
Discovering Threshold-based Frequent Closed 

Itemsets over Probabilistic Data 
Yongxin Tong

#1
, Lei Chen

#2
, Bolin Ding

*3
 

#
Department of Computer Science and Engineering, Hong Kong Univeristy of Science and Engineering 

1 2
{yxtong, leichen}@cse.ust.hk 

*
Department of Computer Science, University of Illinois at Urbana-Champaign 

3
bding3@uiuc.edu 

 
Abstract—In recent years, many new applications, such as 

sensor network monitoring and moving object search, show a 

growing amount of importance of uncertain data management 

and mining. In this paper, we study the problem of discovering 

threshold-based frequent closed itemsets over probabilistic data. 

Frequent itemset mining over probabilistic database has 

attracted much attention recently. However, existing solutions 

may lead an exponential number of results due to the downward 

closure property over probabilistic data. Moreover, it is hard to 

directly extend the successful experiences from mining exact data 

to a probabilistic environment due to the inherent uncertainty of 

data. Thus, in order to obtain a reasonable result set with small 

size, we study discovering frequent closed itemsets over 

probabilistic data. We prove that even a sub-problem of this 

problem, computing the frequent closed probability of an itemset, 

is #P-Hard. Therefore, we develop an efficient mining algorithm 

based on depth-first search strategy to obtain all probabilistic 

frequent closed itemsets. To reduce the search space and avoid 

redundant computation, we further design several probabilistic 

pruning and bounding techniques. Finally, we verify the 

effectiveness and efficiency of the proposed methods through 

extensive experiments. 

I. INTRODUCTION 

Recently, due to the wide application of uncertain data, 

such as sensor network monitoring [16, 17], moving object 

search [8], object identification [5], etc., mining frequent 

itemsets over uncertain (or probabilistic) data has attracted 

much attention from the data mining and database 

communities. However, like its counterpart, mining frequent 

itemsets over exact data, mining frequent itemsets over 

uncertain data [4, 9, 22] can produce an exponential number 

of frequent itemsets which cause the mining results less useful. 

A classical solution is proposed to address the similar problem 

in exact data, called mining frequent closed itemsets [18]. The 

approach intends to find frequent itemsets whose supports are 

different from the supports of all their supersets; thus, 

redundant itemsets will be excluded. Since mining frequent 

closed itemsets offers high-level compression, in this paper, 

we would like to investigate this compression strategy on 

uncertain data in order to reduce the huge number of frequent 

itemsets generated by the previous mining methods. 

Unfortunately, the solution for mining frequent closed 

itemsets over exact data cannot be directly applied to 

uncertain data as shown by following example. 

TABLE I 

AN UNCERTAIN TRANSACTION DATABASE 

TID Location Weather Time Speed Prob. 

T1 HKUST Rain 2:30-3:00 20-30 0.9 

T2 HKUST Rain 2:30-3:00 null 0.6 

T3 HKUST Rain 2:30-3:00 null 0.7 

T4 HKUST Rain 2:30-3:00 20-30 0.9 

TABLE II 

THE CONCISE FORMAT OF TABLE I 

TID Transaction Prob. 

T1 a  b  c  d  0.9 

T2 a  b  c  0.6 

T3 a  b  c 0.7 

T4 a  b  c  d 0.9 

Example 1.1 (Motivation). Most existing intelligent traffic 

systems depend on sensors to collect real-time monitoring 

data. According to logs of vehicles monitoring, some hidden 

traffic patterns, such as “the gate of HKUST crossroad always 

had traffic jam at 2-3 p.m.”, can be found and be utilized to 

predict potential traffic problems in the future. However, due 

to the limitation of sensors, data collected by these sensors are 

often uncertain. Table I shows synthesized transaction data 

that records traffic situation of one crossroad. For its 

commonality in data processing, we also adopt the tuple-

uncertainty data model as in this paper [22]. Namely, in Table 

I, every line represents one tuple which records a sensor 

reading and its existence probability, where TID is used to 

identify distinct tuples. For the ease of presentation, we use 

Table II, which represents each distinct attribute value with a 

distinct symbol. 

In uncertain database, in order to explain the existence of 

data, Possible World Semantics are usually adopted [1, 4, 9, 

10, 15, 22, 23]. Specifically, an uncertain transaction database 

can be viewed as a set of exact transaction databases. Every 

possible world containing zero or more tuples represents one 

exact transaction database. Table III shows all possible worlds 

originated from Table II and their corresponding probabilities. 

(in the first three columns) For instance, PW5 (the fifth 

possible world) in Table III illustrates the appearance of T1, 

T2, T3 and the absence of T4 and the probability of PW5 

equals 0.9×0.6×0.7×(1-0.9)=0.0378. 

According to the definition of probabilistic frequent 

itemsets [4, 22], an itemset is a probabilistic frequent itemset 

if and only if the sum of probabilities of possible worlds 



TABLE III 

POSSIBLE WORLDS AND FREQUENT CLOSED ITEMSETS IN POSSIBLE WORLDS 

PW Transactions Prob. Frequent Closed Itemsets 

PW1 T1 0.0108 {} 

PW2 T1, T2 0.0162 {abc} 

PW3 T1, T3 0.0252 {abc} 

PW4 T1, T4 0.0972 {abcd} 

PW5 T1, T2, T3 0.0378 {abc} 

PW6 T1, T2, T4 0.1458 {abc} {abcd} 

PW7 T1, T3, T4 0.2268 {abc} {abcd} 

PW8 T1, T2, T3, T4 0.3402 {abc} {abcd} 

PW9 T2 0.0018 {} 

PW10 T2, T3 0.0042 {abc} 

PW11 T2, T4 0.0162 {abc} 

PW12 T2, T3, T4 0.0378 {abc} 

PW13 T3 0.0028 {} 

PW14 T3, T4 0.0252 {abc} 

PW15 T4 0.0108 {} 

PW16 {} 0.0012 {} 

where such itemset is no less than the given minimum support 

(min_sup) is larger than the given probabilistic frequent 

threshold (pft). In this example, given min_sup=2 and pft = 

0.8, we can observe that there are 15 probabilistic frequent 

itemsets where 7 have the same frequent probability, 0.9726, 

and the other 8 have the same frequent probability, 0.81. 

However, we cannot further distinguish their significance in 

15 itemsets.                                                                              ■ 

In order to address this issue, we study the problem of 

mining probabilistic threshold-based frequent closed itemsets 

in this paper.  

According to the definition of frequent closed itemset in 

exact databases, an itemset must satisfy two conditions if the 

itemset is a frequent closed itemset. The first one is that the 

itemset must be frequent, namely, the support of such itemset 

must be no less than the given minimum support. The second 

one is that the itemset must be closed, namely, its support 

must be larger than supports of any of its supersets. Given an 

uncertain database, we can check the degree that an itemset is 

a frequent closed itemset by measuring the frequent closed 

probability which equals the sum of probabilities of possible 

worlds where such itemset is a frequent closed itemset. Then, 

an itemset is defined as a probabilistic threshold-based 

frequent closed itemset (which will be called as probabilistic 

frequent closed itemset in this paper for simplicity) if and only 

if its frequent closed probability is larger than the given 

probabilistic frequent closed threshold (pfct). We further 

explain the concept using the following example. 

    Example 1.2 (Probabilistic Frequent Closed Itemset). We 

can get all frequent closed itemsets in each possible world in 

the last column of Table III (In Table III, {} means an empty 

set). For instance, assume min_sup=2 and pfct = 0.8, we can 

compute the frequent closed probability of {abc}=Pr(PW2)+ 

Pr(PW3)+Pr(PW5)+Pr(PW6)+Pr(PW7)+Pr(PW8)+Pr(PW10)

+Pr(PW11)+Pr(PW12)+Pr(PW14)= 0.8754, and that of {abcd} 

is equal to 0.81. Moreover, frequent closed probabilities of 13 

other probabilistic frequent itemsets are 0. Among 15 

probabilistic frequent itemsets, {abc} and {abcd} are only 

probabilistic frequent closed itemsets. So, {abc} and {abcd} 

can approximately express whole information of all 15 

probabilistic frequent itemsets. Thus, probabilistic frequent 

closed itemsets can compress the size of all probabilistic 

frequent itemsets reasonably.                                                   ■ 

With newly defined probabilistic frequent closed itemsets 

over uncertain data, we target on how to discover these 

itemsets efficiently over uncertain data. A naïve method first 

enumerates all possible worlds of a given uncertain database 

and mines all frequent closed itemsets in each possible world. 

Then frequent closed probability of each itemset can be 

computed according to the probabilities of possible worlds. 

Finally, those itemsets whose frequent closed probabilities are 

larger than the given threshold (pfct) will be returned as the 

results. Clearly the naïve solution is very costly due to the 

exponential number of possible worlds. In fact, the operation 

of computing frequent closed probability is a #P-Hard 

problem. Therefore, we need to find efficient solutions to 

compute the probability. 

To summarize, in this paper, we make the following 

contributions: 

1. We propose a new problem, mining probabilistic 

frequent closed itemsets over uncertain data and prove that 

even a sub-problem of this problem, computing the frequent 

closed probability of an itemset, is #P-Hard.  

2. We design an efficient algorithm based on depth-first 

search to discover all probabilistic frequent closed itemsets. In 

addition, we propose several probabilistic pruning and 

bounding techniques to reduce search space and avoid 

redundant computation. 

3. Extensive experiments demonstrate that the effectiveness 

and efficiency of our algorithm. 

The rest of the paper is organized as follows. In Section II, 

we review the mining frequent patterns in exact data and the 

mining probabilistic frequent patterns over uncertain data. Our 

problem definition and complexity analysis of the studied 

problem is introduced in Section III. In Section IV, we 

propose our efficient algorithm based on depth-first search 

strategy and several probabilistic pruning techniques. 

Experimental studies are reported in Section V. Finally, we 

conclude in Section VI. 

II. RELATED WORK 

In this section, we will review the related work from two 

categories, frequent pattern mining in exact and uncertain data. 

A. Frequent Pattern Mining over Exact Data 

Since Rakesh Agrawal proposed the concept of association 

rule and the Apriori algorithm respectively [2, 3], many 

efficient algorithms about mining frequent itemsets have been 

proposed, such as FP-growth [13], Eclat [28], and so on. 

However, mining the complete set of frequent itemsets 

produces a lot of redundant itemsets because of the well-

known downward closure property. To solve such a problem, 

a classical approach of mining frequent closed itemsets was 

proposed [18]. This approach aims to discover the frequent 

itemsets whose supports are different from the supports of any 

their supersets. Since the problem of mining frequent closed 

itemsets has been proposed, there exist many efficient 



algorithms, such as CLOSET [19], Closet+ [24], FPclose [12], 

Charm [29], and so on, and the inspiration of mining frequent 

closed itemset is also extended to other complex structural 

data, for example mining frequent closed sequential patterns 

[11, 25, 27], mining frequent closed subgraphs [26], etc. 

Although there are a lot of works on mining frequent closed 

patterns, all these algorithms are designed for exact data and 

cannot be extended to uncertain data directly. 

B. Frequent Pattern Mining over Uncertain Data 

Another set of researches related with our work are mining 

frequent patterns over uncertain data. With the advanced 

research on management of uncertain data, a few novel works 

of mining frequent patterns over uncertain data have emerged 

in recent years. According to different interpretations of the 

uncertainty, existing work for mining frequent pattern over 

uncertain data are grouped into two categories: approaches 

based on expected support model and approaches based on 

probabilistic frequent model. In the expected support model, 

the first work proposed by Chui et al. [9] summed up all the 

probabilities of an itemset in all transactions which contain 

such itemset in order to estimate the support of such itemset. 

Based on the concept of expected support, Chui et al. 

proposed the U-Apriori algorithm [9] for mining all frequent 

itemset in uncertain data and an efficient decremental pruning 

strategy [10]. Later, with the same expected support model, 

UF-growth algorithm adopted the strategy of FP-growth to 

mining frequent itemset [15]. Three novel algorithms [1]: 

UApriori, UH-mine and UFP-tree, respectively, extended 

from three classical algorithms, Apriori [3], H-mine [20] and 

FP-growth [13], were designed to find frequent itemsets. A 

sampling-based algorithm [7] was also proposed to 

approximately mine frequent itemsets based on the expected 

support. In addition, the problem of mining frequent subgraph 

patterns in uncertain graphs was also studied [31].  

In addition, under the probabilistic frequent model, the 

dynamic programming strategy was adopted to obtain 

frequent probabilities of itemsets [4]. Then, two efficient 

algorithms, the bottom-up and the top-down, were designed to 

find all probabilistic frequent itemsets in tuple-uncertainty 

model [22], respectively. In addition, an efficient algorithm 

based on the Poisson binomial distribution was proposed to 

accelerate mining probabilistic frequent itemsets recently [23]. 

Furthermore, [30] proposed an exact and a sampling-based 

algorithm to discover likely frequent items in probabilistic 

data stream. Moreover, mining probabilistic frequent subgraph 

patterns in uncertain graphs has also been studied [32].    

Although the above researches can obtain probabilistic 

frequent itemsets efficiently, none of them studied mining 

probabilistic frequent closed itemsets. A natural idea is to 

discover all probabilistic frequent closed itemsets by simply 

checking the result set generated from algorithms of [22]. 

Unfortunately, such solution is inefficient because the 

checking (namely, computing the frequent closed probability 

of each itemset) is #P-Hard. Thus, in order to tackle this 

challenge, our work mainly focuses on designing several 

efficient pruning techniques together with a new search 

strategy to get probabilistic frequent closed itemsets. 

TABLE IV 

THE UPDATED TABLE II 

TID Transaction Prob. 

T1 a  b  c  d  0.9 

T2 a  b  c  0.6 

T3 a  b  c 0.7 

T4 a  b  c  d 0.9 

T5 a  b  0.4 

T6 a 0.4 

 

In particular, a close related research with our work, mining 

probabilistic frequent closed itemsets in uncertain database 

[34], has been proposed recently. This work defines a new 

concept, called the probabilistic support. When a probabilistic 

frequent threshold is given, the probabilistic support of each 

itemset equals the maximum support which can satisfy the 

probabilistic frequent threshold. Thus, in [34], an itemset X is 

a probabilistic frequent closed itemset if and only if the 

probabilistic support of such itemset is larger than the 

min_sup and probabilistic supports of all supersets of this 

itemset are smaller than the probabilistic support of this 

itemset. The biggest difference between [34] and our work lies 

in problem definitions: our approach can exactly measure the 

degree that an itemset is frequent closed itemset in all possible 

worlds. However, [34] is unable to guarantee that a 

probabilistic frequent itemset is always a frequent closed 

itemset in possible worlds which are used to obtain the 

probabilistic support of such itemset. We will further explain 

our difference by the following example. To better illustrate, 

we first add two transactions into Table 2 and build a new 

uncertain database shown in Table IV. Based on Table IV, We 

can obtain a contradiction under the definition of [34]. 

Assume min_sup=2 and pft=0.9 which is same as Example 1.2, 

[34] will return {a} and {abcd} as the result. When 

min_sup=2 and pft=0.8, {ab} and {abcd} show up as result. 

The frequent probabilities of {a} and {ab} are 0.99 which 

already satisfy both the given thresholds, thus, the frequent 

closed itemset should not vary (from {a} to {ab}) while the 

threshold decreases from 0.9 to 0.8. In contrast, with the same 

min_sup=2, no matter how the probabilistic frequent threshold 

changes, our approach always returns {abc} and {abcd} as 

results having frequent closed probabilities as 0.88 and 0.99 

respectively. Moreover, {a} and {ab}, whose frequent closed 

probabilities are only 0.4, won’t be returned as final results. In 

short, our result includes more useful information and 

guarantees the strict probabilistic semantics.  

III. PROBLEM DEFINITION 

A. Frequent Closed Itemset in Exact Data 

Let I = {i1, i2,…, in} be a set of distinct items. We call a 

non-empty subset of I, X, as an itemset or pattern. For brevity, 

we use X= x1x2…xn to denote itemset X={x1, x2,…, xn}. X is 

called the l-itemset if it has l items. Given a (exact) transaction 

database, TDB, each transaction is denoted as a tuple <tid, X> 

where tid is a transaction identifier. The number of 

transactions in TDB containing X is called the support of X, 

denoted as support(X). 

 



TABLE V 

SUMMARY OF NOTATIONS 

Notation Meaning 

min_sup 

pft 
pfct 

PrF(X) 

PrC(X) 

PrFC(X) 

 minimum support threshold 

probabilistic frequent threshold 
probabilistic frequent closed threshold 

frequent probability of itemset X 

closed probability of itemset X 

frequent closed probability of itemset X 

 

In addition, a summary of notations is shown in Table V. 

Definition 3.1 (Frequent Itemset). Given a minimum 

support threshold min_sup, an itemset X is frequent if and 

only if (iff) support(X) is equal to or larger than the min_sup. 

Definition 3.2 (Closed Itemset). An itemset X is a closed 

itemset if and only if there is no proper superset Y X such 

that support(Y) = support(X). (Y is a non-empty subset of I) 

Definition 3.3 (Frequent Closed Itemset). An itemset X is a 

frequent closed itemset if and only if it is frequent and there is 

no proper superset Y X such that support(Y) = support(X). 

(Y is a non-empty subset of I) 

B. Probabilistic Frequent Closed Itemset 

Given an uncertain transaction databases and an itemset X, 

we can treat support(X) as a random variable and derive its 

distribution from all possible worlds. Once we have 

support(X)’s distribution, we can define the frequent 

probability and the probabilistic frequent itemset as follows [4, 

22]. 

Definition 3.4 (Frequent Probability). Given a minimum 

support min_sup, and an itemset X, X’s frequent probability, 

denoted as PrF(X), is the probability that X’s support is equal 

to or larger than the min_sup. 

Definition 3.5 (Probabilistic Frequent itemset [22]). Given 

a minimum support min_sup, and a probabilistic frequent 

threshold pft, an itemset X, X is a probabilistic frequent 

itemset if X’s frequent probability is larger than the 

probabilistic frequent threshold, namely, 

Pr{support(X)  min_sup}= PrF(X) > pft 

Now we define the closed probability, frequent closed 

probability and the probabilistic frequent closed itemset. 

(Please note that even though an itemset may be a closed 

itemset, it may not be a frequent one) 

Definition 3.6 (Closed Probability). Given an itemset X, 

X’s closed probability, denoted as PrC(X), is the sum of the 

probabilities of possible worlds where X is a closed itemset. 

Definition 3.7 (Frequent Closed Probability). Given an 

itemset X, X’s frequent closed probability, denoted as PrFC(X), 

is the sum of the probabilities of possible worlds where X is a 

frequent closed itemset. 

Definition 3.8 (Probabilistic Frequent Closed Itemset). 

Given a probabilistic frequent closed threshold, pfct, an 

itemset X, X is a probabilistic frequent closed itemset if X’s 

frequent closed probability is larger than the probabilistic 

frequent closed threshold, namely, 

Pr{X is frequent closed itemset}= PrFC(X) > pfct 

Based on the above definitions, we define the problem that 

we studied in this paper. 

Problem Statement. Given an uncertain transaction database 

UTD; a minimum support threshold min_sup; a probabilistic 

frequent closed threshold pfct, we are required to find all 

probabilistic frequent closed itemsets in UTD.   

Obviously, the problem of computing the closed probability 

of an itemset is a special case of the problem of computing 

frequent closed probability of such itemset when min_sup=1. 

The hardness of the computational complexity of a general 

problem is at least same as that of its special case. In 

following Theorems, we first prove the problem of computing 

the closed probability of an itemset in UTD is #P-Hard. Thus, 

the problem of computing the frequent closed probability of 

an itemset in UTD is also #P-Hard. 

Theorem 3.1. It is #P-hard to compute the closed 

probability of an itemset in an uncertain transaction database. 

Proof. In order to prove the problem of computing the 

closed probability of an itemset is #P-hard, we reduce it from 

the monotone DNF counting problem (#MDNF), which is 

known to be #P-complete [33]. 

Consider an instance of #MDNF: Given a monotone DNF 

formula 1 2... nF C C C   , with n clauses and m Boolean 

variables 1 2,  ,  ...,  mv v v . In each clause 1 2...i lC y y y   , we 

have yj 1 2{ ,  ,  ...,  }mv v v and each variable can appear at most 

once. The #MDNF problem is to count the number of 

satisfying assignments of variables for the formula F. 

We map the above instance of #MDNF to an uncertain 

transaction database UTD = {T1, T2, ..., Tm}, where each 

itemset Tj corresponds to a variable vj. Create itemset X and 

another n items e1, e2, ..., en, where ei corresponds to a clause 

Ci . For every itemset, we have X   Tj ; and for each Tj and 

each ei, we have eiTj if and only if vj does NOT appear in 

the clause Ci. In this database, each itemset appears with 

probability ½. For instance, given a formula 1 2 3( )F v v v     

1 2 4 2 3 4( ) ( )v v v v v v     , we map it to uncertain transaction 

database UTD as in Table VI. 

TABLE VI 

THE UNCERTAIN TRANSACTION DATABASE BASED ON THE GIVEN DNF 

FORMULA 

TID Transaction Prob. 

T1 X       3e  ½ 

T2 X  ½ 

T3 X       2e  ½ 

T4 X        1e  ½ 

 

To complete the proof, we claim that in the #MDNF 

instance, the number of satisfying assignment is N if and only 

if in UTD, itemset X is NOT closed with probability N/2
m
 

(closed with probability 1- N/2
m
). For some technical reasons, 

X is also said to be NOT closed if X does not appear in an 

instance of UTD (e.g. in an empty instance). To prove this 

claim, we map an assignment of F to an instance of UTD in 

the possible world, in such a way that vj = true if and only if Tj 

does NOT appear -- we observe that this assignment is 

satisfying if and only if in the corresponding instance of UTD, 

X is NOT closed. Due to the space limit, details to prove this 

claim are deferred to the complete version of this paper.        ■ 



Theorem 3.2. It is #P-hard to compute the frequent closed 

probability of an itemset when the min_sup is given in an 

uncertain transaction database. 

Proof. The problem of computing the closed probability of 

an itemset is a special case of the problem of computing 

frequent closed probability of such itemset when min_sup=1. 

Based on Theorem 3.1, we know the problem of computing 

the closed probability of an itemset is #P-Hard, so the problem 

of computing the frequent closed probability of an itemset is 

also #P-Hard.                                                                           ■ 

IV. THE DEPTH-FIRST MINING ALGORITHM 

Based on the definition of probabilistic frequent closed 

itemsets, a naïve solution needs to enumerate all possible 

worlds and itemsets firstly, and then check the probability of 

each itemset. However, there are an exponential number of 

possible worlds and itemsets, so the naïve solution is not 

scalable when the database size becomes large. Thus, in this 

paper, we design a Bounding-Pruning-Checking framework to 

avoid redundant computation.  

Fig. 1 illustrates major steps of the general framework, 

including constructing single item candidate set, bounding & 

pruning, and checking phases. In remaining parts of this 

Section, we give the details about each step. We introduce the 

Chernoff-Hoeffding Bound-based Pruning in Section A. Three 

pruning methods, Superset Pruning, Subset Pruning, and 

Frequent Closed Probability Bound-based Pruning, are 

discussed in Section B. In the end, we present a depth-first 

search-based mining algorithm. 

 
______________________________________________________________ 

Fig. 1  Framework of MPFCI 

A. Bounding Frequent Probability 

As shown in the framework, in the first phase, we will 

compute a candidate set of probabilistic frequent single items.  

According to definitions of frequent probability, closed 

probability and frequent closed probability (Definition 3.4, 3.6, 

3.7), we know that the frequent closed probability of an 

itemset is not larger than either the frequent probability or the 

closed probability. Thus, both the frequent probability and 

closed probability of an itemset are upper bounds of the 

frequent closed probability of this itemset. In addition, we 

have also proven that computing closed probability is a #P-

Hard problem and we know that there exists the polynomial 

time algorithm to compute the frequent probability. Thus, it is 

a natural idea to bound the frequent closed probability by the 

frequent probability. However, it is meaningless to compute 

the exact frequent probability if it is very small. Thus, instead 

of directly computing the frequent probabilities using the 

existing method, we propose a pruning technique based on the 

Chernoff-Hoeffding bound [35] to filter out probabilistic 

infrequent items. This pruning is further explained by the 

following lemma. 

Lemma 4.1 (Chernoff-Hoeffding Bound-based Pruning). 
Given an itemset X, an uncertain transaction database UTD, 

X’s expected support  , a minimum support threshold 

min_sup, probabilistic frequent closed threshold pfct, an 

itemset X is a probabilistic infrequent itemset if, 
2 2

2

2

2 0

n

n

e pfct

e pfct





  


  





 

 
 

where (min_sup 1) / n    and n is the number of 

transactions in UTD.  

Proof. According the definition of the frequent probability, 

Pr{support(X)   min_sup} equals Pr{support(X)  min_sup-

1}. Moreover, based on the Chernoff-Hoeffing bound [35], we 

can get the following inequality: 
2 2

2

2

2
Pr{| sup( ) | }

0

n

n

e pfct
X n

e pfct





  
   

  





 
 

 
               ■ 

B. Computing Frequent Closed Probability 

1. Basic idea 

Again, based on definitions of frequent probability, closed 

probability and frequent closed probability (Definiton 3.4, 3.6, 

3.7), we can find that the frequent closed probability of a 

given itemset, X, equals to the frequent probability of X 

subtracted by the frequent non-closed probability of X. 

Formally, we define the frequent non-closed probability of an 

itemset as follows.  

Definition 4.1 (Frequent Non-Closed Probability). Given an 

itemset X, an uncertain transaction database UTD, a minimum 

support threshold min_sup, the frequent non-closed 

probability of X is the probability that there exists at least one 

superset of X which always appears together with X at least 

min_sup times.  

Assume that there are m other items, 1 2, ,..., me e e , besides 

items of X in UTD, the frequent non-closed probability of X 

is 1Pr( ... )mC C  ,where iC denotes an event that the superset of 

X, X+ ie , always appear together with X at least min_sup 

times. 

According to Definition 4.1, we know that computing the 

frequent non-closed probability is equivalent to computing the 

probability of the corresponding DNF formula. Hence, we can 

use the Inclusive-Exclusive Principle to compute the frequent 

non-closed probability as follows. Let 1 ... mF C C   , 

1

1

1

1 1 1 ...

Pr( ) Pr( ) Pr( ) ... ( 1) Pr( ... )
m

m

m
i i j i i

i m i j m i i m

F C C C C C

        

         

where Pr( iC ) means the probability that the superset of X, 

X+ ie , always appear together with X at least min_sup times. 

 



Based on the above formula, it is important to know how to 

compute Pr( iC ), which is consists of two independent parts  

of probabilities: 1) the first part is the probability that the 

superset of X, X+ ie , always appear together with X, and 2) 

the second part is the probability that both X and X+ ie  appear 

at least min_sup times simultaneously. (Thus, this part 

probability is just equal to the frequent probability of 

X+ ie since X+ ie  contains X). Thus, Pr( iC ) can be computed 

as follows, 

Pr( ) (1 Pr( )) Pr ( )
j

i j F i

T T

C T X e


     

where T represents a set of transactions which contain itemset 

X but do not contain itemset X+ ie , and the frequent 

probability of X+ ie  can be computed by the dynamic 

programming approach [22]. 

To speed up the computation of the frequent closed 

probability, we introduce several pruning and bounding 

techniques to reduce the computation cost in next several 

subsections. 

2. Pruning Techniques 

Although we use the Inclusive-Exclusive Principle to 

compute the frequent closed probability of an itemset, the cost 

of computation is still high. Fortunately, we find two efficient 

pruning rules based on properties of the frequent closed 

probability. To explain these pruning rules clearly, we first 

define the count of an itemset. 

Definition 4.2 (Count of An Itemset). Given an itemset X 

and an uncertain transaction database UTD, the count of X is 

the numbers of transactions which contain X. 

For example, to the same uncertain transaction database 

UTD in Table II, given itemsets {a,b,c,d}, {a,b,c,d}.count=2 

because only T1 and T4 possibly contain {a,b,c,d}. 

Lemma 4.2 (Superset Pruning). Given an itemset X whose 

size is |X|, an uncertain database UTD, and X’s superset X+ ie , 

whose size is |X|+1, if ie is smaller than at least one item in X 

with respect to the alphabetic order (namely, X is not the 

prefix of X+ ie by means of the alphabetic order), and 

X.count= X+ ie .count, we can get the following two results: 

1) X’s frequent closed probability is zero and X must not be 

probabilistic frequent closed itemset. 

2) All supersets with X as prefix based on the alphabetic 

order must not be probabilistic frequent closed itemsets. 

Proof. According to the given conditions, there is a superset 

of X, X+ ie , and X.count= X+ ie .count, X and X+ ie  always 

appear together in all possible worlds. Thus, PrFC(X)=0. In 

addition, for each superset of X, there must be at least one 

superset of X+ ie , which always appears with such superset of 

X together in all possible worlds. Thus, frequent closed 

probabilities of all supersets must also be 0. Furthermore, all 

supersets of X are not probabilistic frequent closed itemsets. 

So, the lemma holds.                                                       ■ 

We use the following example to further explain lemma 4.2. 

Example 4.1 (Superset Pruning). In our running example 

shown in Table II, we know that { , } { , , }b c a b c . Item a is 

smaller than b and c according to the alphabetic order, {a,b,c} 

is not a superset with {b,c} as prefix and {b,c}.count= 

{a,b,c}.count, so {b,c} and supersets with {b,c} as prefix must 

not be probabilistic frequent closed itemsets.  

Moreover, besides the superset pruning, we propose another 

pruning technique, subset pruning, to further reduce search 

space. 

Lemma 4.3 (Subset Pruning).Given an uncertain transaction 

database UTD, an itemset X, and X’s subset X- ie , ie  is the 

last item in X according to the alphabetic order. If X.count= 

X- ie .count, we can get the following two results: 

1) X- ie ’s frequent closed probability is zero and X- ie must 

not be probabilistic frequent closed itemset. 

2) Itemsets which have the same prefix X- ie , and the same 

size, |X|, must not be probabilistic frequent closed itemsets, 

supersets of such itemsets must not be probabilistic frequent 

closed itemsets.  

Proof. We know X.count= X- ie .count, X- ie  always appears 

together with X in all possible worlds. Thus, PrFC(X- ie )=0, 

and X- ie  is not probabilistic frequent closed itemset. 

Moreover, for each itemset which has the prefix X- ie  and the 

same size, |X|, there must be at least one superset of X, which 

always appears with this itemset with the prefix X- ie  together 

in all possible worlds. Thus, frequent closed probabilities of 

itemsets which have the same prefix X- ie , and the same size, 

|X| are zero. So, these itemsets and their supersets are not 

probabilistic frequent closed itemsets.                                     ■                                                           

We also use an example to further explain the lemma 4. 3. 

Example 4.2 (Subset Pruning). In our running example 

shown in Table II, {a,b,c} and {a,b,d} have the same prefix of 

{a,b} and the same size. In addition, {a,b}.count= 

{a,b,c}.count, so {a,b} must not be probabilistic frequent 

closed itemset. In addition, {a,b,d} and their all supersets are 

also not probabilistic frequent closed itemsets.   

3. Bounding Frequent Closed Probability 

To avoid meaningless computation of the frequent closed 

probability, we adopt the upper bound and the lower bound of 

frequent closed probability to filter out the unqualified 

itemsets.  

Lemma 4.4 (Upper Bound and Lower Bound of Frequent 

Closed Probability). Given an itemset X, an uncertain 

transaction database UTD, and min_sup, if there are m other 

items besides items in X, 1 2, ,..., me e e , the frequent closed 

probability of X, PrFC (X), satisfies: 
2

1

1

1 2 1

Pr( )
Pr ( ) Pr ( )

Pr( ) Pr( )

Pr ( ) Pr ( ) min{ Pr( ) 2 Pr( ) / ,  1}

m
i

FC F

i i ji j i

m m i

FC F i i j

i i j

C
X X

C C C

X X C C C m

 



  


 

 



   






 

 

where iC represents the event that the superset of X, X+ ie , 

always appear together with X at least min_sup times. 



Proof. We know that the frequent closed probability equals 

the corresponding frequent probability subtracting the 

frequent non-closed probability. Moreover the frequent non-

closed probability can be expressed as Inclusive-Exclusive 

Principle form, namely, the frequent non-closed probability of 

X is denoted as 1Pr( ... )mC C  . According to the de Caen 

probability inequality [6] and the Kwerel probability 

inequality [21], we can get the following formulas,  
2

1

1

1

1

1 2 1

Pr( )
Pr( ... )

Pr( ) Pr( )

Pr( ... ) min{ Pr( ) 2 Pr( ) / ,  1}

m
i

m

i i ji j i

m m i

m i i j

i i j

C
C C

C C C

C C C C C m

 



  


  

 



    






 

 

 Thus, the frequent closed probability of X, PrFC(X), 

satisfies the following result: 
2

1

1

1 2 1

Pr( )
Pr ( ) Pr ( )

Pr( ) Pr( )

Pr ( ) Pr ( ) min{ Pr( ) 2 Pr( ) / ,  1}

m
i

FC F

i i ji j i

m m i

FC F i i j

i i j

C
X X

C C C

X X C C C m

 



  


 

 



   






 

 

So, the lemma holds.                                                            ■ 

According to Lemma 4.4, we can further prune an itemset 

without computing its frequent closed probability if the upper 

bound of the frequent closed probability of the itemset is 

smaller than the given probabilistic frequent closed threshold.  

4. An Approximate Algorithm of Computing Frequent Closed 

Probability 

For each remaining itemset after all pruning methods, we 

have to compute its frequent closed probability. Because the 

computation of the frequent closed probability of an itemset is 

#P-Hard, we give a Monte-Carlo approximation algorithm to 

compute an approximate frequent closed probability of an 

itemset with a bounded error. The main idea of Monte-Carlo 

algorithm is to approximate a real value through a number of 

samplings, thus, it is most important for the approximation 

algorithm to select a suitable sampling method.  

A naïve sampling method randomly samples a possible 

world of a given uncertain transaction database and discovers 

all frequent closed itemsets in this possible world. The process 

repeats N times. For each itemset, we use the ratio between 

the number of sampled possible worlds that the itemset is a 

frequent closed itemset and N as the approximate frequent 

closed probability of this itemset. Clearly, with the increasing 

of the number of samplings, the approximate frequent closed 

probability of each itemset gets closer to its real frequent 

closed probability. However, the shortcoming of the naïve 

sampling method is that we cannot know the exact number of 

samplings that we need to run before all samplings end.  

To address this problem, we propose a Monte-Carlo 

approximation algorithm which satisfies FPRAS (fully 

polynomial randomized approximation scheme). Namely, 

given a relative tolerance error, ε, and a probabilistic 

confidence degree, δ, the approximate frequent closed 

probability of an itemset X, Pr ( )FC X


, must satisfies 

Pr(| Pr ( ) Pr ( ) | ) 1FC FCX X


     . Because we have already 

changed the problem of computing frequent non-closed 

probability of an itemset to the problem of computing the 

probability of the corresponding DNF formula, based on the 

coverage algorithm for DNF Counting problem [14], we can 

propose the following sampling solution.  

Our sampling method: Given a minimum support, 

min_sup, an uncertain database, UTD, which has n 

transactions and m distinct items, and an itemset X which 

contains k items, the DNF formula will consisted of m-k 

events. We firstly accumulate each ( )iPr C to a real number Z 

as an upper bound of the frequent non-closed probability of X. 

Then, we repeat N samplings and define two variables of real 

number, U and V, which are initialized as zero. In each 

sampling, we sample an event iC at first, and then continue to 

sample a possible world that must satisfy the event iC  and 

accumulate the probability of such possible world to V. Thus, 

V records the total probabilities of N samplings. Meanwhile, 

we still check whether the sampled possible world can satisfy 

two following conditions: 1) the possible world only satisfies 

the event iC ; 2) the possible world cannot satisfy i-1 other 

events from 1C to 1iC  . If the sampled possible world satisfies 

above two requirements, we also accumulate the probability 

of the sampled possible world to U, which measures the 

contribution of each event, iC , to the probability of the DNF 

formula. Finally, when N samplings end, we use UZ/V as the 

estimate of the approximate frequent non-closed probability, 

Pr ( )FNC X


. The detailed steps of our algorithm to compute the 

frequent closed probability is listed in Fig. 2. 

__________________________________________________ 
Fig. 2 Approximate Computing Frequent Closed Probability 



Time Complexity Analysis: According to the description 

of Procedure ApproxFCP, given the itemset, X, an uncertain 

transaction database, UTD; the number of all distinct items is 

m, then let k=m-|X|, we can derive the time complexity of 

Procedure ApproxFCP is
2

2

4 ln(2 / ) | |
( )

k UTD
O




. Please note 

|UTD| represents the number of transactions in UTD. Thus, the 

approximate algorithm needs a smaller number of samples 

(than the naïve algorithm) while guaranteeing that the 

estimated probability is precise enough. 

C. The Depth-First Mining Algorithm 

According to the framework in Fig. 1, after we get a 

candidate set of probabilistic frequent items based on 

Chernoff-Hoeffding bound-based pruning, we extend each 

possible itemset based on the depth-first search strategy. The 

Procedure, ProbFC, in Fig. 3 gives the details about the depth-

first search-based mining algorithm, which seamlessly 

integrates the above discussed solutions. In addition, if the 

current itemset fails to be pruned, we will compute X’s 

frequent closed probability to decide whether X is a 

probabilistic frequent closed itemset.  

In ProbFC algorithm, we firstly decide whether current 

itemset, X, needs to grow by the Superset Pruning in lines 1-2. 

If the pruning holds, all supersets with X as prefix based on 

the alphabetic order need not be generated (based on Lemma 

4.2). If the Superset Pruning fails to hold, we continue to 

generate the superset of X, X+ je , where je is larger than the 

last item in X with respect to the alphabetic order. (Please note 

all items in X are ordered by the alphabetic order from small 

to large) Then, in lines 5-6, we decide whether X+ je is a 

probabilistic frequent itemset based on the Chernoff-

Hoeffding bound-based Pruning. If X+ je is not probabilistic 

frequent, all supersets of X+ je  need not be produced as well. 

If X+ je fails to be filtered out in line 5, we continue to execute 

the Subset Pruning to X+ je . If Subset Pruning holds, we can 

get the following two results: 1) X must not be a probabilistic 

frequent closed itemset, 2) other supersets of X which have 

the same prefix X and the same size, |X|+1, need not be 

enumerated in lines 7-8. Please note that ek  is larger than je  

(based on Lemma 4.3). If X+ je cannot be filtered by above 

pruning strategies, in lines 9-10, we only compute the upper 

bound and the lower bound of the frequent closed probability 

of X+ je . If the upper bound is smaller than user-given 

threshold or the upper bound equals the lower bound, the 

frequent closed probability of X+ je need not be computed. 

Then, we do not directly compute the frequent closed 

probability of X+ je because X+ je still might be pruned by its 

superset. Hence, we continue to recursively call the function, 

ProbFC, to enumerate supersets of X+ je  based on depth-first 

search strategy in line 11. Finally, if X+ je fails to be pruned, 

we have to execute the steps in lines 12-14. In line 12, the 

Monte-Carlo–based approximate algorithm, ApproxFCP, is 

called to compute an approximate frequent closed probability. 

Then, we check whether X is a probabilistic frequent closed 

itemset based on its approximate frequent closed probability 

in lines 13-14. 

__________________________________________________ 
Fig. 3 Algorithm of ProbFC 

We further use an example to show how to find all 

probabilistic frequent closed itemsets using ProbFC. 

Example 4.3 (Depth-First Search-based Mining Algorithm). 

For the uncertain database UTD in Table II with min_sup=2, 

probabilistic frequent closed threshold, pfct=0.8. The process 

of mining probabilistic frequent closed itemsets in UTD is 

shown in Fig. 4.  

1. Find a candidate set of probabilistic frequent items. Based 

on Chernoff-Hoeffding bound-based pruning, we get a 

candidate set of probabilistic frequent items, 

Cand={a,b,c,d}.  

2. Discover all probabilistic frequent closed itemsets 

2.1. {a} passes the test of Chernoff-Hoeffding bound-based 

pruning, and {a}.count={ab}.count, so we need not 

grow the paths of {ac} and {ad}, based on the Subset 

Pruning. 

2.2. Similar to step 2.1, the Subset Pruning avoids growing 

{abd} and their supersets. In the depth-first search of 

{a} as prefix, we can finally obtain two probabilistic 

frequent closed itemset {abc} and {abcd}. Their 

frequent closed probabilities can be computed by our 

approximate algorithm marked by grey in Fig. 4. 

2.3. After finishing all enumeration with prefix {a}, we 

continue to test itemsets with other prefix. According 

to Superset Pruning, we can stop growing any 

itemsets. Namely, the whole enumeration process 

ends. 



2.4. Based on the above recursive function call, we get the 

result set: {abc, fcp: 0.875}, {abcd, fcp: 0.81}, where 

{itemset, fcp:value} denotes the itemset and the value 

of this frequent closed probability, respectively. 
 

 
Fig. 4 Algorithm of ProbFC 

TABLE VII 

INDIVIDUAL FEATURES OF ALGORITHMS IN OUR EXPERIMENTS 

Algorithm CH Super Sub PB Framework 

MPFCI √ √ √ √ DFS 
MPFCI-NoCH  √ √ √ DFS 

MPFCI-NoBound √ √ √  DFS 

MPFCI-NoSuper √  √ √ DFS 
MPFCI-NoSub √ √  √ DFS 
MPFCI-BFS √   √ BFS 

 

TABLE VIII 

CHARACTERISTICS OF DATASETS 

Dataset 
Number of 

Transaction 

Number 

of Items 

Average 

Length 

Maximal 

Length 

Mushroom 8124 120 23 23 

T20I10D30KP40 30000 40 20 40 

 

V. EXPERIMENTAL RESULTS 

In this section, we report our experimental study on the 

performances of MPFCI and effectiveness of pruning 

strategies. We compare MPFCI with other four algorithms: 

MPFCI without Chernoff-Hoeffding bound pruning, (MPFCI-

NoCH), MPFCI without superset pruning (MPFCI-NoSuper), 

MPFCI without subset pruning (MPFCI-NoSub) and MPFCI 

without probabilistic bound of the closed probability pruning 

(MPFCI-NoBound). Moreover, we verify the efficiencies of 

different search strategies, depth-first search and breadth-first 

search. We implemented a breadth-first search-based 

algorithm, MPFCI-BFS, which utilizes the Chernoff-

Hoeffding bound-based pruning and the frequent closed 

probability bound-based pruning. However, MPFCI-BFS 

cannot use superset pruning and subset pruning because they 

won’t show up in BFS’s enumeration, which nullifies 

checking on ensuing pruning conditions. Finally, we also 

report the compression quality of mining probabilistic 

frequent closed itemsets. More details of six algorithms are 

listed in Table VII. Table VII has five columns where CH 

means the Chernoff-Hoeffding bound pruning, Super means 

the superset pruning, Sub means the subset pruning, PB means 

the frequent closed probability-based pruning, and Framework 

means the algorithm framework used by different algorithms. 

All the experiments are performed on an Intel(R) Core(TM) i5 

2.40GHz Dell laptops with 4GB main memory, running on 

Microsoft Windows 7. All the programs are implemented in 

Visual C++ 2010.  

Since real uncertain data sets are not available, in our 

experiments, we follow the experimental method adopted by 

the previous work [22] and generate probabilistic datasets 

from a real certain dataset and a synthetic certain dataset by 

assigning a probability generated from Gaussian distribution 

to each transaction. The real certain dataset is Mushroom 

which contains characteristics of various species of 

mushrooms. The synthetic dataset, T20I10D30KP40 is 

generated from IBM dataset generator [5], with an average 

transaction length 20 and an average itemset length 10 [2]. 

The synthetic dataset contains 30000 transactions and 40 

unique items [2]. The characteristics of above two datasets are 

shown in Table VIII. In addition, to verity the influence of 

uncertainty, we test two scenarios. The first scenario is that a 

dataset follows Gaussian distribution with low mean and high 

variance, namely probabilities of transactions are similar and 

close to each other. We make the Mushroom follows Gaussian 

distribution whose mean is 0.5 and variance is 0.25. Another 

scenario is that a dataset follows Gaussian distribution with 

high mean and low variance. In our experiment, we make 

T20I10D30KP40 follow Gaussian distribution with mean 0.8 

and variance 0.1. 

A. Efficiency and Effectiveness of Pruning Strategies 

In this subsection, we report the efficiency of algorithms 

and effectiveness of pruning strategies. There are 4 parameters 

in our mining algorithm, MPFCI, which are minimum support, 

min_sup, probabilistic frequent closed threshold, pfct, relative 

tolerance error, ε, and the probabilistic confidence degree 

parameter, δ. We test influences of each parameter in terms of 

total running time and effectiveness of pruning methods. We 

set default values to each parameter as follows. The min_sup 

is set to 0.4 in Mushroom dataset and 0.3 in T20I10D30KP40 

dataset (which is the median of our experiment about 

min_sup). We set pfct to 0.8 since results with low probability 

are usually meaningless. ε and δ (the probabilistic confidence 

degree is 1-δ) are set to 0.1 because large error also leads to 

meaningless results. When a parameter changes, other three 

parameters are fixed to their default values. In addition, we 

did not report the running times over 1 hour if other 

algorithms can finish the same task within 1 hour. 

Firstly, we test the efficiency of our algorithm w.r.t. the 

running time compared with a naive method. Fig 5 (a) shows 

comparison of running time between Naive and our algorithm, 

MPFCI, while min_sup increase from 0.2 to 0.6 in Mushroom 

dataset. Here, the naive method, called Naive, directly use our 

approximation algorithm to compute frequent closed 

probability one by one after obtaining all probabilistic 

frequent itemsets based on TODIS algorithm [22]. We can 

observe that the running time of the Naive algorithm exceed 1 



hour after the min_sup becomes smaller than 0.4. However, 

the MPFCI algorithm can find all probabilistic frequent closed 

itemsets efficiently. This explains that the computational cost 

of directly testing frequent closed probability increases 

sharply with the increase of the number of probabilistic 

frequent itemsets (The number increases w.r.t the increase of 

min_sup).  Similar results can be found in Fig. 5(b) which also 

reports comparison of running time in T20I10D30KP40 

dataset. Hence, it is inefficient to directly check frequent 

closed probabilities of all probabilistic frequent itemsets 

which can be obtain by existing solution, such as TODIS [22]. 

Next, we focus on the test of effectiveness of different 

pruning strategies.  

Effect of min_sup in MPFCI. We firstly investigated the 

running time of five compared algorithms w.r.t. the minimum 

support, min_sup. Fig. 6(a) shows the running time of all 

algorithms while min_sup changes from 0.2 to 0.6 in 

Mushroom dataset. When min_sup decreases, we observe that 

the running time of all the algorithms goes up due to the 

number of probabilistic frequent itemsets increases. However, 

we find that the growth speed of MPFCI is the lowest due to 

all pruning methods it employed. We also find that MPFCI-

NoCH has the similar running time with that of MPFCI. This 

indicates that the Chernoff-Hoeffding bound pruning 

contributes less to reduce the total running time compared to 

other pruning methods. In addition, MPFCI-NoBound is the 

slowest algorithm. In particular the running time of MPFCI-

NoBound is larger than 1 hour when min_sup is smaller 0.3. 

Similar results can be found in Fig. 6(b) which reports the 

running time of all algorithms in T20I10D30KP40 dataset.  

Effect of pfct in MPFCI. We continue to test the running 

time of five compared algorithms with varying the 

probabilistic frequent closed threshold, pfct in two different 

datasets. In Fig. 7 (a) and (b), we can obverse that MPFCI is 

always the fastest algorithm. With regards to the change of 

pfct, the running time of all algorithms remains approximately 

the same. Thus, in tuple-model uncertain transaction database, 

we can discover that the influence of probabilistic frequent 

closed threshold will be smaller than that of min_sup to the 

total running time. Meanwhile, MPFCI is the fastest algorithm, 

and MPFCI-NoBound is still the slowest one, which indicates 

that the probabilistic bound pruning is more effective than 

other pruning methods. 

     

(a) Mushroom                                     (b) T20I10D30KP40 

Fig. 5 Efficiency Comparison between MPFCI and Naïve 

 
(a) Mushroom                                  (b) T20I10D30KP40 

Fig. 6 Running time w.r.t min_sup 

 
                    (a) Mushroom                                   (b) T20I10D30KP40 

Fig. 7 Running time w.r.t pfct 

 
                   (a) Mushroom                                (b) T20I10D30KP40 

Fig. 8 Running time w.r.t ε 

 
 (a) Mushroom                                  (b) T20I10D30KP40 

Fig. 9 Running time w.r.t δ 

Effect of  in MPFCI. In this part, we mainly analyse the 

influence of the relative tolerance error, ε, to the running time 

in Fig. 8 (a) and (b). With the change of ε, we can observe: 1) 

four algorithms, MPFCI, MPFCI-NoCH, MPFCI-NoSuper 

and MPFCI-NoSub, keep a steady running time. 2) The 

algorithm of MPFCI-NoBound becomes slower clearly when 

ε becomes lower. In addition, the above observations also 

verify the time complexity analysis of the approximation 

algorithm to compute frequent closed probability. Because the 

MPFCI-NoBound algorithm does not use any probabilistic 

bound pruning to reduce redundant computation for frequent 

closed probability, we have to compute closed probabilities of 

all itemsets which cannot be removed by other pruning 

methods.  Please note that the time complexity of our 

approximation algorithm to compute frequent closed 

probability is 2(4 ln(2 / ) | | / )O k UTD  . Moreover, the running 

time of approximation algorithm will increase 2(1/ )O   with 

the decreasing of ε. Thus, the decreasing of  causes more 

influence to the running time of the MPFCI-NoBound 



algorithm. Moreover, other four algorithms utilize the 

probabilistic bounds pruning, so they can avoid redundant 

computation of frequent closed probabilities. 

Effect of  in MPFCI. We finally studied the influence of 

running time from the probabilistic confidence degree 

parameter,  , in  Fig. 9 (a) and (b). We can find the similar 

effect with the change of  . Namely, the MPFCI-NoBound 

algorithm is also affected greatly by the change of  . By 

comparing the results in Fig. 8 and Fig. 9, we can discover 

that the influence of   on the running time of MPFCI-

NoBound is smaller than the influence of  . This is because 

with decreasing of  , the running time of MPFCI-NoBound 

about computing frequent closed probability will 

increase (ln(2 / ))O  . 

B. Compression Quality Evaluation 

In this subsection, we mainly evaluate the compression 

quality of probabilistic frequent closed itemsets in 

probabilistic data against that of frequent closed itemsets in 

exact data. Without loss of generality, we test the compression 

quality under two different distributions over Mushroom 

dataset. The first one makes the Mushroom follows Gaussian 

distribution whose mean is 0.8 and variance is 0.1. The second 

one follows Gaussian distribution whose mean is 0.5 and 

variance is 0.25 (Namely, the default set of the Mushroom 

dataset in our experiments). In addition, we keep same default 

values of pfct=0.8,  =0.1, and  =0.1 as used in the last 

subsection.  

We compare the number of itemsets of frequent itemsets 

(for short FI), frequent closed itemsets (for short FCI), 

probabilistic frequent itemsets (for short PFI), and 

probabilistic frequent closed itemsets (for short PFCI). The 

first two kinds of itemsets are produced by FP-growth 

algorithm [13] and Closet+ algorithm [24] from the exact 

Mushroom dataset. The PFI and PFCI are generated by 

TODIS algorithm [22] and our algorithm respectively.    

Fig. 10 (a) shows the comparison of the number of above 

four kinds of itemsets under the uncertain Mushroom dataset 

whose mean is 0.8 and variance is 0.1. With min_sup 

decreasing from 0.3 to 0.1, we observe that the ratio between 

Number of FCI and Number of FI declines sharply. 

Meanwhile, the ratio between Number of PFCI and Number 

of PFI also declines quickly. That means the probabilistic 

frequent closed itemsets over uncertain data have the similar 

compression effect with frequent closed itemsets in exact data. 

Fig. 10 (b) also shows the similar compression result. 

However, we also observe that the compression effect of 

probabilistic frequent closed itemsets in Fig. 10 (b) is worse 

than that in Fig. 10 (a). That is because Fig. 10 (b) has the 

smaller mean than Fig. 10 (a) and has the higher variance than 

Fig. 10 (a). The smaller mean and higher variance indicate 

higher uncertainty, which leads to less number of probabilistic 

frequent itemsets and probabilistic frequent closed itemsets 

under same threshold.  

To sum up, above results demonstrate that our definition of 

probabilistic frequent closed itemsets keeps the good 

compression property of frequent closed itemsets in exact data.  

 
(a) Mean=0.8,  Var=0.1                     (b) Mean=0.5,  Var=0.25 

Fig. 10 Compression Quality  w.r.t min_sup 

C. Approximation Quality Evaluation 

In this subsection, we evaluate the approximation quality of 

our mining algorithm since the problem of computing frequent 

closed probability has been proven as a #P-Hard problem. 

Because approximation effect of our algorithm is determined 

by the relative tolerance error, ε, and the probabilistic 

confidence degree parameter, δ, we mainly focus on testing 

the change of the result set w.r.t the change of ε and δ over our 

default uncertain Mushroom dataset. We denote the set of the 

final result as FR and the set of true probabilistic frequent 

closed itemsets as TI. We use precision which equals 

| FR TI |

| FR |
 and recall which equals 

| FR TI |

| TI |
 to measure the 

approximate effect. Moreover, it is hard to get the set of true 

probabilistic frequent closed itemsets due to #P-hard 

complexity. Thus, we use the result set when ε=0.01 and 

δ=0.01 as true result set.  

Fig. 11 (a) shows that the change of precision and recall 

when ε increases from 0.05 to 0.3 and δ equals 0.1. We 

observe that the recall keeps steady, but precision decreases 

with ε increasing. Because the number of sampling in the 

ApproxFCP algorithm equals 
2

4 2
ln

n

 
, the number of sampling 

will decrease significantly with ε increasing. Moreover, δ 

equals 0.1, probabilistic confidence degree is also fixed. Thus, 

the number of true probabilistic frequent closed itemsets keeps 

steady and recall also remain stable. Similarly, Fig. 11 (b) 

shows the case where δ increases from 0.05 to 0.3 and ε 

equals 0.1. Because δ only influences the number of sampling 

on ln 2 /  times, recall is affected slightly and precision also 

remains stable. To sum up, above results demonstrate that our 

approximation algorithm has a good approximation quality.  

 
(a) Varying ε                                      (b) Varying  δ 

Fig. 11 Approximation Quality in Mushroom 

D. Algorithm Framework Evaluation 

In this subsection, we evaluate the efficiencies of the depth-

first search-based and breadth-first search-based strategies.  

Fig. 12(a) shows the running time of two search solutions 

while min_sup varies from 0.2 to 0.6 and other parameters are 



default values. Clearly, MPFCI-BFS spends much more time 

than MPFCI does under the same parameters. In particular, 

when min_sup is smaller, the growth rate of running time of 

MPFCI-BFS is much faster than that of MPFCI. This is 

because MPFCI-BFS lacks of effective pruning as 

superset/subset pruning. Fig. 12(b) shows the running time of 

two algorithms while pfct varies from 0.1 to 0.9 and other 

parameters are default values. The running time of MPFCI-

BFS has slow growth with the decrease of pfct and is more 

than the running time of MPFCI. This is because that MPFCI-

BFS also includes Chernoff-Hoeffding bound-based pruning 

and such pruning mainly reduces the influence of the pfct to 

running time. So, the change of running time of MPFCI-BFS 

under pfct varying is smaller than the change under min_sup 

varying. We also tested other parameters; all results show that 

MPFCI is more efficient than MPFCI-BFS. This is because 

that Superset pruning and Subset pruning are effective pruning 

methods and MPFCI-BFS has to traverse much more search 

space. Due to space limit, we didn’t show these results in here.  

 

(a) min_sup varying                                    (b)pfct varying 

Fig. 12 Running time of MPFCI and MPFCI-BFS w.r.t different parameters  

VI. CONCLUSIONS 

In this paper, we propose a new problem of mining 

probabilistic threshold-based frequent closed itemsets in an 

uncertain transaction database. We prove that even a sub-

problem of this problem, computing the frequent closed 

probability of an itemset, is #P-Hard. Due to the 

computational complexity of this problem, an effective and 

efficient depth-first search-based mining algorithm has been 

designed in order to obtain all probabilistic frequent closed 

itemsets. Moreover, several probabilistic pruning techniques 

are also designed to reduce search space and to avoid many 

complicated computations. Extensive experimental results 

show the effectiveness and efficiency of the mining algorithm. 

ACKNOWLEDGMENT 

The work described in this paper was partially supported by 

Hong Kong RGC GRF Project No. 611411; National Grand 

Fundamental Research 973 Program of China under Grant 

2012CB316200. 

REFERENCES 

[1] C. Aggarwal, Y. Li, J. Wang, J. Wang, “Frequent pattern mining with 

uncertain data,” in KDD, 2009. 
[2] R. Agrawal, T. Imielinski, A. N. Swami, “Mining association rules 

between sets of items in large databases,” in SIGMOD, 1993. 

[3] R. Agrawal, R. Srikant, “Fast algorithms for mining association rules,” 
in VLDB, 1994.  

[4] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, A. Zuefle, 

“Probabilistic frequent itemset mining in uncertain databases,” in KDD, 
2009. 

[5] C. Böhm, A. Pryakhin, M. Schubert, “The Gauss-tree: efficient object 

identification in databases of probabilistic feature vectors,” in ICDE, 
2006. 

[6] D. de Caen, “A lower bound on the probability of a union,” Discrete 

Math., 169: 217-220, 1997. 
[7] T. Calders, C. Garboni, B. Goethals, “Efficient pattern mining of 

uncertain data with sampling,” in PAKDD, 2010. 
[8] L. Chen, M. T. Özsu, V. Oria, “Robust and fast similarity search for 

moving object trajectories,” in SIGMOD, 2005. 

[9] C. Chui, B. Kao, E. Hung, “Mining frequent itemsets from uncertain 

data,” in PAKDD, 2007.  
[10] C. Chui, B. Kao, “A decremental approach for mining frequent itemsets 

from uncertain data,” in PAKDD, 2008.  

[11] B. Ding, D. Lo, J, Han, S. C. Khoo, “Efficient mining of closed 
repetitive gapped subsequences from a sequence database,” in ICDE, 

2009. 

[12] G. Grahne and J. Zhu, “Fast algorithms for frequent itemset mining 
using fp-trees,” IEEE Trans. on Know. and Data Eng., 17(10): 1347-

1362, 2005. 

[13] J. Han, J. Pei, Y. Yin, “Mining frequent patterns without candidate 
generation,” in SIGMOD, 2000. 

[14] R.M. Karp, M. Luby, “Monte-Carlo algorithms for enumeration and 

reliability problems,” in FOCS, 1983.  
[15] C. Leung, M. F. Mateo, D. A. Brajczuk, “A tree-based approach for 

frequent pattern mining from uncertain data,” in PAKDD, 2008. 

[16] M. Li, Y. Liu, “Underground coal mine monitoring with wireless sensor 
networks,” ACM Trans. on Sensor Networks, 5(2): 10-29, 2009. 

[17] L. Mo, Y. He, Y. Liu, J. Zhao, S. Tang, X. Li, G. Dai, “Canopy closure 
estimates with GreenOrbs: sustainable sensing in the forest,” in SenSys, 

2009.  

[18] N. Pasquier, Y. Bastide, Taouil R, Lakhal, “Discovering frequent closed 
itemsets for association rules,” in ICDT, 1999. 

[19] J. Pei, J. Han, R. Mao, “CLOSET: An efficient algorithm for mining 

frequent closed itemsets,” in DMKD, 2000.  

[20] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, D. Yang, “H-Mine: Hyper-

structure mining of frequent patterns in large databases,” in ICDM, 2001. 

[21] Y.S. Sathe, M. Pradhan, S.P. Shah, “Inequalities for the probability of 
the occurrence of at least m out of n events,” J. Appl. Probab., 17: 1127-

1132, 1980. 

[22] L. Sun, R. Cheng, D.W. Cheung, J. Cheng, “Mining uncertain data with 
probabilistic guarantees,” in KDD, 2010. 

[23] L. Wang, R. Cheng, S. Lee, D. Cheung, “Accelerating probabilistic 

frequent itemset mining: a model-based approach,” in CIKM, 2010. 
[24] J. Wang, J. Han, J. Pei, “CLOSET+: Searching for the best strategies for 

mining frequent closed itemsets,” in KDD, 2003. 

[25] J. Wang, J. Han, “BIDE: Efficient mining of frequent closed 
sequences,” in ICDE, 2004. 

[26] X. Yan, J. Han, “CloseGraph: mining frequent closed graph patterns,” In 

KDD, 2003. 
[27] X. Yan, J. Han, R. Afhar, “CloSpan: Mining closed sequential patterns 

in large datasets,” in SDM, 2003. 

[28] M. J. Zaki, “Scalable algorithms for association mining,” IEEE Trans. 
on Know. and Data Eng., 42(1/2): 31-60, 2001. 

[29] M. J. Zaki, C-J. Hsiao, “Efficient algorithms for mining closed itemsets 

and their lattice structure,” IEEE Trans. on Know. and Data Eng., 17(4): 
462-478, 2005. 

[30] Q. Zhang, F. Li, K. Yi, “Finding frequent items in probabilistic data,” in 

SIGMOD, 2008.  
[31] Z. Zou, J. Li, H. Gao, S. Zhang, “Mining frequent subgraph patterns 

from uncertain graph data,” IEEE Trans. on Know. and Data Eng., 

22(9): 1203-1218, 2010. 
[32] Z. Zou, J. Li, H. Gao, “Discovering probabilistic frequent subgraphs 

over uncertain graph databases,” in KDD, 2010. 

[33] L. Valiant, “The complexity of enumeration and reliability problems,” 
SIAM Journal on Computing, 8(3): 410-421, 1979. 

[34] P. Tang, E. A. Peterson, “Mining probabilistic frequent closed itemsets 

in uncertain databases,” in ACM Southeast Conference, 2011.  
[35] W. Hoeffding, “Probability inequalities for sums of bounded random 

variables,” Journal of the American Statistical Association, 58 (301): 

13–30, 1963. 
 


