

Online Mobile Micro-Task Allocation in Spatial Crowdsourcing

Yongxin Tong¹, Jieying She², Bolin Ding³, Libin Wang¹, Lei Chen²

¹ SKLSDE Lab, Beihang University, China

² The Hong Kong University of Science and Technology, Hong Kong, China ³ Microsoft Research, Redmond, WA, USA

¹{yxtong, lbwang}@cse.ust.hk, ²{jshe, leichen}@cse.ust.hk, ³bolind@microsoft.com

Introduction

Extended Greedy-RT Algorithm

- Spatial Crowdsourcing (a.k.a Mobile Crowdsourcing)
 - Online platforms that facilitate spatial tasks to be assigned and performed by crowd workers, e.g. O2O applications.

- Motivation
 - Dynamic micro-task assignment is absent.
 - Most O2O applications need to be addressed in real-time:
 - Fast Food Delivery.
 - Real-Time Taxi-Calling Service.
 - Product Placement Checking of Supermarkets.

The GOMA Problem

- Given
 - A set of spatial tasks T
 - Each $t \in T$: location l_t , arriving time a_t , deadline d_t and payoff p_t .

- 2. filter the edges with weights greater than e^k .
- 3. Use a greedy strategy on the remaining edges.
- Competitive Ratio (Adversarial Model): $CR_A = \frac{1}{2e[\ln(U_{max}+1)]}$

Two-Phase-based Framework (TGOA Algorithm)

- A set of crowd workers W \bullet
 - Each $w \in W$: location l_w , arriving time a_w , deadline d_w , range radius r_w , capacity c_w and success ratio δ_w .
- Utility Function: $U(t, w) = p_t \times \delta_w$.
- Find an online allocation M to maximize the total utility $MaxSum(M) = \sum_{t \in T, w \in W} U(t, w) \text{ s.t.}$
 - Deadline Constraint.
 - Capacity Constraint.
 - Range Constraint.
 - Invariable Constraint: Once a task t is assigned to a worker w, the allocation of (t, w) cannot be changed.
- Online Algorithm Evaluation: Competitive Ratio (CR)
 - Adversarial Model: Worst-Case Analysis
 - $CR_A = min_{\forall G(T,W,U)} and \forall v \in V \frac{MaxSum(M)}{MaxSum(OPT)}$
 - Radom Order Model: Average-Case Analysis
 - $CR_{RO} = min_{\forall G(T,W,U)} \frac{-1}{MaxSum(OPT)}$ $\mathbb{E}[MaxSum(M)]$

The first half of objects are filtered and disposed greedily.

Steps

1. Take a fixed fraction of arriving objects as samples and dispose the samples in a greedy way.

 (W_3)

- 2. When a new object arrives, compute the optimal matching on the revealed part of the graph.
- 3. Match the new object to its adjacent node in the optimal matching if possible.
- Competitive Ratio (Random order Model): $CR_{RO} = \frac{1}{4}$

TGOA-Greedy Algorithm

- Optimize the efficiency using a greedy solution to get the matching instead of the optimal matching in the second phase.
- Competitive Ratio (Random order Model): $CR_{RO} = \frac{1}{2}$

Experimental Evaluation

