
CrowdTC: Crowdsourced Taxonomy Construction

Rui Meng∗, Yongxin Tong†, Lei Chen∗, Caleb Chen Cao∗
∗Department of Computer Science and Engineering, HKUST, Hong Kong SAR, China

†SKLSDE Lab and IRI, Beihang University, China
∗{rmeng,leichen,caochen}@cse.ust.hk †yxtong@buaa.edu.cn

Abstract—Recently, taxonomy has attracted much attention.
Both automatic construction solutions and human-based compu-
tation approaches have been proposed. The automatic methods
suffer from the problem of either low precision or low recall and
human computation, on the other hand, is not suitable for large
scale tasks. Motivated by the shortcomings of both approaches,
we present a hybrid framework, which combines the power of
machine-based approaches and human computation (the crowd)
to construct a more complete and accurate taxonomy. Specifically,
our framework consists of two steps: we first construct a complete
but noisy taxonomy automatically, then crowd is introduced
to adjust the entity positions in the constructed taxonomy.
However, the adjustment is challenging as the budget (money)
for asking the crowd is often limited. In our work, we formulate
the problem of finding the optimal adjustment as an entity
selection optimization (ESO) problem, which is proved to be
NP-hard. We then propose an exact algorithm and a more
efficient approximation algorithm with an approximation ratio
of 1

2
(1− 1

e
). We conduct extensive experiments on real datasets,

the results show that our hybrid approach largely improves the
recall of the taxonomy with little impairment for precision.

I. INTRODUCTION

With the advanced semantic web and Web 2.0, significant

interests have been growing in using taxonomies to ease infor-

mation management. Many applications have been observed to

benefit from using taxonomies, such as webpage classification

[1] and short-term understanding [2]. In the past few years,

many works have been conducted to construct taxonomies,

i.e., Freebase [3], YAGO [4], Probase [5], etc.

Existing approaches for taxonomy construction can be cat-

egorized mainly into two mainstreams: machine-based au-

tomatic construction [5], [6], [4] and human-based manual

construction [7], [3]. Each approach has its own advantages

and disadvantages, in terms of accuracy, efficiency and cost,

respectively. Furthermore, the machine-based automatic ap-

proaches have two categories: pattern-based and clustering-
based. Pattern-based approaches adopt syntactic patterns to

extract and discover relationships, which have high accuracy if

the patterns are carefully chosen. However, these approaches

suffer from the sparse coverage problem since high quality

patterns are rare. A. Ritter [8] tries to improve the recall

by exploring coordinate relations to learn more potential

“isA” patterns. However, adopting more patterns would in-

duce noises and impair the accuracy. Therefore, pattern-based

approaches often suffer from the issue of either low recall

or low precision. Clustering-based approaches cluster terms

based on semantic similarities on some quantifiable features.

These approaches can have a high coverage, however, they do

not have high accuracy compared to pattern-based approaches.
Recently, crowdsourcing has gained its popularity in various

domains to handle human intrinsic tasks, such as data clean-

ing [9], [10], topic discovery [11], etc. Some works have been

conducted to explore the power of the crowd in knowledge

extraction [12], [13]. However, they either let the crowd to

carry the whole burden of the taxonomy construction or target

at fact extraction which employs the crowd to fill in the

relationships between given entity pairs.
Based on the above discussion, we find that neither auto-

matic techniques nor the crowd-based approaches could derive

a satisfactory taxonomy. To address the challenges, we propose

a hybrid machine-crowdsourcing framework to construct a

taxonomy with high accuracy and coverage. Note that the

coverage of our work is defined as the number of entities

the taxonomy covers [5]. In our framework, we divide the

taxonomy construction into two steps. The first step is to build

a taxonomy automatically which aims at a high coverage.

We first construct a partial taxonomy based on syntactic

patterns, then incrementally cluster all extracted entities based

on the semantic features. Though have a higher coverage, the

enriched taxonomy has much noise which impair its precision.

Therefore, in the second step, we take advantage of the crowd

power to adjust the entity positions in the “complete but noisy”

taxonomy, constructed in the first step.
However, it is impossible to employ the crowd to adjust

every entity in the taxonomy when processing large scale

corpus with limited budget. To assist the crowd and reduce

the burden of adjustment, we judiciously select entities to be

adjusted and give candidate positions for each selected entity.

Therefore, we need to make a decision and pick the most

“beneficial” entities to ask and adjust. To evaluate the benefit,

we model the utility function; also, each adjustment task is

associated with a cost, which is proportional to the number

of human intelligence tasks (HITs) needed for the adjustment

operation. Finally, the adjustment problem is formulated as

an entity selection optimization (ESO) problem. We prove the

ESO problem is NP-hard and propose an exact algorithm and

an approximation algorithm subsequently.
To summarize, we have made the following contributions:

• To the best of our knowledge, we are the first to explore

the hybrid framework to combine machine-crowd intelli-

gence towards completeness in taxonomy construction

• We formulate the taxonomy adjustment problem as an

entity selection optimization (ESO) problem and prove it

2015 IEEE International Conference on Data Mining

1550-4786/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDM.2015.77

913

is NP-hard. Then, we design an exact solution and an

approximation algorithm.

• We conduct extensive experiments to demonstrate that our

approach outperforms existing automatic approach and is

scalable enough for large corpus.

II. PROBLEM DEFINITION

Definition 1 (Hypernym/Hyponym Relation): A word or a

noun phrase X is a hyponym of a word or noun phrase of Y

if X is a subtype or instance of Y. It’s also called an “isA”

relation.

Definition 2 (Entity, Concept and Instance): Each entity

corresponds to a noun or noun phrase extracted from the given

corpus. These entities have hypernym/hyponym relations. An

instance is such an entity that has no hyponym and a concept

(also a category) is an entity that has instances or concepts

as its hyponyms.

Definition 3 (Taxonomy): Given the corpus of a certain

domain, denoted as DC, a taxonomy is a tree structure,

denoted as T = (N,R). Each node ei ∈ N represents an entity

(a concept or an instance) extracted from DC; each directed

edge rij ∈ R represents a hypernym/hyponym relation, i.e.,

rij = (ei, ej) means that ei is the hypernym of ej .

Definitions 1, 2 and 3 give the concepts of hypernym,

entity and taxonomy. We regard the taxonomy containing all

entities in N as the full taxonomy and a partial taxonomy
is a tree containing only a subset of entities in N . The

workflow of the hybrid human-machine framework is shown

in Figure 1. The main focus of our work is on the crowd-
asssited entity adjustment, which improves the quality of the

taxonomy constructed automatically. Now we formally define

the problem of crowd-assisted taxonomy adjustment.
Problem Statement. Given a taxonomy Tn constructed

automatically from a domain-specific corpus and a crowd-

sourced budget B0, the problem of crowd-assisted taxonomy

adjustment aims at improving the quality of Tn as much as

possible under the given budget constraint B0.

III. A HUMAN-MACHINE FRAMEWORK

A. Machine-based Taxonomy Construction

In this subsection, we focus on the machine-based taxon-

omy construction. The syntactic patterns are first adopted to

construct an initial, partial taxonomy and the entities extracted

from the corpus are added to enrich the taxonomy based on

the taxonomy metric scores.

Fig. 1. Hybrid Machine-Human Workflow

Partial Taxonomy Construction. We construct the partial

taxonomy based on syntactic patterns. In our work, we adopt

“Hearst Patterns”, which have been widely used and shown

to have a high of precision [14].

Taxonomy Enrichment. Due to the limited coverage of

syntactic patterns, we further improve the coverage of the tax-

onomy through enrichment procedure. We extract all entities

in the corpus through NLP techniques, then use contextual and

co-occurrence features to derive the taxonomy metric scores.

We then incrementally add the entities into the taxonomy. A

full taxonomy is constructed by adding entities one by one,

which yields a series of partial taxonomies. For each entity,

we need to find its optimal position in the partial taxonomy. In

our work, we adopt the technique of [15], which followed the

minimum evolution tree selection criteria to guide the position

selection during enrichment process.

When adding an entity, the partial taxonomy T l+1 is the

one that induces the least change against the previous one T l:

T l+1 = argmin
T ′

∣∣Info(T l)− Info(T ′)
∣∣ (1)

Info(T) is the information score of T , which is defined

as the sum of the taxonomy metrics among all entity pairs,

Info(T) =
∑

i≤j,ei,ej∈E d(ei, ej). Where, d(ei, ej) is the

semantic distance between entity ei and ej . We use cosine
similarity for contextual feature and normalized Pointwise
Mutual Information (nPMI) for co-occurrence feature, the

similarity scores is a weighted combination of different feature

functions. Note that we convert the similarity score to distance

metric through Inverse Min-Max-Normalization.

Based on the selection strategy in Equation 1, each entity

can find its optimal position. By incrementally insert all enti-

ties into the initial, partial taxonomy, we construct a “complete

but noisy” taxonomy.

B. Crowd-assisted Taxonomy Adjustment

1) Entity Adjustment Utility: We measure the utility of

adjusting an entity as the linear combination of information

gain for entity position decision and the expected amendment

entity numbers.

Entity Position Uncertainty. In the enrichment procedure,

each entity can have a set of candidate positions, the nor-

malized similarity score can be considered as a distribution

among all the candidates. The more skewed distribution, the

lower uncertainty of a distribution. We adopt Shannon Entropy
as the evaluation metric for the uncertainty, denoted as:

U(ei) = −
∑

ej∈CL(ei)

sim(ei, ej)

Z
log

sim(ei, ej)

Z
(2)

where sim(ei, sj) is the similarity score of ei and ej
and Z is the normalization factor computed by Z =∑

ej∈CL(ei)
sim(ei, ej). After adjustment, the correct position

is fixed and therefore the entity position uncertainty is reduced

to 0, i.e. U ′(e) = 0. The information gain of the candidates

equals to the delta of uncertainty which is exactly the entity
position uncertainty, i.e., �U(ei) = U(ei)−U ′(ei) = U(ei).

914

Position Amendment Benefit. For adjustment operation,

we adopt the subtree-based adjustment, which means that if ei
is moved from pa to pb, then all nodes in the subtree rooted at

ei will be moved simultaneously. That is, adjusting an entity is

equivalent to adjusting the subtree rooted at that entity, denoted

as STRi
. As the automatic taxonomy induction techniques

incrementally add new entities into the partial taxonomy, an

error position would affect the decision of subsequent entities.

Furthermore, due to the hierarchical structure of taxonomy,

if an entity ei is in the wrong position (e.g., the “isA”

relationship between ei and its parent Pa(ei) is wrong), then

all the descendants of ei are misled and therefore should also

be adjusted. As the taxonomies usually have shallow depth,

e.g. the maximum and average level of Probase are 7 and

1.086 and the maximum and average level of Freebase are

both 1. Therefore, in our work, we only consider the effect on

the selected entity and its direct descendants.

Consider adjusting an entity ei. If the position of ei is

moved from a wrong position to an appropriate position,

then we regard the position of this entity as being improved.

There are two cases for the adjustment: 1) if the position is

unchanged according to the crowd answer, no improvement of

the position; 2) if the position of ei is changed, position of ei
is improved, and the position improvement of its children, e.g,

ej , is the probability that “isA” relationship between ei and

ej is correct. We use expected number of improved entities to

define the position amendment benefit. Given an entity set E,

the adjustment of each entity will benefit itself and its children,

which are not in the selection set, in probability, denoted as:

BE(ei) = Pchange(ei)[1 +
∑

ej∈Child(ei)\E
Pr(ei, ej)] (3)

where, Pr(ei, ej) is the probability that the “isA” relation

between ei and ej is correct, Pr(ei, ej) =
sim(ei,ej)

Z , where

sim(ei, ej) and Z are similar to those in Equation 2 and

Pchange(ei) = 1 − Pr(ei, Pa(ei)). Based on the Equation 3,

we have the aggregated benefit of the selected entity set E:

B(E) =
∑
ei∈E

BE(ei) (4)

The utility of adjusting an entity should take both the

entity position uncertainty and position amendment benefit into

consideration. We model the utility of each entity as follows:

UtiE(ei) = λ · U(ei) + (1− λ) ·BE(ei) (5)

where λ ∈ (0, 1) is a parameter used to balance of U(ei)
and BE(ei). Similar with the aggregated position amendment

benefit, the aggregated utility of a given set is:

Uti(E) =
∑
ei∈E

UtiE(ei) (6)

2) Cost Modelling: For each adjustment task, the crowd

needs to pick the “best” hypernym from the candidate list,

known as the Max Discovery Problem [16].

It is not practical to show the crowd worker a large number

of entities, we need to decompose the task into a number of

sub-tasks, each of which has the cardinality less or equal to

HIT size limit s, and then aggregate the results. Therefore,

different entity adjustment tasks could be decomposed into

various numbers of sub-tasks which leads to different costs.

As the taxonomy is a tree structure, each entity (node) in the

taxonomy has one parent, therefore, we need a “single-winner”

among the candidate entities. We adopt the plurality rule as

our voting strategy. For each sub-task t, we ask k workers

to vote for the best one, the entity with maximum votes

is selected. For decomposing and aggregating algorithm, we

adopt Tournament Max Algorithm [16] to get the optimal

single winner.

Cost Function. For the entity e, with the hypernym candi-

date list CL of size N , the cost of conducting entity adjustment
task is proportional to the total number of HITs. For obtaining

the single winner, the number of HITs needed is:

Nh(e) = k ·
m∑
i=1

�N
si
� (7)

where, m satisfies s(m−1) ≤ N ∧ sm ≥ N , s is the micro-

task size threshold and k is the replication factor. Based on

the HIT numbers, given each HIT price is p, then we can have

the cost of each entity-adjustment:

cost(e) = p ·Nh(e) (8)

3) Entity Selection Optimization: According to utility and

cost models, which entities should be chosen to ask the

crowd can be considered as the following Entity Selection
Optimization problem.

Definition 4 (Entity Selection Optimization (ESO)): Given

a complete but noisy taxonomy Tn = (N,R), where N
denotes the entities, R denotes the hypernym/hypomyn

relations and a specific budget B0, this problem is to select a

set of entities E to adjust under the given budget B0 so that

the utility function is maximized.

max Uti(E)

s.t.
m∑
i=1

cost(ei) ≤ B0
(9)

where, Uti(E) is defined in Equation 6 and E is the subset

of N that we picked for conducting entity adjustment tasks.

The ESO problem is a NP-hard problem, which can be

proved by a reduction from Knapsack problem.

Theorem 1: The Entity Selection Optimization (ESO) prob-

lem is NP-hard.

The proof could be found in the full version of this

paper [17].

IV. SOLUTIONS OF ENTITY SELECTION OPTIMIZATION

Since the ESO problem is NP-hard, we propose an exact

algorithm as well as a more efficient approximation algorithm.

915

A. Exact Algorithm
Brute Force Algorithm. The straightforward approach for

the problem is to enumerate all the subsets of N in brute

force. There are totally 2N possible combinations for entity

selection. For each combination, we need to compute the cost

and utility, the complexity is O(N ·p), where p is the maximum

number of children among all entities in N , therefore the time

complexity of this algorithm is O(p ·N · 2N).
Dynamic Programming (DP) Algorithm. To solve

the problem of selecting optimal subset from N =
{e1, e2, · · · , en}, we decompose the given instance into

smaller sub-problems and obtain the solution recursively. Our

problem differs from the traditional knapsack problems in that

the utility of each entity changes with each choice decision.

Here, we use UtiDi
(i, b) to denote the optimal utility value of

first i entities, with the budget less than or equal to b and set

Di, where the set Di = Child(ei)∩Ei. Firstly, we number the

entities by post-order traversal which ensures if one entity’s

number is i then all its children’s number is less than i. We

use Ei to denote the selection result of first i entities. When

considering entity ei+1, its children entities have already been

processed, which means Di is fixed. For the optimal solution

of first (i+1) entities, we consider all subsets of first i entities,

which is equivalent to all subsets of entity i’s children set. For

each situation, we can get the current selection result with first

i entities, i.e., Ei, and Di, then the utility of (i+ 1)th entity

can be computed. The recursive step is defined as follows:

UtiDi+1
(i+ 1, b) = max

∀Di:Di∩Child(ei+1)⊆Di+1{
UtiDi(i, b) if ei+1 /∈ Di+1

UtiDi(i, b−cost(i))+UtiDi(ei) if ei+1 ∈ Di+1

(10)

The initial settings are:

UtiD1
(1, b)=

⎧⎪⎨
⎪⎩

Uti∅(e1) if D1={e1}∧b≥cost(e1)

0 if D1 ∧0≤b≤B0

∞ others(illegal)

(11)

Note that to get the selection result, we use SelectionDi
(i+

1, b) to record the selection strategy of (i+ 1)th entity under

the budget of b and set Di. And the selection result of

different situations can be obtained recursively, the algorithm

for computing the selection result is shown in Algorithm 2 and

the pseudocode of the DP algorithm is shown in Algorithm 1

.
Complexity. As shown in Algorithm 1, line 2 has N loops,

line 3 has B0 loops and line 5 has 2p loops for each subset

of children set. The complexity in line 5 and lines 6∼ 11

are O(N), respectively. Therefore the total time complexity

is O(N2 ·B0 ·2p). In real cases, p � N , therefore, the DP

algorithm is more efficient than the brute force algorithm. The

space complexity of algorithm 1 is O(N ·B0 · 2p).
B. Approximation Algorithm

Although, the DP gives optimal solution to the ESO prob-

lem, the space complexity is O(N · B0 · 2p) , which is in-

tractable, especially when the n is large in practice. Therefore

Algorithm 1: Dynamic Programming Algorithm (DP)

Input: A set of entities {e1, e2, · · · , en}, a given budget B0

Output: Maximum utility value and corresponding selection set E
1 Initialize UtiD1

(1, b) according to Equation 11;
2 for i=0 to N − 1 do
3 for b=0 to B0 do
4 Si ← FindSelection(i, b, Uti) ;
5 for each all Di ⊂ Child(ei) ∩ Si do
6 if cost(i + 1) ≤ b and

UtiDi
(ei+1)+UtiDi

(i, b− cost(i + 1)) ≥ UtiDi
(i, b) then

7 UtiD(i, b) = UtiD(ei)+UtiD(i, b− cost(i))
Di+1 ← Di ∩ Child(ei+1) ∪ ei+1;

8 SelectionDi+1
(i + 1, b) = true;

9 else
10 Di+1 ← Di ∩ Child(ei+1);
11 UtiDi+1

(i + 1, b) = UtiDi
(i, b);

12 SelectionDi+1
(i + 1, b) = false;

13 E = FindSelection(N − 1, B0, Uti);
14 return E

Algorithm 2: FindSelection

Input: Entity index i,Budget b, Utility result Utility
Output: Selection set E

1 Initialize: E ← ∅;
2 while i ≥ 1 ∧ b ≥ 0 do
3 for all Di do
4 if UtiDi

(i, b) = maxUti(i, b) ∧ SelectionDi
(i, b) == true

then
5 E ← E ∪ ei;
6 b← b− cost(ei);

7 i← i− 1;

8 return E;

we explore an approximation algorithm which significantly

enhances the efficiency and has the approximation guarantee.

Theorem 2: The utility function defined is monotone and

submodular.

The proof could be found in the full version of this

paper [17].

Based on the Theorem 2, the greedy algorithm is shown in

Algorithm 3. Starting from an empty set, each time we select

the entity which gives best utility increase for each unit.

Lemma 1: The greedy algorithm achieves an approximation

factor of 1
2 (1− 1

e).
Proof: According to Theorem 2, the utility function of

ESO problem is monotone and submodular, the greedy algo-

rithm in Algorithm 3 has the approximation ratio of 1
2 ·(1− 1

e)
as shown in Theorem 3 of [18].

Complexity. The greedy algorithm in Algorithm 3 takes

O(N2), the while loop has N iterations and in each iteration

(lines 4-9) takes O(N) time to select the s∗. (Note that the

computation of �U (S1, e) is O(p), where p� N).

V. EXPERIMENTS

A. Experimental Setup

Dataset. We conduct experiments on a real dataset of a

corpus on Computer domain, which is a collection of academic

paper abstracts, crawled from Springer 1. The dataset is pre-

1http://www.cse.ust.hk/∼rmeng/CrowdTC/Ex.zip

916

Algorithm 3: Approximation Algorithm by Greedy Selection

Input: A set of entities E = {e1, e2, · · · , en}, a given budget B0

Output: Maximum utility value and corresponding selection set S
1 S1 ← ∅ ; L← E;
2 S2 ← arg max

∀ei∈E
Uti∅(ei);

3 while L �= ∅ do
4 for each entity e ∈ L do
5 �U (S1, e)← U(S1 ∪ e)− U(S1);

6 g(e)← �U (S1,e)

cost(e)
;

7 s∗ ← argmax
e∈L

g(e);

8 if cost(S1) + cost(s∗) ≤ B0 then
9 S1 ← S1 ∪ s∗;

10 L← L\s∗;

11 return arg max
S∈{S1,S2}

Uti(S)

TABLE I
STATISTICS OF TAXONOMY

Taxonomy # entities Avg # of child Max # of child

Partial Taxonomy 10788 1.29 677
Enriched Taxonomy 34420 1.09 689
Sampled Taxonomy 27635 0.85 5

processed in several steps: first, we adopt syntactic based tech-

nique on the corpus and construct a partial taxonomy, among

which only 3.38% sentences are observed to have “Hearst
Patterns”; second, we extract all entities (noun phrases) from

corpus as the candidates for subsequent enrichment. For entity

extraction, we use NLTK Chunker.

The statistics of the partial taxonomy show that the max-

imum number of children is 677. The DP algorithm is in-

tractable due to the limited memory. Therefore, to illustrate

the efficiency and effectiveness of DP algorithm, we sample a

smaller taxonomy (P = 5) from the enriched taxonomy. The

detail information of the partial taxonomy and the sampled

taxonomy is shown in Table I.
Evaluation Metric. For the taxonomy evaluation, we adopt

precision and coverage as the evaluation metric:

Precision =
#of correct pairs

#of totally extracted pairs
(12)

Coverage =
#of entitiesinthetaxonomy

#of entities extracted from corpus
(13)

As we do not have the ground truth for the taxonomy, we

use coverage metric as the indicator of recall. For precision, we

randomly sample 100 “ancestor-descendant” pairs and check

the correctness manually.

Parameters. There are several parameters needs evaluation:

weight parameter λ, budget B0 and distance filter parameter

θ for candidate filtering. For λ and θ, we vary it from 0∼1;

for B0, we compute the total cost for adjusting every entity

in the taxonomy, Btotal = $69, 011 and vary the cost budget

from 2‰×Btotal to 10‰×Btotal.

Crowdsourcing on AMT. We use Amazon Mechanical

Turk (AMT) to conduct crowdsourcing tasks. For each HIT,

we design it as a single choice question and ask the worker

to select the most appropriate hypernym of given word from

several choices. The maximum number of choices of each

HIT is set to 10 (the maximum number of choices on AMT

(a) Evaluation of θ (b) Evaluation of λ

Fig. 2. Parameter Evaluation

for single-choice questions). For those entities which have a

candidate list size larger than 10, we separate the candidates

into several groups, size of each does not exceeds 10. For

these entities, the process of collecting answers has several

rounds. In each round, we first separate the candidates into

groups and generate a HIT for each group, then we collect the

answers and aggregate the answers to produce a new candidate

list, which is used to generate HITs for the next round. The

collecting process will finish until we get the final answer.

We pay $0.01 to each worker for a HIT. To make sure the

quality of answers, we assign each HIT to three workers and

aggregate their answers by majority voting strategy.

B. Evaluation of Techniques

Parameter Setting. By decreasing the θ value, the filtering

power is increasing (more entities have no candidate). We

compare the coverage and accuracy of the enriched taxonomy

with various θ values, as shown in Figure 2(a). For the weight

parameter of utility function in the Equation 6, we empirically

learn the value of λ by varying it between 0∼ 1. For each value

of λ, we examine the accuracy under different budget settings.

The results are shown in Figure 2(b). According to the results,

we set θ = 0.8 to have a high coverage and λ = 0.2.

Comparison Adjustment Algorithms. We compare the

DP algorithm and greedy algorithm with the naive random

selection strategy. In the naive algorithm, we select the entity

that does not exceed the remaining budget randomly. As the

DP algorithm has a space complexity of O(N ·B0·2p), we only

test it on the sampled taxonomy, due to the memory constraint.

We vary the budget and examine the running time of entity

selection, selection utility value, selection entity number and

the precision of adjusted taxonomy based on the answers from

crowd, the results are shown in Figures 3, 4. Due to the

memory limit, for the DP part, we use a small budget range

to conduct the comparison, 0.2‰∼ 1.0‰.

In Figure 3, we can see that the DP algorithm achieves

better accuracy compared with the greedy selection algorithm.

However, the DP solution is much more cost than the greedy

one. Also, the memory cost is not scalability for large datasets.

From Figure 3 and Figure 4, we can see that the greedy

algorithm outperforms the naive random selection algorithm in

both accuracy, adjusted entity number and utility value. From

the comparisons, we conclude that the taxonomy constructed

by our method which combines machine techniques with

crowdsourcing techniques achieves the precision nearly 75%
and coverage 87%. Taxonomy constructed by our approach

improves the accuracy of the noisy enriched taxonomy (61%)

917

(a) Running Time (b) Precision

(c) Selection Size (d) Utility

Fig. 3. Comparison of Algorithms on Sampled Taxonomy

(a) Running Time (b) Precision

(c) Selection Size (d) Utility

Fig. 4. Comparison of Algorithms on Real Taxonomy

and have a much larger coverage compared with the initial

partial taxonomy (27%).

VI. RELATED WORK

Many study have been conducted on taxonomy construction,

either manually or automatically. The manual approaches,

which construct taxonomies by domain experts or collabo-

ratively by community members, e.g. Freebase [3], has the

limitation of scalability. The automatic approaches [5], [4],

[19] construct taxonomy based on syntactic patterns; the

works [20], [6] build taxonomy via hierarchical classification

or incremental clustering approaches.

Recently, the increasing popularity of crowdsourcing brings

new trends to leverage the power of crowd in taxonomy con-

struction. In [12], [21], the crowd is used for categorizing items

for taxonomy construction. In [7], each “isA” relationship is

voted by the crowd and take it as the input for taxonomy

induction. S. K. Kondreddi [13] proposes a hybrid approach

that combines information extraction technique with human

computation for knowledge acquisition, in which the crowd

are asked to compile relationships between entities.

VII. CONCLUSION

In this paper, we propose a hybrid framework which com-

bines the power of automatic machine-based approaches and

human computation (the crowd) to construct a complete and

accurate taxonomy. In this work, the core problem is for-

mulated as the Entity Selection Optimization (ESO) problem,

which is proven to be NP-hard. To solve this optimization

problem, we propose an exact algorithm and a more efficient

approximation algorithm with a 1
2 (1− 1

e) approximation factor.

Finally, we have verified our proposed algorithms through

extensive experimental studies.

VIII. ACKNOWLEDGEMENT

This work is supported in part by the Hong Kong RGC

Project N HKUST637/13, National Grand Fundamental Re-

search 973 Program of China under Grant 2014CB340303 ,

NSFC Grant No. 61328202/61502021, NSFC Guang Dong

Grant No. U1301253, Microsoft Research Asia Gift Grant,

Google Faculty Award 2013 and Microsoft Research Asia

Fellowship 2012.

REFERENCES

[1] T. Liu, Y. Yang, H. Wan, H. Zeng, Z. Chen, and W. Ma, “Support vector
machines classification with a very large-scale taxonomy,” SIGKDD,
vol. 7, 2005.

[2] Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen, “Short text concep-
tualization using a probabilistic knowledgebase,” in IJCAI, 2011.

[3] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: a collaboratively created graph database for structuring human
knowledge,” in SIGMOD, 2008.

[4] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in WWW, 2007.

[5] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: a probabilistic
taxonomy for text understanding,” in SIGMOD, 2012.

[6] X. Liu, Y. Song, S. Liu, and H. Wang, “Automatic taxonomy construc-
tion from keywords,” in SIGKDD, 2012.

[7] D. Karampinas and P. Triantafillou, “Crowdsourcing taxonomies,” in
ESWC, 2012.

[8] A. Ritter, S. Soderland, and O. Etzioni, “What is this, anyway: Auto-
matic hypernym discovery.” in AAAI, 2009.

[9] Y. Tong, C. C. Cao, C. J. Zhang, Y. Li, and L. Chen, “Crowdcleaner:
Data cleaning for multi-version data on the web via crowdsourcing,” in
ICDE, 2014.

[10] C. J. Zhang, L. Chen, Y. Tong, and Z. Liu, “Cleaning uncertain data
with a noisy crowd,” in ICDE, 2015.

[11] Y. Tong, C. C. Cao, and L. Chen, “Tcs: efficient topic discovery over
crowd-oriented service data,” in SIGKDD, 2014.

[12] L. B. Chilton, G. Little, D. Edge, D. S. Weld, and J. A. Landay,
“Cascade: crowdsourcing taxonomy creation,” in CHI, 2013.

[13] S. K. Kondreddi, P. Triantafillou, and G. Weikum, “Combining infor-
mation extraction and human computing for crowdsourced knowledge
acquisition,” in ICDE, 2014.

[14] M. A. Hearst, “Automatic acquisition of hyponyms from large text
corpora,” in COLING, 1992.

[15] H. Yang and J. Callan, “A metric-based framework for automatic
taxonomy induction,” in ACL, 2009.

[16] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis, “Max
algorithms in crowdsourcing environments,” in WWW, 2012.

[17] R. Meng, Y. Tong, L. Chen, and C. C. Cao. (2015)
Crowdtc:crowdsourced taxonomy construction. [Online]. Available:
http://www.cse.ust.hk/∼rmeng/CrowdTC/CrowdTC-TechReport.pdf

[18] S. Khuller, A. Moss, and J. Naor, “The budgeted maximum coverage
problem,” Inf. Process. Lett., vol. 70, 1999.

[19] N. Nakashole, G. Weikum, and F. Suchanek, “Patty: a taxonomy of
relational patterns with semantic types,” in EMNLP, 2012.

[20] K. Punera, S. Rajan, and J. Ghosh, “Automatically learning document
taxonomies for hierarchical classification,” in WWW, 2005.

[21] J. Bragg, D. S. Weld et al., “Crowdsourcing multi-label classification
for taxonomy creation,” in HCOMP, 2013.

918

