

Utility-Aware Social Event-Participant Planning

Jieying She[†], Yongxin Tong[‡], Lei Chen[†]

[†]Department of Computer Science and Engineering The Hong Kong University of Science and Technology {jshe, leichen}@cse.ust.hk

Introduction

- Event-Based Social Networks (EBSNs)
 - Online platforms that facilitate offline event organization \bullet and participation, e.g. Meetup and Plancast

[‡]State Key Laboratory of Software **Development Environment, School of Computer Science and Engineering Beihang University** yxtong@buaa.edu.cn

Greedy-Based Solution: RatioGreedy

- Maintain a heap, pop a pair with largest *ratio* value each time
 - $ratio(v, u) = \frac{\mu(v, u)}{imagent(u)}$

- Motivation
 - Arrange proper social events to interested users
 - Existing works: either assume user attends one event or \bullet ignore location information

1:00 PM

1:45 PM

Spatio-temporal conflicts & travel expenses

Hong Kong Hiking Meetup香港遠足覓合團 9:30 AM Easy hike (2.2) from Chai Wan MTR to Shek O via Pottinger Peak **Country Trail**

Hong Kong Volunteers 香港義工團 11:00 AM

HKKAPS Kindergarten Saturday Morning Playshop From 11 to 12pm

Weekends Badminton, Ballroom, Latin Dance & Ad-hoc Dining

23 May, Sat, 1-4 pm, SCAA 12F All Level Games invite 18 players!

Hong Kong Dolls, Figures and Toys Collectors Meetup Lets visit the One Piece 3D **Exhibition!**

inc_cost(v,u)

	u_1	u_2 u_3		u_4	u_5		
$v_1 0.011(18)$		0.15(4)	0.175(4)	0.05(6)	0.0375(16)		
		States of H					
After Initialization		$(v_4, u_1): 0.2(2), (v_1, u_3): 0.175(4),$					
		$(v_1, u_2): 0.15(4), (v_3, u_3): 0.075(12),$					
		$(v_1, u_4) : 0.05(6), (v_1, u_5) : 0.0375(16),$					
		$(v_2, u_5): 0.023(22)$					
After 1st Iteration		$(v_1, u_3): 0.175(4), (v_1, u_2): 0.15(4),$					
		$(v_3, u_3): 0.075(12), (v_1, u_4): 0.05(6),$					
		$(v_1, u_5) : 0.0375(16), (v_3, u_1) : 0.0375(16),$					
		$(v_4, u_2): 0.035(20), (v_2, u_5): 0.023(22)$					

Two-Step Approximation Solution: DeDP

- Decomposed into |U| problems \bullet
 - Find a schedule for each *u* with a dynamic programming \bullet algorithm
 - Combine the result of each *u*
- Optimization

80000

E III

- Optimize space & speed with a proved property
- Optimize utility with RatioGreedy
- Approximation ratio: 1/2
- Speed up by replacing DP with a greedy strategy

Events on Meetup

The USEP Problem

- Given
 - A set of events V \bullet
 - Each $v \in V$: capacity c_v , location l_v , time interval $[t_1^v, t_2^v]$
 - A set of users U
 - Each $u \in U$: location l_{u} , travel budget b_{u}
 - Travel cost {cost(u, v)}, { $cost(v_i, v_j)$ }
 - Utility value $\{\mu(v, u)\}$
- Find a planning of schedules $A = \bigcup_{u} \{S_{u}\}$
 - Maximize $\Omega(A) = \sum_{u \in S_u} \sum_{u \in S_u} \mu(v, u)$
 - Capacities of events are not exceeded
 - No schedule has time conflicts
 - $\mu(v, u) > 0, \forall v \in S_{\mu}, \forall u$
 - Travel budgets of users are not exceeded

	\hat{v}_1	\hat{v}_2	\hat{v}_3	\hat{v}_4	User	V'_r
u_1	$v_{1,1}(0.2)$	$v_{2,1}(0.5)$	$v_{3,1}(0.6)$	$v_{4,1}(0.4)$	u_1	$v_{3,1}, v_{1,1}, v_{2,1}, v_{4,1}$
u_2	$v_{1,1}(0.6)$	$v_{2,2}(0.1)$	$v_{3,2}(0.2)$	$v_{4,1}(0.7)$	u_2	$v_{3,2}, v_{1,1}, v_{2,2}, v_{4,1}$
u_3	$v_{1,1}(0.1)$	$v_{2,2}(0.3)$	$v_{3,2}(0.9)$	$v_{4,2}(0.2)$	u_3	$v_{3,2}, v_{1,1}, v_{2,2}, v_{4,2}$
u_4	$v_{1,1}(-0.3)$	$v_{2,3}(0.9)$	$v_{3,3}(0.4)$	$v_{4,2}(0.5)$	u_4	Ø
u_5	$v_{1,1}(0)$	$v_{2,3}(0.5)$	$v_{3,3}(0.5)$	$v_{4,2}(0.1)$	u_5	$v_{3,3}, v_{2,3}, v_{4,2}$

Evaluation

The USEP problem is NP-hard

	u_1 (59)	u_2 (29)	u_{3} (51)	u_4 (9)	$u_{5}~(33)$	Time
$v_{1}(1)$	0.2	0.6	0.7	0.3	0.6	1-4p.m.
$v_2(3)$	0.5	0.1	0.3	0.9	0.5	3-6p.m.
$v_{3}(4)$	0.6	0.2	0.9	0.4	0.5	1-2p.m.
$v_4(2)$	0.4	0.7	0.2	0.5	0.1	6-7p.m.

---- RatioGreedy

2000

DeGreedy+RG

$\mathbf{u}_1 \ \mathbf{u}_5$ \mathbf{u}_4 u۶ 2 3 4 5 6 7 8 9 10

Acknowledgements

This work is supported in part by the Hong Kong RGC Project N_HKUST637/13, National Grand Fundamental Research 973 Program of China under Grant 2014CB340303, NSFC Grant No. 61232018/61300031, Microsoft Research Asia Gift Grant, Google Faculty Award 2013, and Microsoft Research Asia Fellowship 2012.