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Abstract—Online bipartite graph matching is attracting grow-
ing research attention due to the development of dynamic task
assignment in sharing economy applications, where tasks need be
assigned dynamically to workers. Past studies lack practicability
in terms of both problem formulation and solution framework.
On the one hand, some problem settings in prior online bipartite
graph matching research are impractical for real-world applica-
tions. On the other hand, existing solutions to online bipartite
graph matching are inefficient due to the unnecessary real-time
decision making. In this paper, we propose the dynamic bipartite
graph matching (DBGM) problem to be better aligned with
real-world applications and devise a novel adaptive batch-based
solution framework with a constant competitive ratio. As an
effective and efficient implementation of the solution framework,
we design a reinforcement learning based algorithm, called
Restricted Q-learning (RQL), which makes near-optimal decisions
on batch splitting. Extensive experimental results on both real
and synthetic datasets show that our methods outperform the
state-of-the-arts in terms of both effectiveness and efficiency.

I. INTRODUCTION

With the rapid development of sharing economy, many

new business models are springing up and attracting much

popularity. Typical real-world applications include intelligent

transport platforms e.g., Uber and crowdsourcing platforms

e.g., Amazon Mechanical Turks (AMT). One central issue in

these emerging applications is dynamic task assignment, which

aims to assign each worker with one or more tasks to maximize

the overall revenue of the platform, where the workers are

dynamic while the tasks arrive sequentially.

Dynamic task assignment can be formulated as an online

bipartite matching problem, which has attracted growing re-

search interest [1]–[4]. Earlier studies [1], [2] focus on one-

sided online bipartite matching, where tasks are assumed to

come dynamically while workers are considered static. A few

recent efforts [3], [4] have explored the two-sided online

bipartite matching problem, where both tasks and workers

arrive dynamically. However, some of their problem settings

are still restrictive and fail to model emerging sharing economy

applications. For instance, in [3], the authors only maximize

the total number of assignments, while real-world applications

often focus on more general goals such as maximizing the

overall profits. In [4], it is assumed that the deadline of each

worker/task is known, while in applications such as on-demand

taxi dispatching, workers and tasks usually would not report

their deadlines to the platform. To be better aligned with these

practical settings, we propose a more generic problem called

the dynamic bipartite graph matching (DBGM) problem. In the

DBGM problem, both workers and tasks arrive dynamically

and can leave at any time without notifications in advance,

and the goal is to find a matching allocation that yields the

highest total revenue.

In addition to the restrictive problem settings, prior solutions

to online bipartite graph matching [4]–[9] are also impractical

to real-world sharing economy applications. They often rely

on strong assumptions such as specific demand distributions

or market equilibrium and some of them are low in efficiency,

e.g., of cubic time complexity [4]. The strong assumptions

and the low efficiency are the results of real-time matching

decisions upon arrival of a single task or worker, which may

be unnecessary in practice. For example, passengers and taxi

drivers are likely to wait for a short time before they disappear

from the on-demand taxi-calling applications. This observation

leads us to take an alternative framework to solve the DBGM

problem, i.e., in a batch-based manner.

More specifically, we propose an adaptive batch-based
framework to the DBGM problem. The idea is to cumulate

the dynamically coming tasks and workers into a batch, match

those in the batch when the batch size is suitable and repeat

the process. There are two critical challenges in designing an

effective adaptive batch-based framework to the DBGM prob-

lem. (i) How optimal is an adaptive batch-based framework
in theory? (ii) How to implement an optimal strategy to split
batches with performance guarantees? For the first challenge,

we conduct a theoretical analysis and prove that if the in-

batch matching algorithm outputs a local optimum e.g., via the

Hungarian algorithm [10], then there exists an adaptive batch-

based strategy that guarantees the overall performance. For the

second challenge, we model the strategy searching problem

as a sequential decision making problem [11], because the

decision of whether to split the current batch is made at each

time step sequentially. Particularly, we formulate the problem

as a Markov decision process (MDP) [12] with unknown

parameters, which can be solved by reinforcement learning
(RL) [13]. Then we propose an effective and efficient RL-

based algorithm to solve the MDP with unknown parameters

in the context of our DBGM problem.

1478

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00133



In summary, the main contributions of this work are:

• We propose the dynamic bipartite graph matching (D-
BGM) problem, which is a more practical formulation of

dynamic task assignment in emerging intelligent trans-

portation and spatial crowdsourcing applications.

• We devise a novel adaptive batch-based framework to

solve the DBGM problem and prove that its performance

is guaranteed by a constant competitive ratio 1
C−1 under

the adversarial model , where C is the maximum duration

of a worker/task.

• We propose an effective and efficient RL-based algorithm,

Restricted Q-learning (RQL), to retrieve a near-optimal

batch-based strategy.

• We validate the effectiveness and efficiency of our meth-

ods on synthetic and real datasets. Experimental results

show that our methods outperform state-of-the-arts in

terms of the overall revenue and running time.

In the rest of this paper, we review related work in Sec. II

and formally define the DBGM problem in Sec. III. We

introduce the adaptive batch-based framework and analyze its

competitive ratio in Sec. IV and propose an RL-based solution

to find the batch splitting strategy in Sec. V. We evaluate our

solutions in Sec. VI and finally conclude in Sec. VII.

II. RELATED WORK

We study a generic online maximum bipartite matching
problem and adopt a reinforcement learning based algorithm

for our adaptive batch-based solution framework. Below we

review representative work in these two categories of research.

A. Online Maximum Bipartite Matching

Online maximum bipartite matching problems include one-

sided version and two-sided version, and both versions consid-

er the weighted or the unweighted (i.e., maximum cardinality

matching) case. We divide the algorithms to these problems

into two categories according to the analytical model they use,

i.e., the adversarial model and the stochastic model. Algo-

rithms in the adversarial model always make guarantees on

the worst case performance while those in the stochastic model

need more assumptions and care about expected performance.

As a result, conclusion made in the adversarial model still

holds in the stochastic model.

1) Algorithms in the Adversarial Model: In this model, the

information on the graph and the arrival order of nodes are

unknown and can be arbitrarily bad. In [1], the authors study

the one-sided online maximum unweighted bipartite matching

and propose the randomized algorithm called Ranking with

a competitive ratio of 1 − 1
e in adversarial model. Another

randomized algorithm named Greedy-RT for the one-sided

weighted bipartite matching is proposed in [5]. The two-

sided unweighted case is considered in [6], where a 0.526-

competitive algorithm is presented. A recent work [3] extends

the Ranking algorithm [1] to the two-sided unweighted case

and shows a competitive ratio of 0.5211. To the best of our

knowledge, no prior work has studied the general two-sided

weighted case in the adversarial model.

2) Algorithms in the Stochastic Model: This model includes

the random order model and the I.I.D model. The former

assumes that the arrival order of nodes follows a uniform

random permutation, and cares about the expected perfor-

mance of online algorithms [14] while the latter assumes

that there is an underlying distribution of the coming objects

[15]–[17]. The Ranking algorithm is 0.6534-competitive in

the one-sided weighted case in the random order model [18].

In [7], the authors study the two-sided maximum cardinality

matching on spatial data and a 0.47-competitive method under

the I.I.D model is designed based on predictions of tasks and

workers. In [4], the authors propose the TGOA algorithm

with a 1
4 competitive ratio in the random order model. Our

work is closely related to [4] in that we both study the two-

sided online maximum weighted bipartite matching. Our work

differs from [4] in that (i) we do not assume the deadline of

each worker/task is known and (ii) we propose solutions in

the adversarial model.

B. Reinforcement Learning

Reinforcement learning (RL) [13] studies how agents should

take actions in an unknown environment to maximize a

cumulative reward. The environment can be formulated as

a Markov Decision Process (MDP) [12]. There are mainly

three categories of RL algorithms. Algorithms that aim to

learn the parameters of an unknown MDP are called model-

based algorithms [19], [20], while those make no efforts to

learn a model are called model-free, and the third type is

policy search such as policy gradient [21]. We adopt model-

free algorithms since they are more computationally efficient

and have guarantees on convergence. Particularly, we utilize Q-

learning [22], which estimates the Q-function iteratively using

Bellman backups [23] and acts greedily according to the Q-

function, and can converge to optimum.

Some pioneer studies have applied RL to matching prob-

lems, such as advertisement placement [24] and spatial crowd-

sourcing [25], [26]. In [24], the authors propose the combina-

tional multi-armed bandit (CMAB) framework, which decides

whether to match the coming nodes in the one-sided online

maximum bipartite matching problem. The algorithms in [25]

focuses on learning parameters like worker reliability using

methods from the CMAB class in spatial crowdsoucring tasks,

while the structure of bipartite graphs is still static. In [26],

the authors also model the online matching problem as an

MDP but with a straightforward idea. It takes every matching

behavior as an action, which makes the approach impractical

due to the high sparsity problem.

In this paper, we design effective RL-based algorithm to

implement our adaptive batch-based solution framework to the

DBGM problem.

III. PROBLEM STATEMENT

This section defines the DBGM problem (Sec. III-A) and

important concepts such as the competitive ratio in the adver-

sarial model (Sec. III-B). Finally we present a Greedy baseline

algorithm to the DBGM problem (Sec. III-C). Table I lists
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TABLE I: Summary of symbol notations

Notation Description
B The dynamic bipartite graph

L,R The set of left and right nodes on the graph
E The set of edges on the graph
i.d The duration of a node i

w(i, j) The weight of edge between node i and j
M The matching allocation set over the graph

U(B,M) The utility score of M over B
Opt(B) The offline optimum of B
SB The adaptive batch-based strategy space
σ The adaptive batch-based strategy

b(i, j) The function to indicate whether (i, j] is a batch
UR(B,σ),

UE(B,σ)

The utility score induced by a strategy

in remain/expiration model
C The upper bound of the duration

SLen
B The restricted strategy space of SB by an interval Len

lmin, lmax The minimum/maximum length of batch

the notations used throughout the paper. Some notations are

inspired by [27], [28].

A. Problem Definition

Definition 1 (Dynamic Bipartite Graph, DBG). A dynamic
bipartite graph is defined as B = (L,R,E), where L = {i ∈
N

∗} and R = {j ∈ N
∗} are the sets of left and right nodes

with L ∩ R = ∅ and E ⊆ L × R is the set of edges between
L and R. Each node i ∈ L (j ∈ R) has its arriving time at
i (j). The notations are abused to denote both the nodes and
the nodes’ arriving times for easy reference. Each node i (j)
also has a duration denoted by i.d (j.d), meaning the amount
of time it keeps activated. Each edge (i, j) ∈ E has a weight
denoted by eij . For convenience, B also denotes the set of all
its nodes, and we have |B| = |L|+ |R|.

We do not specify the unit of arriving time and duration,

as it is application-specific. For instance, the unit can be one

second in on-demand taxi dispatching. We also assume that the

arriving time of each node is different for the simplification of

analysis. Our solution works with or without this assumption.

Note that there is no need to consider those edges (i, j) with

[i, i+ i.d]∩ [j, j+ j.d] = ∅ for matching since in this case one

node expires before the other arrives, and thus we focus on the

remaining edges only. Specifically, we define a weight function

w : L × R → R such that w(i, j) = eij , if the edge (i, j)
exists in E and [i, i+ i.d] ∩ [j, j + j.d] �= ∅, and w(i, j) = 0
otherwise. In the former case, we have w(i, j) > 0. With this,

in the following, we could safely focus on those edges (i, j)
with w(i, j) > 0 for matching.

Definition 2 (Matching Allocation). A matching allocation
over a dynamic bipartite graph B is denoted by M =
{(i, j)|i ∈ L, j ∈ R}. It is a set of node pairs where each
node appears at most once.

Definition 3 (Utility Score). The utility score of a matching
allocation M over a dynamic bipartite graph B is measured
by U(B,M) =

∑
(i,j)∈M w(i, j).

(a) An example of DBG (b) A batch-based strategy

Fig. 1: A simple example of DBG and batch-based strategy

Example 1. Take Fig. 1a as an example. The indices of
the 6 nodes are their arriving times, i.e., 1, 2, 3, 4, 5, 6 and
their durations are 3, 5, 3, 1, 2, 4 respectively. Suppose there
are edges between node 1 and 4, also 4 and 5. Note that
the duration of node 1 is 3, which means it will vanish
before node 4 appears. Thus we have w(1, 4) = 0. The same
situations happen for w(4, 5) and w(2, 6). The other edge
weights are shown in the figure, and we have w(1, 3) = 2,
w(2, 4) = 4, etc.. A possible matching allocation in Fig. 1a is
M1 = {(2, 4), (3, 5)}. We have U(B,M1) = 4 + 1 = 5.

Definition 4 (DBGM Problem). Given a dynamic bipartite
graph B, the DBGM problem is to find a matching allocation
M to maximize the utility score, i.e., maxM U(B,M) in the
online scenario.

Here in the online scenario, nodes arrive one by one

following the arriving times in B, and will vanish after their

deadlines. The arriving time and vanishing time of any node

cannot be forecast. The difference between DBGM and the

two-sided online maximum bipartite matching [4] is that the

nodes in DBGM are totally dynamic, but in the latter, the

deadline of each node is assumed given upon its arrival. Hence

the DBGM problem is more generic and better aligned with

real-world applications.

An online algorithm to the DBGM problem decides at each

time step k a subset of M, denoted by Mk, which only

contains the activated nodes that are not expired yet at k. The

final matching allocation is M =
⋃T

k=1Mk, where T is the

number of time steps.

B. Evaluation Metric

The performance of an online algorithm is often accessed by

comparing against the optimal results in the offline scenario.

In the following, we will introduce the offline optimum of the

DBGM problem and the competitive ratio in the adversarial

model. Note that the competitive ratio in the adversarial model

will still be guaranteed in the stochastic model.

A dynamic bipartite graph B can be adjusted to a general

bipartite graph B′ by removing all the edges that do not satisfy

the restriction of deadline, [i, i + i.d] ∩ [j, j + j.d] �= ∅ (i.e.,
only those edges with w(i, j) > 0 are kept). Then the offline

optimum is defined by Opt(B) = maxM U(B′,M).
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Algorithm 1: Greedy Algorithm

input : A dynamic bipartite graph B
output: A matching allocation M

1 M← ∅;
2 for each new arrival node u in B do
3 if u ∈ L then
4 V ← {v|v ∈ R,w(u, v) > 0};
5 if V �= ∅ then
6 v′ ← argmaxv∈V w(u, v);
7 Remove u, v′ from B;

8 M←M∪ {(u, v′)};
9 else

10 Symmetrically matching u ∈ R;

11 return M

The optimal matching allocation in the offline scenario can

be found in polynomial time by Hungarian algorithm [10].

For example, in Fig. 1a, the optimal matching allocation is

{(1, 3), (2, 4), (5, 6)} and Opt(B) = 8.

Competitive Ratio. The competitive ratio in the adversarial

model of an online algorithm for the DBGM problem is the

minimum ratio between the utility score of matching allocation

M produced by the algorithm and the offline optimum over

all possible instances of the dynamic bipartite graph,

CR = min
B

U(B,M)

Opt(B)

The competitive ratio in the adversarial model measures the

performance of an online algorithm in the worst case, and we

are interested in online algorithms which have guarantees on

the lower bound of the ratio.

C. Greedy Algorithm: A Baseline

A straightforward solution to the DBGM problem is the

Greedy algorithm, which matches a node to its neighbor with

the maximum edge weight, and leaves a node waiting if it does

not have any available neighbors yet. The procedure is illus-

trated in Algorithm 1. By conducting the Greedy Algorithm

in Fig. 1a, we will get a matching allocation {(2, 3), (5, 6)}
and the utility score is 5.

The competitive ratio of the Greedy algorithm can be

arbitrarily bad in the adversarial model, because we can insert

a node v into the opposite side of a node u with a potential

weight of 1 as soon as u is just matched greedily to some

other node with the weight ε. If we set ε to an infinitely small

value, then the competitive ratio is close to 0.

IV. SOLUTION FRAMEWORK

This section presents the adaptive batch-based framework

(Sec. IV-A) and analyzes its achievable optimum (Sec. IV-B).

A. Adaptive Batch-based Framework

The rationale of our adaptive batch-based framework to the

DBGM problem lies in two-fold. (i) If nodes were allowed to

wait rather than being immediately assigned, they may meet

better matching candidates in the future (i.e., the advantage of

batch-based decisions). (ii) The batch size should be adjusted

according to the current dynamic bipartite graph (i.e., the need

for an adaptive batch size). In this work, we propose to decide

the batch size on the fly by using a binary decision indicator

for each time step. Specifically, if the indicator is 0, all the

nodes will wait at this time step; otherwise we will match all

the activated nodes in the waiting pool. We formally define

the adaptive batch-based strategy below.

Definition 5 (Adaptive Batch-based Strategy). Denote the
strategy space of B as SB = 2|B|+1. Each adaptive batch-
based strategy σ = (σk)k∈�0,|B|� is a binary sequence with
length |B| + 1. Let σ0 = 1. ∀1 ≤ k ≤ |B|, if σk = 1, the
strategy is to match all the nodes available (including itself)
to achieve a local optimum (e.g., by Hungarian algorithm).
Otherwise, all nodes are kept till the next time step. An
interval (i − 1, j] is called a batch if σi−1 = σj = 1, and
∀k ∈ �i, j − 1�, σk = 0. We set a binary function b(i, j) = 1
if (i− 1, j] is a batch; otherwise, b(i, j) = 0.

We make the following notes on the definition above.

• If each σk is set to 1, it is equivalent to the Greedy

algorithm in Sec. III-C. Hence the optimal adaptive batch-

based strategy in the strategy space is always no worse

than the Greedy algorithm.

• We perform optimal matching in each batch to achieve

theoretical guarantees (see Sec. IV-B).

• The adaptive batch-based strategy consists of two models

based on whether the unmatched nodes in each batch are

removed (denoted as expiration model) or kept to the next

batch (denoted as remain model). We analyze these two

models separately.

We still use utility score to assess the performance of a

strategy. We override the utility score function U(B,M) by

U(B,σ) because a fixed strategy σ results in a deterministic

matching allocation.

Definition 6 (Utility Score of Strategy). Let UR(B,σ) denote
the utility score in the remain model, i.e., the sum of weights in
B induced by σ in the online scenario where the unmatched
nodes in each batch will remain. Similarly, denote UE(B,σ)
as the utility score in the expiration model, i.e., the sum where
the unmatched nodes in each batch will expire.

We further define the utility score of a strategy space

in the remain and the expiration models: UR(B,SB) =
maxσ∈SB

UR(B,σ) and UE(B,SB) = maxσ∈SB
UE(B,σ).

The utility score of a strategy space represents the highest

utility a strategy in that space can achieve.

Example 2. Take Fig. 1b as an example. Suppose σ1 =
(1, 0, 0, 0, 0, 1, 1), there are two batches (0, 5] and (5, 6] as
shown in the figure. If we remove the unmatched nodes
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(a) A counterexample (b) The example of tightness

Fig. 2: Two special graphs

in each batch, the matching allocation is {(a, c), (b, d)}
and UE(B,σ1) = 6. Otherwise we have the allocation
{(a, c), (b, d), (e, f)} with UR(B,σ1) = 8, which is the
optimal allocation. Different strategies have different utility
scores. In this example, UR(B,SB) = UR(B,σ1) = 8.
Yet UE(B,SB) �= UE(B,σ1), because if we set σ2 =
(1, 0, 0, 0, 1, 0, 1), we will have UE(B,σ2) = 8 > UE(B,σ1).

Next we study the theoretically achievable optimum of our

adaptive batch-based framework by analyzing the competitive

ratio (with respect to utility score) of the strategy space.

B. Theoretical Analysis on Achievable Guarantees

1) Assumptions: We assume that the duration of each node

has an upper bound C ∈ N
∗ and C ≥ 2. On the one hand, an

upper bounded C is reasonable since no worker or task would

wait endlessly in real applications. On the other hand, if C =
1, no match exists as we assume the expiration comes before

the arrival of new nodes at the same step. We demonstrate the

necessity of this assumption via the following example.

Example 3. Suppose the nodes in Fig. 2a come in the
order of i1, · · · , in, j1, · · · , jn, j′1, · · · , j′n. The weights of
edges between ik and jk are ε, and those between ik and
j′k are 1. The durations of ik and jk are infinite and the
duration of j′k is 1. No matter how we segment the batches,
UE(B,SB)
Opt(B) = UR(B,SB)

Opt(B) = 1+(n−1)ε
n , which can be arbitrarily

bad if ε approaches 0. Hence we assume that no duration can
be larger than C.

2) Main Results: We have the following two theorems on

the competitive ratios of the strategy spaces in the remain and

the expiration models.

Theorem 1. For any given dynamic bipartite graph B with
an upper bound of duration C ≥ 2, we have

min
B

UE(B,SB)

Opt(B)
=

1

C − 1
(1)

Proof. We first prove that minB
UE(B,SB)
Opt(B) ≥ 1

C−1 . The idea

is to construct a good enough batch-based strategy.

Suppose MB is the set of edges that are in the offline

optimal matching allocation of B. Let epq be an edge in MB

where p comes earlier than q. We also use epq to represent

the weight on the edge.

(a) A1(i, j) (b) A2(i, j)

Fig. 3: Illustrations on A1 and A2

We first consider the special case where C = 2. In this

case, each node must be matched no latter than one round

after its arrival. Thus our strategy is to set every σq = 1 for

each epq ∈ MB , and the strategy always leads to an optimal

matching allocation. So
UE(B,SB)
Opt(B) = 1 = 1

C−1 if C = 2.

Next we consider the general cases. For any batch (i−1, j],
we define two sets, A1(i, j) and A2(i, j) on it: A1(i, j) =
{epq ∈ MB |(i < p < j ∧ q > j) ∨ (p < i ∧ i < q < j)} and

A2(i, j) = {epq ∈MB |p < i ∧ q > j}.
Intuitively, A1(i, j) contains edges with one end point in the

batch and the other out of the batch while edges in A2(i, j)
have two end points both out of the batch but in the different

side. Thus if C = 3, we have |A1(i, j)| ≤ 1 (as the maximum

time span of an edge is 2) and |A2(i, j)| = 0. In the general

case C > 3, we take Fig. 3 for illustration. In Fig. 3a, all the

edges in A1 must have exactly one end point in the shaded

area. As there are at most (j− i−1) nodes in the shaded area,

we have |A1(i, j)| ≤ j− i− 1. In Fig. 3b, the same condition

holds if k1 = k2. The shaded area has a maximum span of

C−1. Thus there are at most C−1− (j− i+1) nodes in the

shaded area and |A2(i, j)| ≤ C−1− (j− i+1). In summary,

|A1(i, j)|+ |A2(i, j)| ≤ C − 2.

Now a good enough strategy σ∗ is as follows:

• Initially, set σk = 0 for k ∈ �1, |B|�.

• Pick the edge with the largest weight in MB , named eij ,

and remove it from MB .

• Set σi−1 = σj = 1, and then remove all edges in A1(i, j)
and A2(i, j) from MB .

• Repeat (2), (3) until there is no edge in MB .

Then we prove that the competitive ratio of σ∗ has a lower

bound. Suppose in each batch (i − 1, j], by conducting the

Hungarian algorithm, we have a gain of weights denoted

by u(i, j). Apparently, u(i, j) ≥ eij ≥ epq where epq ∈
A1(i, j)∪A2(i, j). Consider the edges we drop in our strategy.

The sum of weights dropped by edges in A1(i, j) and A2(i, j)
are denoted by u1(i, j) and u2(i, j), respectively. We have

u1(i, j) ≤ |A1(i, j)|eij , u2(i, j) ≤ |A2(i, j)|eij . Thus, ∀B,
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we have

Opt(B) =
∑

epq∈MB

epq =
∑

b(i,j)=1

(u1(i, j) + u2(i, j) + eij)

≤
∑

b(i,j)=1

(|A1(i, j)|+ |A2(i, j)|+ 1)eij

≤
∑

b(i,j)=1

(C − 2 + 1)eij

≤ (C − 1)
∑

b(i,j)=1

u(i, j)

≤ (C − 1)UE(B,σ∗)
≤ (C − 1)UE(B,SB)

In summary, minB
UE(B,SB)
Opt(B) ≥ 1

C−1 . Notice that the same

inequality also holds for UR(B,SB), because we have∑
b(i,j)=1 u(i, j) = UE(B,σ∗) ≤ UR(B,σ∗) by the same

construction of σ∗.

To prove the bound is tight, we use the example in Fig. 2b.

In the graph, each node has the duration equal to n+1, and as

a result, C = n+1. In this case, Opt(B) = C− 1. No matter

how we change the strategy, UE(B,SB) = 1. This verifies

that the bound 1
C−1 is tight.

Theorem 2. For any given dynamic bipartite graph B with
an upper bound of duration C ≥ 3, we have

1

C − 1
≤ min

B

UR(B,SB)

Opt(B)
<

2

C − 2
(2)

Proof. If C = 2, UR(B,SB) is also optimal. We only consider

the general cases when C ≥ 3 here. As demonstrated above,

we have minB
UR(B,SB)
Opt(B) ≥ 1

C−1 . To find an upper bound, we

take Fig. 2a as an example. We set n = �C−1
2 �. As pointed

out above,
UR(B,SB)
Opt(B) = 1+(n−1)ε

n < 1
n + ε ≤ 2

C−2 + ε. Since

ε can be infinitely small, thus minB
UR(B,SB)
Opt(B) < 2

C−2 .

Summary. The best strategy in the expiration model can

achieve a constant competitive ratio, and that of the best strat-

egy in the remain model also lies in a constant interval. Hence

the adaptive batch-based framework has strong performance

guarantees in theory. Next we design an effective and efficient

strategy from the strategy space by exploiting reinforcement

learning techniques.

V. RL-BASED SOLUTION

Sec. IV shows that the adaptive batched-based framework

has theoretical performance guarantees to the DBGM problem.

This section aims to devise an algorithm following such a

framework. We first explain the high-level idea (Sec. V-A),

then model the algorithm as a Markov decision process

(Sec. V-B), and finally present the a reinforcement learning

based algorithm implementation (Sec. V-C).

A. Basic Idea

As shown in Sec. IV-B, the performance guarantees of

the adaptive batch-based framework require (i) an in-batch

algorithm that outputs the local optimum and (ii) an optimal

strategy to split batches. The former can be achieved by

classical algorithms such as the Hungarian algorithm [10],

while the latter is our focus.

We model the batch splitting process as a Markov decision
process (MDP) [12] with unknown parameters, because it is

a sequential decision making problem, and the actions we

take interact with the environment (i.e., the dynamic bipartite

graph) and influence the reward (i.e., the utility score).

To find an optimal strategy to split batches, we apply Rein-
forcement Learning (RL) [13], because it proves to be effective

for the sequential decision making problem in MDPs with

unknown parameters. Particularly, we propose the Restricted

Q-learning (RQL) algorithm, which is based on Q-learning

[22] but is optimized to have a notably smaller search space.

We present the MDP modeling and the details of our RQL

algorithm in sequel.

B. MDP Modeling for Batch Splitting

We model the environment and actions with an MDP in the

context of batch splitting as below.

Given a dynamic bipartite graph B, we define a finite-

horizon undiscounted Markov decision process M =
(S,A, Tr, Rw, H) on B where

• S is the state space, where every state s ∈ S stands for

a bipartite graph.

• A = {0, 1} is the action space, where action 0 means to

make no matches and go to the next time horizon and

action 1 means to perform a maximum weight matching

e.g., using the Hungarian algorithm, drop the edges that

have been matched, and go to the next time horizon.

• Tr : (S × A × S) → [0, 1] is the transition distribution,

which models the dynamics of nodes joining in or leaving

the graph. The probability of reaching s′ from s by

executing a is then expressed by Tr(s, a, s
′).

• Rw : (S×A)→ R
+ is the reward function. If we conduct

action a at state s, we will get a reward of Rw(s, a),
which is the sum of weights of matched pairs. The reward

is a constant given s and a, because if a = 1, Rw(s, a)
is the output from the Hungarian algorithm conducted at

s, and if a = 0, Rw(s, a) = 0.

• H is the time horizon, and H = (1, 2, · · · , |H|).
C. Restricted Q-learning (RQL) for Optimal Batch Splitting

Reinforcement learning (RL) is effective to find an optimal

policy in unknown MDPs, where a deterministic stationary

Markovian policy π is defined by a mapping from S to A.

Here policies can be measured by the state-value function (Q-

function) Qπ
M (st, at) = E[

∑|H|
t′=t rt′ |s = st, a = at], where

st, at and rt are the state, action and reward at time step

t respectively. An optimal strategy search problem (optimal

batch splitting in our case) can be solved by RL because the

execution result of a policy on the MDP is the same as a
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strategy and maximizing the utility is equivalent to maximizing

the cumulative rewards at the initial state.

We build our solution upon Q-learning [22], a classical

model-free RL method with relatively low computational

complexity. Q-learning approximates the Q-function directly

based on the recursion in Eq.(3), where st is the current state,

at is the action chosen based on the current Q-function, rt+1

is the obtained reward after taking action at and st+1 is the

next state. It has been demonstrated that a policy conducted

greedily according to the optimal Q-function is also optimal.

The convergence of Q-learning has been proven in [22].

Q(st, at)← Q(st, at)+

α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)]
(3)

We propose the Restricted Q-learning (RQL) algorithm to

further improve the efficiency to solve our DBGM problem.

Specifically, we adapt the naive Q-learning to our problem

and significantly reduce its search space using the restriction

principle based on our analysis in Sec. IV. Next we explain

the three parts of our RQL algorithm: state representation,

restriction principle and state & action reformulation.

• State Representation. We represent each state by the

pair containing the number of left nodes and also that

of right nodes, i.e., (|L|, |R|), rather than using a state-

action table to record the Q-function as in traditional Q-

learning algorithms. This is because the state-action table

has two problems in our case: (i) The size of state space

of our MDP is infinite, meaning we cannot record every

state-action pair. (ii) The table suffers from the sparsity

problem because it is almost impossible to encounter the

same state twice. The effectiveness of our representation

lies in the fact for the action a = 1, the reward, which is

the sum of the weights of the edges that are matched, is

closely correlated with the number of nodes on each side.

As there are at most C nodes waiting either on the left

or on the right, the size of state space is C × C, which

is much smaller.

• Restriction Principle. An important improvement of our

RQL algorithm over traditional Q-learning is to exploit

the restriction principle to reduce the size of the strategy

space (which is 2|H| in traditional Q-learning). The

restriction principle is based on the restricted strategy

space defined as follows.

Definition 7 (Restricted Strategy Space). The restricted
strategy space of SB by an interval Len is denoted by
SLen
B . The strategies in SLen

B satisfy that ∀b(i, j) = 1, j−
i ∈ Len.
To maintain the performance guarantees of strategies in

the restricted space, we need to consider the construction

procedure of σ∗ in Theorem 1. Suppose the batches in σ∗

have a maximum length of lmax and a minimum length of

lmin. Let Len = [lmin, lmax]. If we search for strategies

in the restricted strategy space SLen
B , it is guaranteed that

the best strategy we can find has a constant competitive

ratio 1
C−1 because σ∗ ∈ SLen

B . However, we do not

know lmin and lmax in advance. A naive approach is

to use the super set of Len, i.e., [1, C] as lmax ≤ C.

Another method is to estimate them by conducting the

construction method on historical data, which can be

time-consuming. A better method is to consider them as

hyper-parameters of the learning algorithm and the values

are empirically tuned.

• State & Action Reformulation. The aim of state &

action reformulation is to meet the constraint without

violating the principle of Q-learning when applying the

restriction principle.

The original action space is {0, 1}. To meet the interval

constraint of the restriction principle, we have to force

the action to be 0 or 1 if the batch length is out of Len.

This violates the principle of Q-learning, where the action

should only be decided by the Q values. Accordingly, we

cannot ensure the number of our mandatory assignments

thus the convergence will stand no more.

To overcome this problem, we reformulate states and

actions and no mandatory assignments would happen.

First, when the batch length is smaller than lmin, we

take the state when the batch length is exactly lmin as

the next state and skip the states in-between. In other

words, our opportunity of decision only occurs when the

batch length is no smaller than lmin. Then we use (s, l)
instead of s to represent a state where l ∈ [lmin, lmax] is

the length of the batch so far, and the action a ∈ {0, 1}
is replaced by l′ ∈ [lmin, lmax], meaning the expected

length of the current batch. Thus Q((s, l), l′) stands for

the Q-value of cutting the batch with a length l′ at state s
while the current length is l. We initially set the Q-values

with all l > l′ to be zero and others to be non-zero. Thus

impossible actions will not happen.

Example 4. Suppose lmin = 10, lmax = 60, and the
greedy action argmaxl′ Q((s0, 15), l

′) = 20. It means
that at state s0 with a batch length l = 15, the best action
is to cut the batch at the 20th step, so it is better to wait
at the current step. The best action 13 is impossible due
to the initial rules. Also, if l = 60, the greedy choice of l′

can only be 60. So the batch will be cut at its maximum
size lmax = 60. The interval constraint is still satisfied.
According to the reformulations, the updates of Q-values

for lt = l′t and lt �= l′t are formulated as:

Q((st, lt), l
′
t = lt)← Q((st, lt), l

′
t) + α[rt+

max
l0

Q((st+lmin , lmin), l0)−Q((st, lt), l
′
t)]

(4)

Q((st, lt), l
′
t �= lt)← Q((st, lt), l

′
t)+

α[max
l0

Q((st+1, lt + 1), l0)−Q((st, lt), l
′
t)]

(5)

Algorithm Sketch. Algorithm 2 illustrates our RQL algo-

rithm. We initialize the Q-function with small positive real

numbers (line 1) and set the Q-values of the situations where

l > l′ to be 0 (line 2). In the outer loop of iterating the

episodes, we first conduct action a = 0 for lmin − 1 times,
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Algorithm 2: Restricted Q-learning

input : learning rate α ∈ (0, 1], lmin, lmax, C
output: Learned state-value function Q((s, l), l′)

1 Q((s, l), l′)← Random(), ∀s, l, l′;
2 Q((s, l), l′)← 0,∀s, ∀l > l′;
3 for episode 1, 2, · · · do
4 Repeatedly take action a = 0 for lmin − 1 times,

observe slmin ;

5 t← lmin; lt ← lmin;

6 while time step t < |H| in each episode do
7 l′t ← argmaxl′ Q((st, lt), l

′);
8 if l′t = lt then
9 Take action a = 1, observe st+1, rt;

10 Repeatedly take action a = 0 for lmin − 1
times, observe st+lmin ;

11 Q((st, lt), l
′
t)← Q((st, lt), l

′
t) + α[rt +

maxl Q((st+lmin , lmin), l)−Q((st, lt), l
′
t)];

12 t← t+ lmin; lt ← lmin;

13 else
14 Take action a = 0, observe st+1;

15 Q((st, lt), l
′
t)← Q((st, lt), l

′
t) +

α[maxl Q((st+1, lt + 1), l)−Q((st, lt), l
′
t)];

16 t← t+ 1; lt ← lt + 1;

17 return Q

observe the last state (line 4) and update the counters (line 5).

In the inner loop of iterating the time steps, we get the greedy

action at the current state first (line 7). If the action is to cut

the batch, we conduct action a = 1, record the rewards (line 9)

and then conduct action a = 0 successively for lmin−1 times

until observing the last state (line 10). Then we update the

Q-function with a lmin-step lookahead (line 11). Otherwise,

we conduct action a = 0, observe the next state (line 14) and

update the Q-function with a one-step lookahead (line 15).

Complexity Analysis. The space complexity of RQL is

O(C2(lmax−lmin)
2), i.e., the memory size to store the tabular

Q-function. The per-step time complexity is at most O(H(C)),
where H(C) is the time to execute the Hungarian algorithm

on a bipartite graph with at most C nodes.

Other Optimization. To further reduce the memory cost to

store the tabular Q-function and relieve the sparsity problem

of the Q-value table, we propose quantization techniques

for the RQL. The main idea is to partition both the s-

tate space and the action space into piles, and the index

of each pile represents the new state or action. Intuitively,

states or actions sharing similar values have similar results

as the values can be considered as continuous numbers, and

they can be compressed by quantization. Formally, let the

quantized parameters of states and actions be qs ∈ �1, C�
and qa ∈ �1, lmax − lmin�. Suppose s = (nl, nr), then the

quantized Q-value is Qq = (((nl

qs
, nr

qs
), l

qa
), l′

qa
). Suppose

lq = argmaxl′ Qq(((nl, nr), l), l
′), then the greedy action is

updated by lgreedy = randint(lqqa, (lq + 1)qa − 1) where

TABLE II: Parameter settings

Parameter Setting
Cardinality 1K, 2.5K, 5K, 7.5K, 10K

ap(Power distribution) 1.1, 1.25, 1.5, 1.75, 2
al(Lomax distribution) 2, 3, 5, 10, 50
σn(Normal distribution) 0.05, 0.1, 0.15, 0.2, 0.3

α (Sparsity) 0.1, 0.3, 0.5, 0.7, 0.9
dUB (Upper bound of duration) 30, 60, 120, 300, 600

σd (Variance of duration) 10, 20, 30, 40, 50
Scalability |L| = |R| = 10K, 50K, 100K

randint(a, b) is the uniformly random function to get an

integer from [a, b]. By applying the quantized techniques, the

space complexity of RQL would be O(( C
qs
)2( lmax−lmin

qa )2),
which is 1

(qsqa)2
of the original RQL.

VI. EXPERIMENTAL STUDY

This section presents the experimental evaluations of our

RQL algorithm on both synthetic and real datasets.

A. Experimental Setup

Datasets. We use both synthetic and real datasets.

The real dataset is collected by Didi Chuxing [29] in

Chengdu, China, which is published through its GAIA ini-

tiative [30]. Each tuple is a taxi calling request consisting

of a pickup latitude/longitude, a pickup timestamp, a drop

off latitude/longitude and a drop off timestamp. We take the

pickup time as the arriving time of each node on the left side

and the drop off time as that on the right side. To calculatE the

edge weight between each node pair, we estimate the expected

revenue of each request by dr − dc where dr is the estimated

fare of the trip and dc is the estimated cost for the driver to

pick up the passenger. If dc ≥ dr, the edge will be removed.

The dataset does not contain the deadline of each node, so we

manually generate their durations.

For the synthetic dataset, we vary the distributions of edge

weights, the sparsity of graph, the duration of nodes, the

arriving density of nodes, the cardinality and the scalability.

We consider three distributions, namely power distribution,

lomax distribution and normal distribution, for generating the

weights since they are widely used in real-world applications,

e.g., the income in a market economy usually follows the

power distribution. The parameter settings are motivated by

[31], [32] and are shown in Table II.

Compared Methods. We compared our RQL algorithm

with the following algorithms.

• Greedy algorithm (GR). We use the greedy algorithm

in Algorithm 1. Although the Greedy algorithm may

perform arbitrarily bad in the worst case, it is still

competitive in average efficiency [33].

• TGOA. It is the state-of-the-art online matching algorithm

for the two-sided online maximum bipartite matching

problem [4]. We modify the algorithm to our DBGM

problem.

• Fixed-batch algorithm (FB). The algorithm uses batches

with a constant size. In the evaluation, we try different
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Fig. 4: Results on varying the distribution of edge weights and the sparsity

sizes and pick the best one for each parameter setting. The

in-batch matching algorithm is the Hungarian algorithm.

• Q-learning (QL). This is the original Q-learning algo-

rithm [22] without the restriction principle and other

optimization techniques in Sec. V-C.

Metrics and Implementation. All the algorithms are eval-

uated in terms of total utility score, running time (measured

by milliseconds) and memory cost (measured by KB). We also

add the curve of the optimal solution on the figures of utility.

As TGOA always consumes 20x larger time than others, we

remove the curve of TGOA when comparing the running time.

All the algorithms are implemented by C++. The exper-

iments are conducted on Ubuntu 16.04 LTS with Intel(R)

Core(TM) i7-6700 3.4GHz CPU and 16GB main memory. The

experiments are repeated 10 times for each parameter setting

and the average is reported.

B. Experimental Results

We have experimented the algorithms in both the remain

model and the expiration model. Since the performances of the

algorithms in the remain model are better than in the expiration

model in most cases, we only present the results in the remain

model for brevity.

Impact of Edge Weights. This thread of experiments

investigate the impact of the distribution and the sparsity of

edge weights.

The first column of Fig. 4 presents the results of varying

the parameter ap of the power distribution. As ap grows

larger, the upper bound of weights becomes closer to 1. RQL

performs the best, followed by QL, FB and GR while TGOA

is the worst. The running time of all the algorithms is similar,

but RQL always runs faster than QL, as it skips the rounds

quickly when the batch size is smaller than lmin. The memory

cost of RQL is nearly twice of others because its Q-function

contains the current batch sizes as an extra slot, but the cost

is acceptable. The results on memory cost are the same for

the the three subsequent experiments on the impact of edge

weights, so we omit the corresponding descriptions.

The second column of Fig. 4 shows the results of lomax

distribution (also known as the long tail distribution). As al
increases, the curve of its probability density function becomes

more steep, leading to more small values, so the utility of each

method decreases exponentially. RQL still performs the best

among all the algorithms, followed by FB, QL and TGOA.

GR is the worst as there are more unexpected edges with very

large weights and it is better to leave the nodes waiting.

The third column of Fig. 4 shows the results of varying the

variance in the normal distribution, where the mean is set to

0.5. RQL outperforms the others but the gap between RQL and

QL is small. For the running time, RQL is still competitive,

as it is faster than QL on all cases.

The final column of Fig. 4 shows the results of varying

1486



30 60 120 300 600

d
UB

3000

3500

4000

4500

5000

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(a) Utility of varying dUB (both sides)

30 60 120 300 600

d
UB

3000

3500

4000

4500

5000

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(b) Utility of varying dUB (one side)

10 20 30 40 50

d

3400

3600

3800

4000

4200

4400

4600

4800

5000

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(c) Utility of varying σd

1  1.5 2  2.5 3  
3000

3500

4000

4500

5000

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(d) Utility of varying λ

30 60 120 300 600

d
UB

2000

2050

2100

2150

2200

2250

2300

2350

T
im

e
(m

s
)

GR

FB

QL

RQL

(e) Time of varying dUB (both sides)

30 60 120 300 600

d
UB

2000

2050

2100

2150

2200

2250

T
im

e
(m

s
)

GR

FB

QL

RQL

(f) Time of varying dUB (one side)

10 20 30 40 50

d

2060

2080

2100

2120

2140

2160

2180

T
im

e
(m

s
)

GR

FB

QL

RQL

(g) Time of varying σd

1  1.5 2  2.5 3  
2050

2100

2150

2200

2250

T
im

e
(m

s
)

GR

FB

QL

RQL

(h) Time of varying λ

30 60 120 300 600

d
UB

1

2

3

4

5

6

7

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(i) Memory of varying dUB (both sides)

30 60 120 300 600

d
UB

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(j) Memory of varying dUB (one side)

10 20 30 40 50

d

1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(k) Memory of varying σd

1  1.5 2  2.5 3  
1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(l) Memory of varying λ

Fig. 5: Results on varying the duration and arriving density

different sparsity of the graph. The parameter α means that

when we generate an edge, it has a probability of α that we

remove it from the graph. When the graph grows denser, the

utility gets higher. We could observe that RQL beats other

methods both for utility and running time.

Impact of Duration. This series of experiments study the

impact of durations of the nodes.

The first column of Fig. 5 shows the results of varying the

upper bound of duration dUB of nodes from both sides. The

durations are sampled uniformly while the lower bound is set

to 10. To our surprise, the utility only increases slightly with

the increase of duration. It indicates that waiting for too long

may not result in a much higher revenue. Also, the advantage

of RQL is not obvious over others, and it is even outperformed

by FB in the last case, possibly because the action space is

too large when the duration is 600, which makes the algorithm

difficult to converge. The running time also increases with the

duration and RQL is still fast. However, for the memory cost,

it increases with the duration, because as lmax grows larger,

the Q-value table will consume more space.

The second column of Fig. 5 shows the results of varying

dUB of nodes from one side. The curve is similar to the last

one, which means that the upper bound of duration does not

change the performance greatly. Similar results hold for the

running time. For the memory, the cost of RQL does not

increase in the last two cases because the tuned value of lmax

does not significantly increase.

The third column of Fig. 5 shows the results when we

sample the duration from a truncated normal distribution with

the variance from 10 to 50. The utility does not change much

as the variance increases. RQL performs the best, followed

by FB, QL, GR and TGOA. The results on running time and

memory are similar as before.

Impact of Arriving Density. The arriving density of nodes

is decided by a Poisson distribution with the parameter λ. The

final column of Fig. 5 presents the results of varying λ. As

λ increases, the utility also grows. The advantage of RQL is

more notable with a larger λ. The results on running time and

memory cost remain similar.

Impact of Cardinality. As nodes from the left side and the

right side are symmetrical in the synthetic dataset, we only

vary the size of |R| from 1K to 10K while |L| is set to 5K.

The purpose is to show the results when the arriving densities

of left and right sides are unbalanced. The first column in

Fig. 6 shows the results. When the nodes of both sides are

balanced (i.e., |R| = 5000) RQL performs the best, but in

unbalanced cases, the advantage of RQL is not obvious. The

possible reason is that in the unbalance cases, the number

of nodes from one side is oversized, bringing more than

enough candidates to the other side. Thus it is very likely to

encounter the optimal choice even with the greedy algorithm.

For the running time, all the algorithms perform similarly.
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Fig. 6: Results on cardinality, scalability and real dataset

The balanced case consumes the least time, because in the

unbalanced cases, all the algorithms need a waiting pool to

store the nodes from the oversized side. The memory stays

unchanged as the waiting pool does not consume much space,

but the insertion and deletion operations will consume time.

Scalability. The the second column of Fig. 6 shows the

scalability test of RQL. Due to the limitations on the time

complexity for OPT and TGOA, we only plot the values of

them for the first three cases. The utility increases linearly

and RQL outperforms all the baselines. The running time also

grows linearly, and the memory costs of all the algorithms

only increase to a small extent, as they are all designed for

data streams, and the expansion of data scale will not change

the memory cost much.

Performance on Real Datasets. The third column of Fig. 6

presents the results of varying dUB of nodes from both sides

on the real dataset. The utility is similar to the first column of

Fig. 5, but the advantage of RQL is not notable. The running

time of FB grows the fastest, as the arriving frequency of real

data varies a lot and FB has to maintain a waiting pool for a

fixed time even when nodes arrive frequently. Consequently,

the Hungarian algorithm is conducted on too many nodes.

The final column of Fig. 6 shows the results of varying

dUB of nodes from one side on the real dataset. If only the

nodes from one side wait longer, the waiting pool will not

be too crowded and the memory consuming problem of FB

vanishes. The performance of RQL on real data is not as good

as that on synthetic data. The reason is that the synthetic data

are generated by stable distributions and RQL can learn some

regular patterns. But for real data, the regular pattern may

not be obvious, and there are also many external factors to

affect the distributions. Particularly, the real data have spatial

and temporal features but RQL does not make use of them

as RQL is intended for general bipartite matching rather than

optimized for spatial matching.

Impact of Quantization. We study the effectiveness of

quantization on the most space consuming parameter setting,

i.e., the setting varying the upper bound of duration on both

sides and where qs = 5 and qa = 3. The results are shown

in Fig. 7, where the quantized RQL is denoted by RQL-q.

In Fig. 7a, we observe that RQL-q achieves the same utility

score as RQL, it even outperforms RQL in some cases, since

a more compact representation of Q-value may relieve the

sparsity problem and make the convergence faster. In Fig. 7b,

we find that the memory cost of RQL-q remains stable, at

about 15MB increase of duration, while that of RQL keeps

mounting, which proves that applying quantization to reduce

the memory cost is effective.
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Fig. 7: Effect of quantized techniques

Summary of Experimental Results. In terms of utility

scores, RQL is the best in most cases both on real and

synthetic datasets. For the running time, all the algorithms

except TGOA perform similarly, but RQL is generally faster

than QL. However, the memory cost of RQL is about twice

as that of the others. By applying quantization, the memory

of RQL can be reduced without affecting the utility score.

VII. CONCLUSION

In this work, we propose a new online bipartite match-

ing problem, the dynamic bipartite graph matching (DBGM)
problem, which is better aligned with emerging real-world

applications. On observing that most existing algorithms make

real-time matching decisions which limits their performance

and practicability, we propose a novel adaptive batch-based

framework to solve the DBGM problem. We prove that the

adaptive batch-based framework guarantees a competitive ratio

of 1
C−1 in the adversarial model. On basis of the frame-

work, we devise Restricted Q-learning (RQL), a reinforcement

learning based algorithm that yields a near optimal batch-

splitting strategy. We also propose optimization techniques to

reduce the search space and the memory cost of our algorithm.

Extensive experiments on both real and synthetic datasets

validate the effectiveness and efficiency of our algorithm.

ACKNOWLEDGMENT

We are grateful to anonymous reviewers for their construc-

tive comments. Yansheng Wang, Yongxin Tong, Ke Xu, and

Weifeng Lv’s works are partially supported by National Sci-

ence Foundation of China (NSFC) under Grant No. 61822201,

U1811463, 61532004, the Science and Technology Major

Project of Beijing under Grant No. Z171100005117001, and

Didi Gaia Collaborative Research Funds for Young Scholars.

Cheng Long’s work is partially supported by NTU SUG

M4082302.020. Yongxin Tong is the corresponding author in

this paper.

REFERENCES

[1] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal algorithm
for on-line bipartite matching,” in STOC, 1990, pp. 352–358.

[2] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani, “Adwords and
generalized online matching,” Journal of the ACM (JACM), vol. 54,
no. 5, p. 22, 2007.

[3] Z. Huang, N. Kang, Z. G. Tang, X. Wu, Y. Zhang, and X. Zhu, “How
to match when all vertices arrive online,” in STOC, 2018, pp. 17–29.

[4] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile micro-
task allocation in spatial crowdsourcing,” in ICDE, 2016, pp. 49–60.

[5] H. Ting and X. Xiang, “Near optimal algorithms for online maximum
edge-weighted b-matching and two-sided vertex-weighted b-matching,”
Theor. Comput. Sci., vol. 607, pp. 247–256, 2015.

[6] Y. Wang and S. C. Wong, “Two-sided online bipartite matching and
vertex cover: Beating the greedy algorithm,” in ICALP, 2015, pp. 1070–
1081.

[7] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and K. Xu, “Flexible
online task assignment in real-time spatial data,” PVLDB, vol. 10, no. 11,
pp. 1334–1345, 2017.

[8] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu,
“Trichromatic online matching in real-time spatial crowdsourcing,” in
ICDE, 2017, pp. 1009–1020.

[9] Y. Zeng, Y. Tong, L. Chen, and Z. Zhou, “Latency-oriented task
completion via spatial crowdsourcing,” in ICDE, 2018, pp. 317–328.

[10] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[11] M. L. Littman, “Algorithms for sequential decision making,” Ph.D.
dissertation, 1996.

[12] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning - an introduction,
ser. Adaptive computation and machine learning. MIT Press, 1998.

[14] G. Goel and A. Mehta, “Online budgeted matching in random input
models with applications to adwords,” in SODA. Society for Industrial
and Applied Mathematics, 2008, pp. 982–991.

[15] J. Feldman, A. Mehta, V. S. Mirrokni, and S. Muthukrishnan, “Online
stochastic matching: Beating 1-1/e,” in FOCS, 2009, pp. 117–126.

[16] B. Brubach, K. A. Sankararaman, A. Srinivasan, and P. Xu, “New
algorithms, better bounds, and a novel model for online stochastic
matching,” in ESA, 2016, pp. 24:1–24:16.

[17] J. P. Dickerson, K. A. Sankararaman, A. Srinivasan, and P. Xu, “Assign-
ing tasks to workers based on historical data: Online task assignment
with two-sided arrivals,” in AAMAS, 2018, pp. 318–326.

[18] Z. Huang, Z. G. Tang, X. Wu, and Y. Zhang, “Online vertex-weighted
bipartite matching: Beating 1-1/e with random arrivals,” in ICALP, 2018,
pp. 79:1–79:14.

[19] R. I. Brafman and M. Tennenholtz, “R-MAX - A general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of
Machine Learning Research, vol. 3, pp. 213–231, 2002.

[20] M. J. Kearns and S. P. Singh, “Near-optimal reinforcement learning in
polynomial time,” Machine Learning, vol. 49, no. 2-3, pp. 209–232,
2002.

[21] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in NIPS, 2000, pp. 1057–1063.

[22] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[23] R. Bellman, Dynamic programming. Courier Corporation, 2013.
[24] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:

General framework and applications,” in ICML, 2013, pp. 151–159.
[25] E. Curry et al., “Adaptive task assignment in spatial crowdsourcing,”

Ph.D. dissertation, 2016.
[26] M. Z. Spivey and W. B. Powell, “The dynamic assignment problem,”

Transportation Science, vol. 38, no. 4, pp. 399–419, 2004.
[27] D. Gao, Y. Tong, J. She, T. Song, L. Chen, and K. Xu, “Top-k team

recommendation and its variants in spatial crowdsourcing,” Data Science
and Engineering, vol. 2, no. 2, pp. 136–150, 2017.

[28] Y. Tong, L. Chen, Z. Zhou, H. V. Jagadish, L. Shou, and W. Lv,
“SLADE: A smart large-scale task decomposer in crowdsourcing,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 8, pp.
1588–1601, 2018.

[29] “Didi chuxing,” https://www.didichuxing.com/.
[30] “Gaia,” https://outreach.didichuxing.com/research/opendata/.
[31] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic pricing

in spatial crowdsourcing: A matching-based approach,” in SIGMOD,
2018, pp. 773–788.

[32] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” PVLDB, vol. 11, no. 11,
pp. 1633–1646, 2018.

[33] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, “Online minimum
matching in real-time spatial data: Experiments and analysis,” PVLDB,
vol. 9, no. 12, pp. 1053–1064, 2016.

1489


