perturbation GeoI(oi);
6 Ui ← dist(lq′ , lo′

i
) + dist(lo′

i
, loi

);

7 return U ← dist(lq, lq′) + min{Ui | i = 1, · · · , n};

information about o1. Instead, Alg. 3 leverages a secure

location perturbation operator to obfuscate o1 to o′1 lo-

cated at (0, 6). Similarly, o2 and o3 are perturbed to o′2
and o′3, respectively. Based on the Euclidean distances,

we have U1 = 7.30, U2 = 5.16, and U3 = 5.24 (line 5).

Finally, we pick the minimum from {Ui} and derive the

tight upper bound U = 5.16 + 2.12 = 7.28.

The correctness of Alg. 3 is proved in Lemma 1.

Lemma 1 The upper bound U in Alg. 3 is no shorter

than the kth nearest distance to the query object q in

the data federation F .

Proof Let d∗ denote the kth nearest distance to q, so

d∗ should satisfy the following inequality:

d∗ ≤ max{dist(lq, lo) | o ∈ NNi},∀i ∈ [1, n] (2)
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According to the triangle inequality, we have

dist(lq, lo) ≤ dist(lq, lq′) + dist(lq′ , lo) (3)

Based on Eq. (2) and Eq. (3), we can derive that

d∗ ≤ dist(lq, lq′)+max{dist(lq′ , lo) | o ∈ NNi},∀i ∈ [1, n]

Since max{dist(lq′ , lo) | o ∈ NNi} = dist(lq′ , loi) based

on the line 3 of Alg. 3, we have

d∗ ≤ dist(lq, lq′) + dist(lq′ , loi),∀i ∈ [1, n]

Based on the triangle inequality for dist(lq′ , loi) and the

definition of Ui in line 5 of Alg. 3, we have

d∗ ≤ dist(lq, lq′) +
(
dist(lq′ , lo′i) + dist(lo′i , loi)

)
≤ dist(lq, lq′) + Ui (4)

According to the inequality in Eq. (4) and the definition

of U in line 6, we can now prove d∗ ≤ U .

Remark. In Alg. 3, the k nearest neighbors NNi of

the perturbed location q′ are used to derive the upper

bound. Notice that {NNi} do not necessarily encom-

pass all the query results of the original location q. By

contrast, with Lemma 1, the federated range query/

counting during the binary-search can ensure that the

candidate set includes the exact kNN of q.

4.5 Discussion

We provide further discussions on the query rewriter.

Security of Query Rewriter. We prove the security

of our query rewriter based on the composition lemma
in [30]. The idea is to show the decomposition plans

for radius-known queries and radius-unknown queries

will not reveal any extra information other than the

final result due to the usage of secure operators. We

also present a case study that proves it is hard for a

semi-honest adversary to attack Hu-Fu. Please refer to

Appendix B for the detailed security proof and case

study of protecting security under specific semi-honest

attack.

Handling Ties in kNN Queries. In federated kNN

queries, we may encounter ties where multiple spatial

objects share the same distance (i.e., the kth nearest

distance r∗) to the query object q. Here, we must resolve

two technical issues: (1) identifying the presence of

ties, and (2) retrieving exactly k nearest neighbors.

(1) Line 8 (sign = 0) of Alg. 1 indicates the current

search radius covers exactly k objects (i.e., no ties). If

sign ̸= 0 during the binary-search, then there are ties.

(2) Once ties are identified, we proceed to retrieve

exactly k spatial objects. Let [l, u] denote the lower and

upper bounds of r∗. First, we use a federated range

query with the circular range circle(q, l) to cache the

nearest neighbors that are not part of the ties. We de-

note the number of these objects as kl. Next, we select

k − kl objects from the tied ones by sequentially re-

questing objects from all data silos until we reach the

desired count. Finally, we use a secure union operator

to collect the cached partial answers from all data silos.

Please refer to Appendix C for the complete pseudo-

code, example illustrations, and experimental evalua-

tion of our solution to handle the case of ties.

Extension to Rectangular Query Range. The de-

composition plan for radius-known queries can be ex-

tended to accommodate rectangular-shaped of query

ranges. For asymmetric queries, the extension can be

seamlessly implemented by using plaintext range query/

counting operators for rectangular query ranges, which

are typically supported by spatial database systems.

For symmetric queries, where the query object (i.e., the

rectangle center) is private, our extension proceeds as

follows. We first compute the rectangle’s circumscribed

circle. Next, by querying the circumscribed circle with

lines 1-4 of Alg. 2, we identify potential candidates. Fi-

nally, we securely verify if a candidate (x, y) lies within

the rectangle [(xL, xR), (yL, yR)] using the Yao’s gar-

bled circuit (GC) protocol [24] to check the inequalities

x ≥ xL, x ≤ xR, y ≥ yL, and y ≤ yR. The Yao’s GC

protocol here can be implemented using ObliVM [42].

Beyond Mainstream Spatial Queries. The query

rewriter also supports aggregation queries, e.g., the ag-

gregate attribute on the result of kNN query or range

query. For example, the range aggregate query can be

decomposed similarly to a federated range counting.

Our solution can be also extended to support approxi-

mate spatial queries by replacing the exact methods for

the plaintext operators with approximate ones. While

this is easy to implement, it may be hard to achieve a

good balance between efficiency and accuracy.

5 Drivers

In Hu-Fu, a driver is deployed on each data silo, con-

sisting of both plaintext primitives (Sec. 5.1) and secure

primitives (Sec. 5.2). Here, plaintext primitives refer to

the implementations of plaintext operators that lever-

age the local spatial database at each silo. Secure prim-

itives, on the other hand, indicate our secure protocols

tailored for the secure operators defined in Sec. 4.1.3.

Unlike existing systems [14, 56], Hu-Fu aims to sup-

port heterogeneous databases through drivers. In this

way, Hu-Fu can enhance usability and avoid costly data

migration compared to these solutions that assume lo-

cal databases are homogeneous. To achieve this, the
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main difficulties include (1) drivers must integrate with

the query rewriter to convert plaintext operators into

diverse query formats used by data silos, and (2) drivers

must offer default implementations of plaintext opera-

tors for local databases that lack support.

5.1 Plaintext Primitives

Plaintext primitives implement plaintext range query,

range counting, and kNN query. They are implemented

as an interface on top of the underlying spatial databases

for portability and to harness existing range query and

range counting implementations.

Primitive Implementation. The plaintext primitives

are implemented by the underlying spatial databases.

– For databases that support these plaintext queries,

e.g., Simba [64] and PostGIS [10], we utilize the

built-in functions for these queries or generate the

corresponding SQL request. For example, in Post-

GIS [10], a plaintext range counting on silo Fi with

the center p and radius r of a circular range can be

implemented by requesting the SQL below.

SELECT COUNT (*) FROM Fi

WHERE ST_DWithin(p, Fi.location , r);

– When databases lack native support for any query,

the drivers offer a default implementation based on

their supported queries and indexes. For example,

GeoMesa [27] does not inherently support range count-

ing, so we extend range counting by calling a range

query and subsequently counting the result size.

Time Complexity. In modern spatial databases, plain-

text range query, range counting, and kNN query can

take O(logm+ |S|), O(logm), and O(logm) time [44],

where m is the data size and |S| is the output size.

Remark. In practice, the actual performance of plain-

text primitives depends on the native implementation

of the local spatial database at each silo. Thus, when

silos utilize heterogeneous spatial databases, the effi-

ciency of federated spatial queries can be limited by

the slowest plaintext primitive (see Sec. 7.5).

5.2 Secure Primitives

The secure primitives, including secure summation, count

comparison, set union, distance comparison, and loca-

tion perturbation, are independent of local databases.

Primitive Implementation. Each secure primitive is

optimized with a tailored secure protocol as follows.

Secure Summation. This primitive is based on

[23]. Initially, each silo Fi holds a private value vi and

all n silos agree on n distinct public parameters {ui}.
Each silo Fi then selects a random polynomial of degree

n−1 in the form ti(x) = (
∑n−1

k=1 aikx
k)+vi, where aik is

the random coefficient independently generated by silo

Fi, and vi denotes the private value (i.e., local count) of

silo Fi. These variables are kept secret from others by

silo Fi. Next, each silo Fi evaluates its polynomial at the

public parameters {u1, · · · , un} and sends the resulting

value ti(uj) to every other silo Fj . Once the silo Fj re-

ceives all values {ti(uj)|i ̸= j} from the other silos, we

have S(uj) =
∑n

i=1 ti(uj) = (
∑n−1

k=1(uj)
k
∑n

i=1 aik) +∑n
i=1 vi. Afterward, this silo sends S(uj) to the query

user. The user can interpret each S(uj) as a linear

equation S(uj) =
∑n−1

k=1(uj)
kzk + zn in n unknown

variables zk, where zk =
∑n

i=1 aik (for k < n) and

zn =
∑n

i=1 vi. Now, the user can solve the system of lin-

ear equations using the received coefficients {uj} and

constants {S(uj)} via Gauss elimination, and obtain

the unknown variable zn (i.e., the sum of vi).

Secure Count Comparison. The primitive com-

pares the constant k with the sum of each silo Fi’s pri-

vate range count vi and prevents the leakage of either vi
or

∑n
i=1 vi to the silo Fj and the query user. The main

idea is evaluating X(
∑n

i=1 vi − k) rather than directly

computing
∑n

i=1 vi − k to avoid disclosing the actual

sum of vi, where X is a positive random number. Next,

we implement this secure primitive by using existing se-

cure multiplication protocol [18]. Specifically, this pro-

tocol [18] assumes that two multiplicands,X and Y , are

partitioned into n shares xi and yi, where X =
∑n

i=1 xi

and Y =
∑n

i=1 yi. Each silo Fi holds the corresponding

shares xi and yi, where xi is randomly generated by

this silo and yi = vi − k
n . Together, the multiplication

XY happens to be (
∑n

i=1 xi)(
∑n

i=1 vi−k). Finally, the

comparison result is inferred from the sign of XY .

Secure Set Union. We implement this primitive

based on the two-phase union method in [35] with ad-

ditional optimizations. In the first phase, each silo ap-

pends its results into a global set, along with some fake

records. Then, in the second phase, these fake records

are removed from the set. To reduce the communi-

cation cost, the number of fake records should be as

few as possible. Thus, we use the Laplace mechanism

[39] in differential privacy to control the number of

fake records. Moreover, by splitting the global set into

batches, parallel executions are enabled for each silo

to independently append and remove fake records from

each batch, thereby resulting in a shorter latency.

Secure Distance Comparison. We leverage fully

homomorphic encryption (FHE), the BGV scheme [12],

to implement this primitive in three key steps.

(1) Encrypt User’s Data: the query user encrypts

their location (xq, yq) and the threshold r using the
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public key, i.e., E(xq), E(yq), E(r), where E(·) is the

encryption function. The encrypted data and public key

are then sent to the data silo.

(2) Compute Garbled Distance Difference: by
using FHE, the data silo computes the encrypted dif-
ference E(∆) between the square of distance dist(lq, lo)
and square of threshold r as follows:

∆ = dist(lq, lo)
2 − r2 = (xq − xo)

2 + (yq − yo)
2 − r2

E(∆) = (E(xq)− E(xo))
2 + (E(yq)− E(yo))

2 − E(r)2

To further obfuscate the value of E(∆), the silo applies

a random polynomial function f(·) that only has odd

powers and positive coefficients in each term, The ob-

fuscation here prevents the user from inferring the exact

distance dist(lq, lo) after decryption, thereby protecting

the silo’s location privacy.

(3) Decrypt: upon receiving f(E(∆)) from the silo,

the user decrypts it with the secret key and obtains

f(∆). The final result is derived based on the sign of

f(∆) without knowing the exact value of ∆.

Secure Location Perturbation. We implement

this primitive based on the BPL mechanism in [60].

This mechanism obfuscates the original location (x, y)

in the polar coordinate system. The polar angle θ is

uniformly sampled from [0, 2π]. The polar radius r is

sampled based on the −1 branch of the Lambert W

function. If the sampled radius r is too long, it will

be truncated into a random value in [0, R], where R

is a safe upper bound of radius based on the privacy

parameters ϵ, δ. The resulting perturbed locations are

(x+ r cos θ, y + r sin θ).

Complexity Analysis. The secure summation takes
O(n3) time and O(n2) communication cost. The secure

count comparison requires O(n) time and O(n2) com-

munication cost. The time complexity and communica-

tion cost of secure set union are O(n + |S|), where |S|
is the output size. The secure distance comparison (be-

tween two parties) takes O(1) time and communication

cost, since the complexity of the BGV scheme [12] used

for this primitive primarily depends on constant secu-

rity parameters. The time complexity and communica-

tion cost of secure location perturbation are also O(1)

due to the usage of differential privacy mechanism.

6 Query Interface

For easy usability, the query interface of Hu-Fu offers a

unified federation view to users (Sec. 6.1) and supports

federated spatial queries in SQL (Sec. 6.2).

6.1 Unified Federation View

Hu-Fu’s query interface provides a federation view to

users, while the detailed information of silos is hidden.

This not only enables users to send queries without car-

ing about the silo organization, but also protects the

data privacy of individual silos.

We implement this unified federation view by ex-

tending the schema manager of Calcite [19], a popular

query processing framework. In Calcite’s schema man-

ager, each table is independent and indivisible. We treat

silos as an abstraction layer below the table of schema

manager. This means each table comprises multiple silo

objects, and each object records the identity informa-

tion of its silo. The silo identities are used when exe-

cuting secure primitives. Specifically, the query rewriter

will attach the identity information of all silo-level ta-

bles in the table of schema manager when distribut-

ing secure operators. Each silo only executes the corre-

sponding secure primitives if the attached identity in-

formation matches the one locally stored.

6.2 Federated Spatial Queries in SQL

Based on the unified federation view, Hu-Fu query in-

terface supports federated spatial queries in SQL by ex-

tending the SQL parser of Calcite with four keywords:

DWithin, kNN, Private DWithin, and Private kNN. The

first two keywords are used in asymmetric queries, and

the last two are used in symmetric queries.

For example, an asymmetric federated range count-

ing on a circular range centered at the point p with

radius r can be expressed in SQL as

SELECT COUNT (*) FROM F

WHERE DWithin(p, F.location , r)

The WHERE clause checks whether the distance from

p to an object in F is shorter than r. Similarly, an

asymmetric federated kNN join on a relation R and

federation F can be written in SQL as

SELECT R.id , F.id

FROM R JOIN F

ON kNN(R.location , F.location , k)

The WHERE clause indicates whether a spatial object in

F belongs to the kNN set of the query point o ∈ R.

In contrast, when locations in both R and F need

protection, a symmetric federated kNN join in SQL is

SELECT R.id , F.id

FROM R JOIN F

ON Private_kNN(R.location , F.location , k)

Other federated spatial queries can be written as SQL

similarly with these four keywords.
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7 Evaluation

In this section, we first introduce the experimental setup

(Sec. 7.1), and then present the overall performances of

asymmetric queries (Sec. 7.2) and symmetric queries

(Sec. 7.3), scalability tests (Sec. 7.4), and results with

heterogeneous spatial databases across silos (Sec. 7.5).

7.1 Experimental Setup

Datasets. Experiments are conducted on two datasets,

with each object having a location and unique ID.

– Multi-company Spatial Data in Beijing (BJ).

This dataset2 was collected by 10 companies in Bei-

jing, in June 2019, which has 1, 029, 081 spatial ob-

jects in total. The locations of these objects fall

into an area from 39.5◦N ∼ 42.0◦N and 115.5◦E

∼ 117.2◦E. We use the dataset to simulate a real-

world federation, where each company can be nat-

urally regarded as a silo. During the evaluation, we

vary the silo number n and queries without altering

the spatial object distributions across silos.

– OpenStreetMap (OSM). This is a popular open

dataset to evaluate spatial queries. We mainly use

this dataset in the scalability test, where we sam-

ple 104-109 spatial objects from the Asia dataset

in the OpenStreetMap [9]. Specifically, to simulate

the spatial overlaps as in the BJ dataset, we assign

a random silo ID for each point in the dataset and

make each silo have the same number of data points.

Please refer to Appendix F for experiments on geo-

graphically partitioned dataset.

General-Purpose Baselines. As a data federation

system, the evaluation first aims to compare Hu-Fu

with existing general-purpose data federation systems:

the GIS extensions of SMCQL [14] and Conclave [56].

– SMCQL-GIS. It adopts the principles of SMCQL

[14], a garbled circuit (GC) based solution for re-

lational data, to support spatial queries. We imple-

ment it with ObliVM [42], which is used in SMCQL

for GC protocols across two silos (only) [56, 59].

Thus, it is only evaluated over two data silos.

– Conclave-GIS. It adopts the principles of Con-

clave [56], the secret sharing (SS) based solution

for relational data, to support spatial queries. It is

implemented with a different SS based library, MP-

SPDZ [36], rather than Sharemind [18] in the orig-

inal Conclave, since Sharemind is devised for only

three silos [24] and it is a commercial library. In

2 https://share.weiyun.com/z4QfVhVv

contrast, MP-SPDZ is a popular open-source library

that supports more than three silos based on SS.

– SMCQL-GISext & Conclave-GISext are their

variants without assuming an honest broker, and

uses our secure set union to assemble results.

These secure baselines implement federated spatial

queries by exploiting similar queries for relational data

in SMCQL or Conclave. Our extensions follow the strat-

egy of having plaintext spatial queries within each silo’s

database and securely computing the final results. Specif-

ically, for federated range query, these baselines execute

plaintext range query in each silo and collect the par-

tial results by either the honest broker or our secure

set union. For federated range counting, they execute

plaintext range counting and use secure summation to

compute the final result. For federated kNN query, we

regard it as a top-k query with a user-defined func-

tion (UDF). For example, each silo runs plaintext kNN

query to compute k candidate neighbors along with

their distances to the query object. Then, all n silos

securely find the k nearest neighbors among nk can-

didates. For federated distance join/kNN join, we re-

fer to their query plans for join queries and regard

a federated distance/kNN join as multiple federated

range/kNN queries.

Specialized Baselines. Beyond these general-purpose

data federation systems, the evaluation also compares

Hu-Fu with the following specialized baselines.

– Additional Baselines for Asymmetric Queries.

The plaintext baseline Public directly collects local

results from each silo without any secure operation,

and serves as the upper bound of query efficiency.

– Additional Baselines for Symmetric Queries.

We consider two more baselines for symmetric queries:

LFHE [37] and PINED-RQ++ [48]. LFHE [37] is an

industrial solution that utilizes Leveled Fully Ho-

momorphic Encryption (LFHE) and two mutually

untrusted servers to securely answer (exact) kNN

queries over multiple data silos. This solution can be

easily extended to support secure range query and

counting over a spatial data federation. By contrast,

PINED-RQ++ [48] leverages a differentially private

index (e.g., grid index for spatial data) and AES en-

cryption [30] to approximately answer range queries

with small errors. However, this method assumes

that the user has access to data objects outside the

query answer, potentially violating the data privacy

requirement. Nevertheless, we select PINED-RQ++

[48] as a baseline for comparison, since it also uti-

lizes differential privacy for filtering before verifying

each candidate through encryption.

Metrics.We assess the query efficiency by two metrics:
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Table 4: Improvement with DP in federated kNN.

Silo number 2 4 6 8 10

Running time 2.9% 10.3% 19.6% 16.2% 14.0%

Communication 32.6% 31.5% 27.4% 39.4% 47.7%

(1) Running time is the time cost from receiving

the query to returning the query answer to the user.

(2)Communication cost is the total network com-

munication among the user and all data silos.

Implementation.We use PostgreSQL 10.15 with Post-

GIS extension as the default spatial database for all si-

los. To show the support of heterogeneous spatial data

systems by Hu-Fu, we also use MySQL 5.7 [8], Spa-

tiaLite [11], GeoMesa 3.0.0 [27], Simba 1.0 [64], and

SpatialHadoop 2.4.3 [21] as different silos, as will be

explained in Sec. 7.5. They all use spatial indexes (R-

Tree in PostGIS, Simba, SpatialHadoop, and MySQL,

and R*-Tree in SpatiaLite, and Z-Curve in GeoMesa)

to speed up plaintext primitives by up to 2042× (see

Appendix G). Among the compared solutions, LFHE

and PINED-RQ++ are implemented in C++, while the

others are implemented in Java. The reason for using

C++ for LFHE and PINED-RQ++ is due to the lack

of robust and open-source libraries in Java for the en-

cryption methods (e.g., CKKS [12]) they utilize.

7.2 Experiments on Asymmetric Queries

Parameter Setting. In this experiment, we compare

the efficiency of different methods for all five federated

spatial queries on the real dataset BJ. All the query

points are randomly sampled from the dataset. We vary

the number of silos from 2 to 10, and also test the im-

pact of query-specific parameters. We set k to 16 for

federated kNN query and kNN join, and the default

query area of federated range query, range counting

and distance join as 0.001%, and vary them from 4

to 64 and 0.00001% to 0.1% respectively. The range of

these query-specific parameters is aligned with previous

study [64]. When evaluating the query-specific param-

eters, we use 6 silos by default.

Environment. We run this experiment on a cluster of

11 machines. Each machine has 32 Intel(R) Xeon(R)

Gold 5118 2.30GHz processors and 64GB memory with

Ubuntu 18.04 LTS. The network bandwidth between

machines is up to 10 GB/s. Among the 11 machines,

one is as the user and the honest broker for SMCQL-

GIS and Conclave-GIS, and the other 10 are data silos.
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Fig. 6: Performance of federated kNN query.

7.2.1 Performance of Federated kNN Query

Fig. 6a shows the runtime and communication cost of

(asymmetric) federated kNN query. Hu-Fu is 109.6× to

7, 198.8× faster than SMCQL-GIS and Conclave-GIS,

and has 2 to 5 orders of magnitude lower communica-

tion cost. When the number of silos increases from 2

to 10, the runtime and communication cost of Hu-Fu

only increase by up to 2.9× and 13.9×, while those of

Conclave-GIS drastically increase by up to 153.3× and

1, 884.3×. Both metrics of Hu-Fu increase since the se-

cure comparison and set union used in this query grow

linearly with the silo number. Compare with Conclave-

GIS and SMCQL-GIS, the runtime and communication

cost of Conclave-GISext and SMCQL-GISext marginally

increase (less than 20 ms and 200 KB respectively),

which shows that our secure set union can efficiently

assemble query results without an honest broker.

We also vary k from 4 to 64 and plot the running

time and communication cost in Fig. 6b. As k increases

from 4 to 64, the running time and communication cost

of Hu-Fu only increase by 0.1× and 1.1×, while those

of Conclave-GIS increase by 51.3× and 50.7×. The im-

pact of k is less obvious than the silo number on Hu-Fu,

because only the secure set union is linearly dependent

on k. Again, the efficiency of Conclave-GISext is simi-

lar to that of Conclave-GIS. The drastic increase in run-

ning time and communication cost of Conclave-GIS and

Conclave-GISext is expected because it involves many

secure primitives that are time-consuming.

To show the improvement of DP optimization in

kNN queries, we list the percentage of running time

and communication cost reduced by DP in Table 4.

With DP, the running time is reduced by up to 19.6%,

and the communication cost by up to 47.7%. Compared



Hu-Fu: Efficient and Secure Spatial Queries over Data Federation 17

2 4 6 8 10
silo

101

103

105

R
un

ni
ng

 ti
m

e 
(m

s)

Hu-Fu
Public

Conclave-GIS
SMCQL-GIS

Conclave-GISext
SMCQL-GISext

2 4 6 8 10
Silo Number

102

104

106

R
un

ni
ng

 T
im

e(
m

s)

2 4 6 8 10
Silo Number

101

103

105

C
om

m
.(

M
B

/Q
ue

ry
)

(a) Runtime and communication cost of varying silo number

4 8 16 32 64
k

103

105

107

R
un

ni
ng

 T
im

e(
m

s)

4 8 16 32 64
k

101

103

105

C
om

m
.(

M
B

/Q
ue

ry
)

(b) Runtime and communication cost of varying k

Fig. 7: Performance of federated kNN join.

with the improvement, the overhead of injecting the DP

noise is very marginal, which takes 2 µs time cost and

less than 1 KB communication cost when processing

one federated kNN query. Such a notable improvement

is because the complexity of DP noise injection is O(1)

and the summation only requires for transmission of

n integers, while a secure comparison has O(n) time

complexity and O(n2) communication cost.

7.2.2 Performance of Federated kNN Join

Fig. 7a shows the results of (asymmetric) federated

kNN join. Results of Conclave-GIS and Conclave-GISext

with 8-10 silos are omitted since they incur over 6 hours

for a single query. Hu-Fu is the most efficient, which is

up to 360.2× and 15, 814.2× faster than SMCQL-GIS

and Conclave-GIS with 247.8× and 185, 151.0× lower

communication cost. The time and communication cost

of SMCQL-GISext and Conclave-GISext slightly increase

over SMCQL-GIS and Conclave-GIS.

Fig. 7b illustrates the impact of k. As k increases

above 32, Conclave-GIS and Conclave-GISext require

longer than 6 hours to process a federated kNN query.

Thus, we can only provide their partial results (when

k ≤ 16). In contrast, Hu-Fu demonstrates superior ad-

vantages in the efficiency, achieving at least 553× faster

and 27,404× lower communication cost compared to

Conclave-GIS. As k increases from 4 to 64, the running

time and communication cost of Hu-Fu rise by 28% and

48% respectively. The experimental trends for the fed-

erated kNN join closely resemble those observed in the

federated kNN query, since a federated kNN join is de-

composed into multiple federated kNN queries for all

the compared solutions.

2 4 6 8 10
silo

101

103

105

R
un

ni
ng

 ti
m

e 
(m

s)

Hu-Fu
Public

Conclave-GIS
SMCQL-GIS

Conclave-GISext
SMCQL-GISext

2 4 6 8 10
Silo Number

101

102

103

R
un

ni
ng

 T
im

e(
m

s)

2 4 6 8 10
Silo Number

100

101

102

103

C
om

m
.(

K
B

/Q
ue

ry
)

(a) Runtime and communication cost of varying silo number

10-5 10-4 10-3 10-2 10-1

Query Area(%)

101

102

R
un

ni
ng

 T
im

e(
m

s)

10-5 10-4 10-3 10-2 10-1

Query Area(%)

100

102

C
om

m
.(

K
B

/Q
ue

ry
)

(b) Runtime and communication cost of varying query area

Fig. 8: Performance of federated range counting.

7.2.3 Performance of Federated Range Counting

Fig. 8 shows the results of (asymmetric) federated range

counting. This query only returns the counting result

and thus does not need a secure set union to protect

data ownership. Hence, we exclude SMCQL-GISext and

Conclave-GISext since they only differ from SMCQL-

GIS and Conclave-GIS with an extra secure set union,

which is unnecessary in this query. Hu-Fu is up to 15.2×
faster than SMCQL-GIS with a slightly higher commu-

nication cost (within 7 KB). Considering the increasing

network bandwidth, the gap in communication cost is

acceptable. Compared with Conclave-GIS, Hu-Fu is up

to 10.8× faster with 17.9× lower communication cost.

The running time and communication cost of Hu-Fu in-

crease by 0.6× and 13.2× respectively when silo number

increases to 10, mainly due to the secure summation.

We also demonstrate the impact of the query area

on query efficiency in Fig. 8b. As is shown, the running

time of all methods is relatively stable. It is expected

because secure operations are the bottleneck of running

time whereas the larger query area only increases the

running time of plaintext operations.

7.2.4 Performance of Federated Range Query

Fig. 9 illustrates the results of (asymmetric) federated

range query. The efficiency of SMCQL-GIS and Conclave-

GIS is the same as Public (i.e., the non-secure baseline),

because they both rely on an honest broker to securely

collect partial answers in each silo without leaking them

to any others. Under this assumption, all systems can

be reduced to Public, which uses a server (e.g., an hon-

est broker in SMCQL-GIS and a center server in Pub-

lic) to directly collect local range query result from each
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Fig. 9: Performance of federated range query.
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Fig. 10: Performance of federated distance join.

silo. For example, Hu-Fu with an honest broker also has

the same efficiency as Public (see Appendix E).

Under a more general setting without this assump-

tion, Hu-Fu, SMCQL-GISext and Conclave-GISext have

the same efficiency because they all use our secure set

union for results assembling. The usage of secure set

union only leads to a marginal increase in running time

(within 250 ms) and communication cost (lower than

3.1 MB) over Public. Note that the order of increase

in running time and communication cost matches the

complexity analysis for the secure set union in Sec. 5.2,

which grows linearly with the silo number and the size

of data returned. As shown in Fig. 9b, when the query

area expands, all methods have a higher running time

and communication cost, due to the increase of the

number of spatial objects in the final result.

7.2.5 Performance of Federated Distance Join

Fig. 10 presents the performance of (asymmetric) fed-

erated distance join. Note that all the methods treat

federated distance join as multiple independent feder-

ated range queries, where the total number of these

range queries is |R| = 100 in this test. Thus, it is rea-

sonable that the ranking of all the methods is similar

to that in federated range query (see Fig. 9). The result

of federated distance join when varying the query area

shows a similar pattern with that of federated range

query. This is because a federated distance join is de-

composed into multiple federated range queries for all

the compared solutions. The increase of both running

time and communication cost is caused by the increase

of the number of retrieved spatial objects.

7.2.6 Summary of Major Findings

We have observed the following findings in the experi-

ments of asymmetric queries.

– Hu-Fu is up to 15, 814.2× faster than SMCQL-GIS

and Conclave-GIS, with up to 5 orders of magni-

tude lower communication cost. The efficiency gain

of Hu-Fu over the baselines is more notable in fed-

erated kNN query, kNN join, and range counting,

which is at least 2.4× faster in time cost and 4.9×
lower in communication cost than Conclave-GIS.

– SMCQL-GIS and Conclave-GIS are more efficient

in federated range query and distance join, because

these baselines are reduced to Public and need no

secure operation with the honest broker. Note that

for federated range query and distance join, Hu-Fu

achieves the same efficiency as SMCQL-GISext and

Conclave-GISext, the variants of SMCQL-GIS and

Conclave-GIS without an honest broker.

– The experimental trends of federated kNN join and

distance join are similar to those of federated kNN

query and range query for all compared solutions.

This is reasonable since a federated kNN join or dis-

tance join is decomposed into a series of federated

kNN queries or range queries.

7.3 Experiments on Symmetric Queries

Parameter Setting. The parameter configurations for

the query workloads are identical to those introduced

in Section 7.2. Beyond these parameters, the privacy

budget ϵ also affects the query performance of Hu-Fu.

In general, a smaller ϵ (i.e., stricter privacy preserva-

tion) leads to lower efficiency than a larger ϵ. Please

refer to Appendix I for the evaluation of varying ϵ in
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Fig. 11: Performance of federated range counting.

Hu-Fu. We have omitted reporting the results of the fed-

erated kNN join, since the query efficiency of Hu-Fu’s

federated kNN join can be inferred from the results of

its federated kNN query, as evidenced by previous ex-

periments. We also omit the results of SMCQL-GIS,

SMCQL-GISext, and Conclave-GISext, since their re-

sults are similar to Conclave-GIS when answering sym-

metric queries. Additional baselines, LFHE [37] and

PINED-RQ++ [48], are involved in this experiment,

where PINED-RQ++ is limited to federated range query

and distance join.

Environment. Due to the expired funding support,

the hardware environment for testing asymmetric queries

is no longer accessible, so all solutions to symmetric

queries are tested in a new hardware environment. Specif-

ically, this new environment is composed of 5 cloud

servers. Each server has Intel Xeon(R) Platinum 8361HC

CPU 2.60GHZ processors and 32GBmemory with Ubuntu

18.04 LTS OS. The network bandwidth between servers

is up to 1.5 GB/s and may fluctuate slightly at differ-

ent times. Four of the five servers act as data silos.

Since this experiment requires up to 10 data silos, each

of these four servers can host up to 3 data silos using

different processes. The remaining server is only used

as the user’s client, facilitating parallel data transmis-

sion between data silos for compare solutions. For each

query type, we generate 50 queries, repeat 10 times for

each query, and report the average results.

7.3.1 Performance of Federated Range Counting

Fig. 11 shows the results of (symmetric) federated range

counting. Hu-Fu always outperforms the compared base-

lines in both running time and communication cost.

Hu-Fu takes up to 98.9× shorter runtime and up to

410.7× lower communication cost than Conclave-GIS.
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Fig. 12: Performance of federated range query.

Hu-Fu is also up to 56.6× faster with up to 2.7× lower

communication cost compared to LFHE.

We can also observe that as the silo number in-

creases from 2 to 10, the running time and commu-

nication cost of all compared algorithms tend to in-

crease. This pattern is reasonable, as more data silos

require more secure computations among them. When

the query area expands from small to large, the runtime

and communication overhead of Hu-Fu increase slightly.

This trend in Hu-Fu is attributable to the increase of

candidates for secure distance comparisons.

7.3.2 Performance of Federated Range Query

Fig. 12 illustrates the performance of (symmetric) fed-

erated range queries. The results of LFHE are not re-

ported because the running time is over 1 hour and

the memory consumption exceeds the server configura-

tion (32 GB). In fact, LFHE can only handle a small-

scale dataset. For example, LFHE already takes 13 min-

utes and 3 MB of communication cost when the data

size is 104. Although PINED-RQ++ is more efficient

than Hu-Fu and Conclave-GIS, it suffers from two ma-

jor drawbacks: (1) it leaks locations of the candidate

data objects that are not part of the true answer to the

query user and (2) it is only capable of retrieving ap-

proximation results. For example, the recall of PINED-

RQ++ is 72.8%-96.8% when varying the silo number

and 72.2%-92.3% when varying the query area.

Aside from PINED-RQ++, Hu-Fu achieves the best

performance in the efficiency and security. It takes at

least 42.7× shorter time with at least 204.2× lower

communication cost compared to Conclave-GIS. Fig. 12

exhibits a similar trend in the efficiency variation of

Hu-Fu when comparing to the results in Fig. 11 (for

federated range counting). This similarity arises be-

cause the query decomposition plans for symmetric fed-
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Fig. 13: Performance of federated distance join.

erated range queries and counting are quite identical.

The main difference lies in the additional secure set

union operator required for federated range queries.

7.3.3 Performance of Federated Distance Join

Fig. 13 presents the performance of (symmetric) fed-

erated distance joins. Here, a symmetric federated dis-

tance join employs the same strategy as the asymmet-

ric federated distance join, treating the join operation

as multiple independent federated range queries, with

|R| = 100. Therefore, the relative performance of all

methods here is similar to that of symmetric feder-

ated range query (see Fig. 12). Compared with PINED-

RQ++, although Hu-Fu incurs higher communication

cost, it takes nearly the same amount of running time

and offers a more secure solution that produces the ex-
act query answer. Compared to Conclave-GIS, Hu-Fu

is up to 90.7× faster and up to 332.5× lower in commu-

nication cost. By contrast, LFHE is the least efficient

method and cannot respond to a join query within 6

hours, so we cannot report its result in Fig. 13.

7.3.4 Performance of Federated kNN Query

Fig. 14 shows the running time and communication cost

of (symmetric) federated kNN queries. We cannot re-

port some results of LFHE and Conclave-GIS because

they cannot terminate within 1 hour to process a sin-

gle query or the maximum memory usage is beyond

the limitation (32 GB) of the cloud server. Addition-

ally, PINED-RQ++ is unable to handle KNN queries,

so it is excluded in this evaluation. According to the ex-

perimental results, Hu-Fu is the most efficient solution

to federated kNN queries. For instance, Hu-Fu is up to

551.8× faster than Conclave-GIS and 56.2× faster than
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Fig. 14: Performance of federated kNN query.

Table 5: Improvement with upper bound in Lemma 1

k 4 8 16 32 64
Running time 6.3× 4.2× 4.0× 3.6× 3.4×
Communication 5.0× 3.9× 3.6× 3.4× 3.1×

LFHE, with up to 380.0× and 3.0× lower communica-

tion overhead than them, respectively. Similar to previ-

ous results, the time cost of Hu-Fu gradually increases

as the silo number increases. By contrast, the efficiency

of Hu-Fu does not notably change as k increases.

We also evaluate the improvement of using the up-

per bound in Lemma 1. As shown in Table 5, this opti-

mization improves the running time by up to 6.3× and

reduces the communication cost by up to 5.0×.

7.3.5 Summary of Major Findings

The major findings in the experiments of symmetric

queries are summarized as follows.

– Hu-Fu is at least 42.7× faster than Conclave-GIS,

with at least 204.2× lower communication overhead.

Compared to LFHE, Hu-Fu is up to 56.6× faster

with up to 3.0× lower communication overhead.

– Although PINED-RQ++ is more efficient than the

others, it suffers from three significant drawbacks:

(1) violations on the data privacy, (2) inability to

provide exact answers, and (3) limited support to

only federated range queries. By contrast, our Hu-Fu

can address all these drawbacks effectively.

– When comparing with the evaluations of asymmet-

ric queries in Sec. 7.2, it is evident that running time

and communication overhead both escalate when

Hu-Fu or Conclave-GIS processes symmetric queries.

Consequently, symmetric queries pose a greater chal-

lenge than asymmetric queries, primarily due to the

additional concern for query privacy.
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(b) Scalability test of federated kNN join
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(c) Scalability test of federated range counting
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(d) Scalability test of federated range query
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(e) Scalability test of federated distance join

Fig. 15: Scalability test on asymmetric queries.

Remark. To assess the impact of query privacy on

time efficiency, we can compare the running time of

asymmetric and symmetric queries in the new hard-

ware environment. Our evaluation shows that the base-

line Conclave-GIS takes 4, 054× longer to protect query

privacy in federated range queries, while our solution

Hu-Fu reduces this gap to 59×. Please see Appendix H

for more detailed results.

7.4 Experiments on Scalability Tests

In the following, we report the results of scalability

tests on asymmetric queries and symmetric queries in

Sec. 7.4.1 and Sec. 7.4.2, respectively.

7.4.1 Scalability Test on Asymmetric Queries

Parameter Setting. In the following, we scale the to-

tal number of spatial objects from 104 to 109 over OSM

dataset to assess the scalability of Hu-Fu. Other param-

eters are set to the default values as in Sec. 7.2. For

example, the number of silos is 6, k = 16 for federated

kNN query and kNN join, and the query area for fed-

erated range query, range counting and distance join is

0.001%. Since SMCQL-GIS and SMCQL-GISext only

support two silos, they are excluded in the scalability

test. The running time and communication cost on all

five spatial queries are shown in Fig. 15.

Result and Analysis. For a fixed data size, we observe

that Hu-Fu is notably more efficient than Conclave-GIS

and Conclave-GISext on federated kNN query, kNN

join and range counting (see Fig. 15a-15c). For feder-

ated range query and distance join, Conclave-GIS be-

haves the same as Public due to the honest broker, while

Hu-Fu achieves the same efficiency as Conclave-GISext,

which requires no honest broker.

We are more interested in the efficiency with the

increase of data size. We observe that the efficiency of

federated kNN query, kNN join and range counting is

insensitive to the increase of the data size. This is be-

cause the increase of data size mainly affects the time

cost of plaintext primitives, which only accounts for a

small portion (due to efficient indexes in each silo) in

the running time. In contrast, the running time and

communication cost of federated range query and dis-

tance join notably increase with the increase of the data

size because more spatial objects are retrieved in each

silo, which leads to a higher cost for both plaintext

range query and secure set union.

Takeaways. Hu-Fu trivially scales with data size for

federated kNN query, kNN join and range counting,

because these queries are relatively insensitive to data

size. Both metrics of Hu-Fu increase with the data size

for federated range query and distance join, yet Hu-Fu

is still reasonably efficient for them on large-scale data.

For example, in Hu-Fu, an asymmetric federated range

query takes 250 ms running time and 2.6 MB commu-

nication cost on the data size of 109.

7.4.2 Scalability Test on Symmetric Queries

Parameter Setting.As for symmetric queries, we eval-

uate the scalability of Hu-Fu by scaling the OSM dataset,

gradually increasing the total number of spatial objects

from 104 to 108. The baseline selection here is identical

to that in Sec. 7.3. Although we omit the results of spa-

tial joins, the scalability of the federated distance join

and kNN join can be inferred from the scalability of the
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(c) Scalability test of federated range counting

Fig. 16: Scalability test on symmetric queries.

federated range query and kNN query, as demonstrated

in the previous experiments in Sec. 7.2 and Sec. 7.3.

Result and Analysis. As shown in Fig. 16, for any

data size, Hu-Fu significantly outperforms Conclave-

GIS and LFHE in both running time and communi-

cation overhead for all the tested queries. For exam-

ple, in Fig. 16a, Hu-Fu is at least 54.8× and 1375.7×
faster than Conclave-GIS and LFHE, respectively. Nei-

ther Conclave-GIS nor LFHE can efficiently process

these queries over large-scale datasets (e.g., when the

data size is over 106). After running for more than 6

hours, neither of them have terminated, so we are un-

able to obtain their full results. Moreover, when pro-

cessing symmetric federated range queries, both Conclave-

GIS and LFHE take at least 2 orders of magnitude

higher communication cost than Hu-Fu.

By contrast, PINED-RQ++ is slightly faster than

Hu-Fu (no more than 2.8×) and has lower communi-

cation overhead in Fig. 16b. However, since PINED-

RQ++ may violate the data privacy during the query

processing and can only obtain approximate results, the

performance gap is acceptable. For instance, the recall

of PINED-RQ++ can be lower than 80%, and such a

low recall may lead to an unsatisfying service experi-

ence in our motivation scenarios like contact tracing,

where accurate results are crucial.

Takeaways. Unlike the scalability tests for asymmet-

ric queries, the efficiency of symmetric federated range

query, range counting, and kNN query is highly sensi-

tive to the data size. Specifically, when processing asym-

metric queries, all compared solutions leverage plain-
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Fig. 17: Running time breakdown.

text operators to filter most of the data objects. For ex-

ample, a plaintext range query can ensure no false pos-

itive candidate for asymmetric federated range queries,

while a plaintext kNN query results in only k false pos-

itive candidates for asymmetric federated kNN queries.

Consequently, the number of false positive candidates

is (almost) independent of data size.

However, when processing symmetric queries that

require additional protections for the query location,

although plaintext operators are still used to reduce

the candidate size, no solution can ensure a constant

number of false positive candidates. Even in our Hu-Fu,

the number of candidate objects awaiting secure veri-

fication after filtering by plaintext operators is propor-

tional to the data size. This contributes to the increased

time and communication overhead required to process

symmetric queries compared to asymmetric ones.

7.5 Experiments on Heterogeneous Data Silos

This experiment aims to demonstrate the feasibility

of Hu-Fu on heterogeneous spatial databases. Specifi-

cally, we use 6 different databases for each silo on the

BJ dataset: PostGIS [10], MySQL [8], SpatiaLite [11],

Simba [64], GeoMesa [27], and SpatialHadoop [21]. Other

parameters are set as the default values as in Sec. 7.2.

Fig. 17 plots the running time breakdown i.e., plain-

text vs. secure primitives for radius-unknown (i.e., asym-

metric federated kNN query) and radius-known (i.e.,

asymmetric federated range counting) queries. We make

the following observations.

– Given homogeneous underlying spatial databases (i.e.,

PostGIS), our Hu-Fu significantly reduces the run-

ning time of secure primitives e.g., 3, 935.4× com-

pared with Conclave-GIS for federated kNN query.

Such acceleration in secure primitives is the primary

contributor to Hu-Fu’s gain in running time.

– Heterogeneous underlying spatial databases affect

the running time. Specifically, the running time of

plaintext primitives is limited by the slowest spatial

database, which may increase the overall query pro-

cessing time. In this experiment, the running time
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of plaintext primitives notably increases from 4 ms

to 579 ms when replacing PostGIS with heteroge-

neous databases (where SpatiaLite and MySQL are

the slowest). It takes even longer time than the se-

cure primitives in Hu-Fu. The running time of se-

cure primitives also marginally increases, due to idle

waiting for the local results from the slowest silo.

For other symmetric federated spatial queries (i.e.,

range query, distance join, and kNN join), please refer

to Appendix D for their detailed results.

Takeaways. Hu-Fu functions with data silos running

heterogeneous databases. Although Hu-Fu dramatically

speeds up the secure primitives in a federated spatial

query, the efficiency of plaintext primitives in each silo’s

databases may affect the overall running time. Particu-

larly, the time cost of plaintext primitives can be limited

by the slowest database in the federation. To unleash

the full potential of Hu-Fu, fast spatial databases in

each silo are recommended.

8 Related Work

Distributed spatial database systems are popular solu-

tions to query processing on big spatial data. These sys-

tems improve query processing via data partition and

indexing techniques (e.g., R-tree [44]) in Hadoop (e.g.,

SpatialHadoop [21]) or Spark (e.g., Simba [64]). How-

ever, the data partition techniques are inapplicable in

a data federation since the entire data is held by the

autonomous data silos. Moreover, security is not the

major concern in these systems.

Past studies of secure spatial query processing mainly

focus on encrypted databases [32], where data is en-

crypted and stored in a third-party platform (e.g., a

cloud platform) to process queries securely. For exam-

ple, existing work [22, 37, 62, 65] study the secure kNN

query on encrypted databases and prior studies [48, 53,

58, 63] focus on securely processing range queries. In

these studies, a data owner outsources its data and

hence the sensitive data is encrypted before being up-

loaded to a third party. Intuitively, homomorphic en-

cryption techniques (e.g., Paillier and SEAL [12]) are

used to guarantee security. Different from this setting,

in a data federation, data silos autonomously manage

their own data and hence do not need to encrypt their

own data and upload it to a third party. Besides, our ex-

periments demonstrate that extending these solutions

[37, 48] to the scenario of the data federation can be

either insecure or inefficient.

Rather than the general distributed databases or

outsourced databases, our work is more aligned with

the problem settings of federated databases and data

federation, where the entire dataset is held in multi-

ple autonomous databases. Early research on federated

databases focused on finding solutions to access data

in autonomous databases [45], while recent studies on

federated databases support diverse data types, e.g.,

on federated graph databases [57]. Note that the au-

tonomous database here means that data can be only

managed by its held silo.

Data federation is an emerging concept developed

from federated databases. It shares a similar architec-

ture with federated databases. Yet, the major differ-

ence is that a data federation imposes certain secure

requirements during query processing, while a federated

database does not. For example, SMCQL [14] is proba-

bly the first secure query processing solution over a data

federation and Conclave [56] is the state-of-the-art so-

lution. More recent studies explored efficient solutions

to join queries [33, 40, 59] in a data federation. All these

studies adopt SMC techniques to achieve secure query

processing for relational data with exact results.

Exact federated queries have been explored for var-

ious data types. Our preliminary work [51] and its ac-

companying demonstration system [46] focus on exact

federated queries over spatial data federation. Zhang et

al. [70] propose an efficient method that leverages the

Intel SGX to securely perform similarity searches over

a data federation under metric spaces. For example, the

metric distance can be the graph edit distance for graph

data or the edit distance for sequence data.

Existing studies also investigate approximate query

processing over a data federation. SAQE [16], Cryptϵ

[20], and Shrinkwrap [15] use differential privacy to

trade off between accuracy and efficiency in process-

ing relational queries. Others study approximate kNN

queries [69] and range counting [38, 49] over a spatial

data federation. In contrast, we focus on exact query

processing, since accurate results can be crucial for spa-

tial applications like contact tracing [26].

In short, our work is inspired by the emerging trend

of secure query processing over a data federation, yet fo-

cuses on spatial queries with exact results. Our Hu-Fu

significantly improves the efficiency of federated spa-

tial queries over the extensions of SMCQL [14] and

Conclave [56], the state-of-the-arts for relational data.

Moreover, unlike most existing studies that solely fo-

cus on protecting data privacy under this emerging sce-

nario, Hu-Fu also considers the application need for pre-

serving the query privacy. For example, in applications

like contact tracing, spatial queries often contain sensi-

tive location data of patients, thereby necessitating the

protection on the query privacy.
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9 Conclusion

In this paper, we propose the first system Hu-Fu for

efficient and secure spatial queries over a data federa-

tion. Existing solutions are inefficient to process such

queries due to excessive secure distance operations and

the usage of general-purpose secure multi-party com-

putation (SMC) libraries for implementing secure op-

erators. To overcome the inefficiency, we design a novel

query rewriter to decompose the spatial queries into

as many plaintext operators and as few secure oper-

ators as possible. In particular, our secure operators

have dedicated implementations faster than general-

purpose SMC libraries. Moreover, Hu-Fu supports het-

erogeneous spatial databases (e.g., PostGIS, Simba, Ge-

oMesa, and SpatialHadoop), as well as query input in

native SQL. Finally, extensive experiments show that

Hu-Fu is up to 4 orders of magnitude faster and takes 5

orders of magnitude lower communication cost than the

state-of-the-arts. In the future study, we plan to sup-

port more spatial queries, e.g., spatial keyword search.
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A Application Scenarios of Query Privacy

Due to legal regulations (e.g., GDPR [47]), protecting data
privacy is now common in real-life scenarios, especially when
spatial location implies the travel patterns or trajectories of
a user. Query privacy is equally important has numerous ap-
plication scenarios. Here are some detailed examples:

1. Navigation: Apps like Google Maps [31] and Waze [61]
frequently query user locations to provide directions and
traffic updates. Revealing exact locations can expose sen-
sitive information about users’ daily routines and per-
sonal lives.

2. Social Networking: Platforms like Facebook [25] and
Instagram [34] allow users to check in at various loca-
tions. Protecting the privacy of these check-ins is crucial
to prevent stalking and harassment.

3. Location-based Advertising: This service targets users
based on their current or recent locations. Protecting user
privacy ensures that advertisers do not have access to sen-
sitive location data, which could be misused for targeted
marketing.

4. POI Search: Applications like Yelp [67] and TripAdvisor
[54] allow users to search for nearby points of interest
like restaurants, cafes, or hotels. Ensuring the privacy of
sensitive location data will prevent potential tracking and
profiling of users’ movement patterns by the platform.

Please refer to [17, 29] for more application scenarios of
query privacy.

B Security Analysis

The security analysis of our query rewriter is based on the
composition lemma in [30] (see its Sec. 7.3.1). The lemma
states that given a secure protocol πg|f that can securely
compute g based on a plaintext query f and a secure protocol
πf for operation f , the operation g can be securely computed
by executing protocol πg|f but substitutes every plaintext
query f with an execution of πf .

We prove the security of query rewriter for asymmetric
federated queries (Appendix B.1) and symmetric federated
queries (Appendix B.2) separately. Finally, we present a case
study on attacking asymmetric federated range counting in
Appendix B.3.

B.1 Security Analysis of Asymmetric Federated

Queries

In the following, we conduct a thorough analysis of the se-
curity of asymmetric federated queries in Hu-Fu, categoriz-
ing them into two distinct kinds: radius-known queries and
radius-unknown queries.

– Security of Radius-Known Queries. Federated range
query, range counting and distance join belong to radius-
known queries. For federated range query and distance
join, the secure protocol πg|f is the secure set union
(Def. 5) based on the query results of one or multiple
plaintext range queries over the federation. The protocol
πf corresponds to the plaintext range query (Def. 1). The
protocol πf is secure, since the plaintext range query only
occurs in each silo, which will not leak any information to
other silos. From the composition lemma, federated range

query and distance join are secure against semi-honest ad-
versaries. Federated range counting is also secure based
on a similar proof (i.e., replacing πg|f with the secure
summation in Def. 3 and πf with the plaintext range
counting in Def. 1).

– Security of Radius-Unknown Queries. The feder-
ated kNN query and kNN join belong to radius-unknown
queries. For federated kNN query (Alg. 1), let protocol
πf be the secure count comparison between k and the
local counts. The security of πf can be proved in the
same way as before. Denote protocol πg|f as Alg. 1 based
on the plaintext count comparison query. We then show
protocol πg|f is also secure. Assuming semi-honest adver-
saries, each silo can simulate its view of the execution of
the protocol. Specifically, knowing the range [l, u] used at
the beginning of a round, each silo can compute r used
in that round. If r is the same as the final radius, it con-
cludes that the protocol must have ended in this round.
Otherwise, it simply updates the range to that side of r
which contains the final radius. Along with the knowledge
of the initial range, this shows that each silo can simulate
the execution of the protocol, which means the protocol
πg|f is secure. Thus, our Alg. 1 is secure against semi-
honest adversaries based on the composition lemma. The
security of federated kNN join can be proved similarly.

B.2 Security Analysis of Symmetric Federated Queries

Similar to the previous security analysis, we analyze the se-
curity of symmetric federated queries in Hu-Fu from two cat-
egories: radius-known queries and radius-unknown queries.

– Security of Radius-Known Queries. For federated
range query, the secure protocol πg|f employs the se-
cure distance comparison (Def. 6), which relies on the
fully homomorphic encryption (FHE) scheme (i.e., the
BGV scheme [12]), and the secure set union (Def. 5).
The protocol πf corresponds to the plaintext range query
(Def. 1). It is secure because the plaintext range query is
executed within each silo individually, thereby prevent-
ing any information leakage to other silos. According to
the composition lemma, the query rewriter for symmetric
federated range queries ensures data privacy. Regarding
the additional privacy requirement of query privacy, the
secure protocol, secure location perturbation (Def. 7), is
based on the BPL mechanism in [60]. This mechanism
has been proven to satisfy (ϵ, δ)-Geo-Indistinguishability
(Geo-I) [13], a widely-adopted privacy notion for preserv-
ing location privacy. Thus, the query privacy is due to
the protection of query location with secure location per-
turbation. As for federated distance join, the data pri-
vacy and query privacy can be guaranteed, since a fed-
erated distance join is decomposed into a series of fed-
erated range queries, and the security of each federated
range query has been proven. The security of federated
range counting shares similarities with that of federated
range query, primarily due to their near-identical decom-
position plans (see Table 3). However, a key difference
lies in the nature of their query answers. While federated
range query requires a secure set union to collect spatial
objects falling within the specified range, federated range
counting simply returns an integer count as its output.
This distinction underscores the minimal exposure of in-
formation in federated range counting, further reinforcing
its security.
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Table 6: A case study on hacking (asymmetric) feder-

ated range counting in Hu-Fu.

Colluded
silos

Attack
success rate

Running
time

1 0 No result for 2 months
2 0 No result for 2 months
3 0 No result for 2 months

– Security of Radius-Unknown Queries. To prove the
security of radius-unknown queries, we only need to show
the security of federated kNN query, since a federated
kNN join is decomposed into multiple independent fed-
erated kNN queries by Hu-Fu. Similar to the decomposi-
tion plan for asymmetric federated kNN query, the query
rewriter for symmetric federated kNN query also utilizes
a binary-search procedure. The key difference is that the
initial upper bound is determined by plaintext kNN queries
and secure location perturbation. Thus, for this step, the
secure protocol πg|f is due to the privacy guarantee of
(ϵ, δ)-Geo-Indistinguishability (Geo-I) [13]. The security
analysis for the other steps is similar to that for asym-
metric radius-unknown queries.

B.3 Case Study on Semi-Honest Attack

Case Study. We have also conducted a case study to show
how Hu-Fu defenses against the semi-honest adversaries when
processing asymmetric federated range counting.

– Experimental Setup. The case study is based on the BJ
dataset with 6 silos (i.e., our default setting) and we vary
the number m of colluded adversaries (i.e., silos) from 1
to 3. Then, when processing asymmetric federated range
counting, the attack will occur at the only secure operator
(i.e., secure summation [23]). To attack the secure sum-
mation, we use the method introduced in [23]. In general,
a secure operator successfully defenses against the attack,
if adversaries cannot get any feasible result after a long
time (e.g., two months in our experiment). Furthermore,
the other experiment parameters are the same as those in
Sec. 7.2.

– Experimental Result. As shown in Table 6, even when
50% of the silos collude, they cannot infer any feasible
result even after two months’ cracking. Note that it is
commonly assumed in existing work that the portion of
colluded adversaries is less than 50%. Based on the com-
putational security [28, 30, 41], this result proves Hu-Fu
is hard to attack.

C Handling Ties in Symmetric Federated kNN

Query

We provide a solution for handling ties in symmetric federated
kNN query and conduct an experimental comparison. Main
Idea. To break our assumption and handle the special case
of ties, we need to address two question: (1) how to identify
such cases and (2) how to retrieve exactly k nearest neighbors,
using the following ideas:

Fig. 18: Illustration of the special case of symmetric

federated kNN query (k = 6).

(1) Identify such cases. For any searching radius r during
the binary-search, whenever the total number of spatial
objects closer to the query object q than r is equal to k
(i.e., the result of secure count comparison is sign = 0),
we can find exactly k nearest neighbors (i.e., there are no
other objects whose distances to q are also the kth nearest
distances). When the binary-search terminates and sign
is always non-zero, we will encounter the mentioned case
(we call it “ties” for brevity).

(2) Retrieve exactly k nearest neighbors. Under this
case, we will obtain the final lower bound l and upper
bound u of the searching radius for kth nearest neighbor.
Since the binary-search has been terminated, we can de-
rive that u−l must be smaller than the distance precision
ϵ0. Now, we first use the circular range circle(q, l) to lo-
cate all spatial objects that are strictly inside the circle
curve (i.e., by a symmetric federated range query), and
denote the total count as kl. Notice that we can tem-
porarily cache the partial answers in each data silo at
this step. Next, we only need to randomly pick k − kl
spatial objects from those objects on the circle curves.
To achieve this goal, we sequentially request such spatial
objects from every data silo, and set a limitation on how
many spatial objects are indeed required. Lastly, a secure
set union operator is used to collect the k nearest neigh-
bors, since the partial answer has been cached in each
data silo.

Alg. 4 illustrates the detailed procedure of using the main
idea to process the cases of ties. Specifically, lines 3-9 repre-
sent the procedure of binary-search. In line 10, when sign
equals 0 in some iteration of the binary search, we know the
current searching radius r is already enough to retrieve the
exact k nearest neighbors. A symmetric federated range query
can drive the query answer. By contrast, in line 12, sign has
never become 0, then we know we are facing the case of ties
now. To handle this case, line 14 computes how many data ob-
jects are strictly inside the circle curve, denoted by kl. Thus,
we only need to pick k − kl from those tied objects on the
circle curve. To do so, lines 16-20 sequentially request certain
objects from each data silo, and limit the number of retrieved
object no larger than remain (since we do not need more).
To avoid data objects are duplicate statistics, lines 14 and 17
will cache the (partial) answer locally at each silo. Finally,
line 20 collects the query answer from all data silos.

To ease of understanding, Example 6 is used to further
illustrate the main idea.

Example 6 Fig. 18 illustrates an instance as you mentioned,
where k is 6 and the distance precision ϵ0 is set to 1. Suppose
the final upper bound u is 10, and the final lower bound l
is 9.5. When using the upper bound u of 10 as the radius,
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the number of points is 9, which exceeds k. When using the
lower bound l of 9.5 as the radius, the number of points is
3, which is fewer than k. Since the difference between the
bounds, u− l = 0.5, is less than the distance precision ϵ0 = 1,
the binary search has been terminated and we can identify
the case of ties. As shown in Fig. 18, this case introduces a
challenge in handling boundary points to ensure that exactly
k spatial objects are retrieved as the k nearest neighbors. To
address this issue, we use the following strategy to manage
these boundary spatial objects.

(1) We perform a symmetric federated range query with the
query object q (marked in red color in Fig. 18) and the
circle radius l = 9.5. The query answer (i.e., the three ob-
jects within the inner circle) will be cached individually
within each data silo. Besides, these data silos collabora-
tively and securely compute the total count kl = 3.

(2) Now, it is still 3 objects short of the required k = 6 ob-
jects. Moreover, we do not know the exact number of ties
in each data silo, but need to retrieve exactly 3 additional
objects from tied ones. Thus, we need to sequentially re-
quest up to 3 points from each silo. Specifically, starting
from data silo #1, we perform a symmetric federated
range query with the query object q and the circle ra-
dius u = 10 in data silo #1, and limit the number of
(uncached) query answer to 3. Although there are three
objects within the query area, one of them has already
been cached before, meaning data silo #1 can only pro-
vide two more answers as the k nearest neighbors. After
this step, we need to request one more point from data
silos #2 and #3. Similarly, we perform a symmetric fed-
erated range query with the query object q and the circle
radius u = 10 in data silo #2, and limit the number
of (uncached) query answer as 1. In data silo #2, three
objects are within the query range, but one has been
cached. Then, data silo #2 can randomly pick one from
the two uncached points as the cached query answer. At
this point, we have obtained exactly 6 spatial objects as
the query answer, thus eliminating the need to request
any additional (uncached) objects from data silo #3.

(3) Lastly, a secure set union is performed to collect all the
cached spatial objects from the data silos, resulting in a
final output that contains exactly the 6 nearest neighbors.

Experimental Setup. Since we have not found such
cases in our datasets (OSM and BJ), we generate a new syn-
thetic dataset to conduct this experiment. In the new syn-
thetic dataset, there are six data silos and each data silo has
10,000 spatial objects. We also fix k as 16 (i.e., our default
setting) and vary the proportion (denoted by α) of spatial
objects strictly inside circle curve 25%, 50%, 75%, and 100%,
respectively. We also ensure that at least 16 spatial objects
happen to be on the circle curve (i.e., they are “ties”). In
other words, when α = 25%, (1 − 25%) · k = 12 spatial ob-
jects in the query answer are on the circle curve. Similarly,
when α = 100%, no spatial object in the query answer is on
the circle curve.

Experimental Result. Fig. 19 shows the experimental
result. We can observe that our solution Hu-Fu is still more
efficient than the other baselines. Additionally, we also eval-
uate the total cost of our solution to the above two technical
issues (i.e., identifying the case of ties and retrieving exactly
k nearest neighbors). The total time cost of these two steps
remains within 400ms, and the communication cost stays un-
der 400KB, accounting for 4.4% of the total query time and
0.17% of the total communication cost.

Algorithm 4: Symmetric federated kNN query

Input: federation F , query object q, integer k
Output: the (exact) query answer ans

1 [l, u]← [0, U ], where U is the tight upper bound;
2 q′ ← secure location perturbation GeoI(q);
3 while u− l ≥ ϵ0 do
4 r ← (l + u)/2, R← circle(q, r);
5 vi ← symmetric federated range counting in F

with circular range R;
6 sign← secure count comparison CMP({vi}, k);
7 if sign < 0 then l← r;
8 else if sign > 0 then u← r;
9 else break;

10 if sign = 0 then
11 ans← symmetric federated range query in F

with circular range circle(q, r);

12 else // identify cases of ties & retrieve exact kNN
13 Rl ← circle(q, l), Rr ← circle(q, r);
14 kl ← symmetric federated range counting in F

with circular range Rl and cache all the spatial
objects that are inside Rl locally at each silo;

// need to retrieve exactly remain objects

15 remain← k − kl;
16 foreach silo Fi ∈ F do // perform in sequential
17 ki

r ← symmetric federated range counting in
Fi with circular range Rr over uncached
spatial objects at silo Fi, limit the query
answer to ≤ remain, and cache the query
answer locally at silo Fi;

18 remain← remain− ki
r;

19 if remain = 0 then break;

20 ans ← secure set union SUN(S1, · · · , Sn) over all
cached spatial objects within each data silo;

21 return ans;
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Fig. 19: Performance of symmetric federated kNN query

in the synthetic dataset for handling ties.

D Additional Experiments on Heterogeneous

Data Silos

Fig. 20 shows the results of asymmetric federated range query,
distance join, and kNN join in the experiment of heteroge-
neous silos. We can first observe that our Hu-Fu can sup-
port all six spatial database systems, including PostGIS [10],
MySQL [8], SpatiaLite [11], Simba [64], GeoMesa [27], and
SpatialHadoop [21]. In addition, for all federated spatial queries
in Fig. 20, we observe the running time of Hu-Fu becomes
longer, compared with the results of homogeneous silos (i.e.,
PostGIS in this test). This is because the time cost of Hu-Fu’s
plaintext primitives (i.e., plaintext range query) increases due
to the slowest spatial database system. We can also observe
that the experimental patterns of federated distance join and
federated kNN join are similar to those of federated range
query and federated kNN query. This is because a federated
distance/kNN join is decomposed into a series of federated
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Fig. 20: Running time breakdown.

range/kNN query. Besides, we also recommend that all si-
los can use more efficient spatial database systems to further
speed up the federated spatial queries.

This observation also holds for processing symmetric fed-
erated spatial queries, since the query processing procedure
also involves plaintext primitives such as the plaintext range
query and kNN query.

E Experiment on Hu-Fu with an Honest Broker

In the following, we conduct an experiment to demonstrate
the performance of Hu-Fu with an honest broker (denoted by
“Hu-Fu-HB”).
Experimental Setup. This experiment has tested all asym-
metric federated spatial queries on the real-world dataset BJ.
We compare Hu-Fu-HB with SMCQL-GIS/Conclave-GIS in
query processing efficiency measured in running time and
communication overhead. Besides, the other experiment set-
tings are the same as those in Sec. 7.2.
Experimental Result. Fig. 21 and Fig. 22 present the ex-
perimental results of Hu-Fu-HB and SMCQL-GIS/Conclave-
GIS in terms of running time and communication cost. First,
We can observe that Hu-Fu-HB performs the same as SMCQL-
GIS and Conclave-GIS on asymmetric federated range query
and distance join. This is because all the compared algorithms
(including ours) are simplified to Public due to the honest
broker who collects the partial results (i.e., sensitive data) of
plaintext range query in each silo and is assumed to never
reveal them to anyone else. Second, as for federated range
counting, kNN query and kNN join, Hu-Fu-HB still outper-
forms SMCQL-GIS and Conclave-GIS with up to 4 orders of
magnitudes faster in running time and 5 orders of magnitudes
lower in communication cost. This is because our query writer
is more effective to process queries on large-scale spatial data.
Summary. The experimental results demonstrate that com-
pared to SMCQL-GIS and Conclave-GIS, Hu-Fu-HB exhibits
similar efficiency in performing asymmetric federated range
queries and distance joins. Additionally, Hu-Fu-HB achieves
better efficiency in asymmetric federated range counting, kNN
queries, and kNN joins. Although this experiment primarily
focuses on asymmetric federated spatial queries, the observed
patterns also apply to symmetric federated spatial queries.
Specifically, the efficiency of symmetric federated range queries,
distance joins, kNN queries, and kNN joins can be improved
when an honest broker is present and a secure set union can
be avoided. However, in contrast to these operations, symmet-
ric federated range counting is not affected by the presence
of an honest broker, as it does not involve a secure set union
operator in its decomposition plan (as shown in Table 3).
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Fig. 21: Hu-Fu with an honest broker varying the silo

number.

F Experiment on Geographically Partitioned

Dataset

To explore the performance of Hu-Fu in the dataset where
each silo corresponds to a single country, we have conducted
an experiment on a new synthetic dataset (denoted by “OSM
country”).

Experimental Setup. The OSM country dataset consists of
spatial points from six countries in OpenStreetMap [9]. These
countries include China, India, Japan, Malaysia, North Korea
and South Korea, and each of them corresponds to a single
data silo. As shown in Table 7, the volume of data in each
silo follows the native data proportion of the corresponding
country in OpenStreetMap. For example, the numbers of data
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Fig. 22: Hu-Fu with an honest broker varying the query-

specific parameter.

points in China, India and Japan are much larger than those
of Malaysia, North Korea and South Korea. Here, we vary the
total number of all data points from 104 to 109. The query
workloads are mainly asymmetric federated spatial queries.
Besides, the other experiment parameters are the same as
those in Sec. 7.4.1.

Experimental Result. The results of this experiment are
shown in Fig. 23. First, we can observe that in the OSM coun-
try dataset, Hu-Fu also shows a significant improvement in
both running time and communication cost over Conclave-
GIS and Conclave-GISext on federated kNN query, kNN join
and range counting. For example, Hu-Fu is at least 3 orders
of magnitude faster than Conclave-GIS and Conclave-GISext
in federated kNN query and kNN join, and costs 5 orders
of magnitude lower network communication. Second, Hu-Fu

Table 7: Percentage of data of each country in OSM

country.

Country Percentage of data

China 21.7%
India 29.8%
Japan 39.4%

Malaysia 4.2%
North Korea 1.2%
South Korea 3.7%

achieves the same efficiency as Conclave-GISext on federated
range query and distance join. Overall, the ranking of the
compared solutions in terms of either running time or com-
munication cost is consistent with the ranking in Sec. 7.4.
Note that we exclude Conclave-GISext from the results of
federated range counting as shown in Fig. 23c, because this
query does not need the secure set union to protect data own-
ership in this query.
Summary. In this evaluation, Hu-Fu outperforms SMCQL-
GISext and Conclave-GISext in terms of efficiency for asym-
metric federated kNN queries, kNN join, and range counting.
Meanwhile, Hu-Fu performs comparably to SMCQL-GISext
and Conclave-GISext for asymmetric federated range queries
and distance join. Thus, we can conclude that the experiment
conducted on the OSM country dataset yields similar results
to those observed in Sec. 7.4.1. This similarity may stem from
the fact that none of the existing methods have leveraged the
data distribution in their query processing strategies. Simi-
larly, this new data partition is unlikely to alter the overall
performance ranking of symmetric federated spatial queries.

G Experiment on the Improvement by the

Index in Each Data Silo

To demonstrate that the federated spatial queries have al-
ready been accelerated by local indexes in Hu-Fu, we have
conducted a new experiment on the efficiency improvement
caused by these local indexes (i.e., R-trees in our default set-
ting).
Experimental Setup. In this experiment, we test the run-
ning time of the plaintext spatial queries in Hu-Fu (i.e., plain-
text range query, plaintext range counting and plaintext kNN
query) on PostgreSQL with and without an R-tree. And the
plaintext spatial queries are processed on the OSM dataset.
Besides, we vary the data size from 104 to 108 and use the
default setting of query area (0.001%) and k (16). The other
experiment settings are the same as those in Sec. 7.1.
Experimental Result. As shown in Fig. 25, local indexes
can improve the efficiency of plaintext spatial queries, espe-
cially when the data size is large. Specifically, the local index
(R-tree) reduces the running time by up to 40×, 44× and
2042× when processing plaintext range query, range counting,
and kNN query, respectively. Moreover, the plaintext spatial
queries without local indexes cost even longer time than cor-
responding federated spatial queries in Hu-Fu. For instance,
the running time of processing one federated kNN query by
Hu-Fu takes 52 ms when the data size is 108, which is even
faster than that of the plaintext kNN query without the local
index (2465 ms). Thus, the experimental result proves that we
have used local indexes in Hu-Fu to speed up the processing
of the plaintext operators.
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Fig. 23: Scalability test on synthetic dataset partitioned

by countries.

H Impact of Additionally Protecting Query

Privacy in Symmetric Queries on Time Cost

Symmetric queries generally exhibit slower performance com-
pared to asymmetric queries. The gap stems from the essen-
tial difference in the problem definition (i.e., whether query
privacy needs to be protected or not). Consequently, accu-
rately assessing the impact on time cost when incorporating
query privacy protection is difficult.

However, we can roughly estimate the impact on time
cost in two ways:

– By comparing the number of basic operators required
for symmetric queries and asymmetric queries in Table 3
and Table 2, we can conclude that symmetric queries in-
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Fig. 24: Impact of privacy budget ϵ in Hu-Fu for pro-

cessing symmetric federated kNN and range queries.

cur higher costs than asymmetric queries. For example,
a symmetric federated range query involves many more
secure operators (e.g., secure distance comparisons) than
an asymmetric federated range query. This explains why
the former generally exhibits slower performance than the
latter.

– We also report the impact on time cost under the default
experimental setting. To obtain the result, we evaluate
both Hu-Fu and Conclave-GIS for asymmetric federated
range query and range counting on real-world dataset BJ
in our new experimental environment. As shown in Ta-
ble 8, a symmetric federated range query using Conclave-
GIS is 4,054× slower than the corresponding asymmetric
query. By contrast, our solution Hu-Fu significantly nar-
rows this gap to 59×. We can observe a similar pattern for
federated range counting. Although there is still a notable
difference in the time cost between symmetric queries and
asymmetric queries by using Hu-Fu, Table 8 demonstrates
that Hu-Fu performs better in terms of query efficiency
than the existing baseline, highlighting the challenge of
achieving good efficiency for symmetric queries compared
to asymmetric queries.

I Impact of Privacy Budget ϵ in Symmetric

Queries

We use symmetric federated kNN and range queries to eval-
uate the impact of privacy budget ϵ on the query efficiency.
The impact of ϵ for symmetric federated range counting and
distance join is similar to that for symmetric federated range
query, and the impact of ϵ for symmetric federated kNN join
is similar to that of symmetric federated kNN query.

Specifically, we use the real-world dataset BJ to conduct
the evaluation, and vary the privacy budget ϵ within a range
from 0.1 to 2, where ϵ = 0.1 indicates tighter privacy preser-
vation level than ϵ = 2. As for the other parameter settings,
we use the default setting as introduced in Section 7.2.

Fig. 24 illustrates the running time and communication
cost associated with symmetric federated kNN and range
queries. As ϵ increases from 0.1 to 2, we observe a modest
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Fig. 25: Running time of plaintext spatial queries with/without R-tree.

Table 8: How many times slower is a symmetric query compared to an asymmetric query by specific solution

Solution Federated Range Query Federated Range Counting

Conclave-GIS 4054× 5302×
Hu-Fu 59× 77×

drop in both running time and communication cost for sym-
metric federated kNN query. A similar trend is also evident
in the results of the symmetric federated range query. The
overall pattern is reasonable, since a larger ϵ indicates a more
relaxed privacy protection requirement, which results in a
shorter distance between the query object and its perturbed
location.


