
Top-k Team Recommendation in Spatial
Crowdsourcing

Dawei Gao1, Yongxin Tong1(B), Jieying She2,
Tianshu Song1, Lei Chen2, and Ke Xu1

1 SKLSDE Lab, IRC, Beihang University, Beijing, China
{david gao,yxtong,songts,kexu}@buaa.edu.cn

2 The Hong Kong University of Science and Technology, Hong Kong SAR, China
{jshe,leichen}@cse.ust.hk

Abstract. With the rapid development of Mobile Internet and Online
To Offline (O2O) marketing model, various spatial crowdsourcing
platforms, such as Gigwalk and Gmission, are getting popular. Most
existing studies assume that spatial crowdsourced tasks are simple
and trivial. However, many real crowdsourced tasks are complex and
need to be collaboratively finished by a team of crowd workers with
different skills. Therefore, an important issue of spatial crowdsourc-
ing platforms is to recommend some suitable teams of crowd work-
ers to satisfy the requirements of skills in a task. In this paper, to
address the issue, we first propose a more practical problem, called
Top-k Team Recommendation in spatial crowdsourcing (TopkTR)
problem. We prove that the TopkTR problem is NP-hard and design a
two-level-based framework, which includes an approximation algorithm
with provable approximation ratio and an exact algorithm with pruning
techniques to address it. Finally, we verify the effectiveness and efficiency
of the proposed methods through extensive experiments on real and syn-
thetic datasets.

1 Introduction

Recently, thanks to the development and wide use of smartphones and mobile
Internet, the studies of crowdsourcing are switching from traditional crowdsourc-
ing problems [15,16] to the issues in spatial crowdsourcing markets, such as
Gigwalk, Waze, Gmission, etc., where crowd workers (workers for short in this
paper) are paid to perform spatial crowsourced tasks (tasks for short in this
paper) that are requested on a mobile crowdsourcing platform [17].

Most existing studies on spatial crowdsourcing mainly focus on the problems
of task assignment [6,7,13,14,17], which are to assign tasks to suitable workers,
and assume that tasks are all simple and trivial. However, in real applications,
there are many complex spatial crowdsourced tasks, which often need to be col-
laboratively completed by a team of crowd workers with different skills. Imagine
the following scenario. David is a social enthusiast and usually organizes differ-
ent types of parties on weekends. On the coming Saturday, he intends to hold
c© Springer International Publishing Switzerland 2016
B. Cui et al. (Eds.): WAIM 2016, Part I, LNCS 9658, pp. 191–204, 2016.
DOI: 10.1007/978-3-319-39937-9 15

192 D. Gao et al.

Table 1. The skill, payoff and capacity information of crowd workers

w1 w2 w3 w4 w5

Skills {e1, e2} {e1} {e2, e3} {e2} {e1, e2, e3}
Price 2 1 3 1 2

Capacity 1 1 2 1 1

a dance party and needs to recruit some sound engineers, guitarists, cooks and
dancers. However, David faces a dilemma that his limited budget cannot afford
to recruit all the aforementioned workers. He has to recruit fewer cheap crowd
workers who have multiple skills and can take up several responsibilities, e.g. a
worker can play the guitar and also manage the sound systems. Therefore, David
posts his tasks on a spatial crowdsourcing platform, Gigwalk, and wants to find
cheap crowd workers to satisfy his requirements. In fact, many task requestors
have the same appeal: can spatial crowdsourcing platforms recommend several
cheaper candidate teams of crowd workers who can satisfy the multiple skills
requirement of the tasks? To further illustrate this motivation, we go through a
toy example as follows.

Example 1. Suppose we have five crowd workers w1 − w5 on a spatial crowd-
sourcing platform, whose locations are shown in a 2D space (X,Y) in Fig. 1.
Each worker owns different skills, which are shown in the second row in Table 1.
Furthermore, each worker has a price for each task and a capacity, which is the
maximum number of skills that can be used in a task that he/she performs,
which are presented in the third and forth rows in Table 1. Moreover, a team-
oriented spatial crowdsourced task and its locality range (the dotted circle) are
shown in Fig. 1. Particularly, the task requires that the recruited crowd work-
ers must cover three skills, {e1, e2, e3}. To help the task requestor save cost,
the spatial crowdsourcing platform usually recommends top-k cheapest teams of

Fig. 1. Locations of the task and the five crowd workers

Top-k Team Recommendation in Spatial Crowdsourcing 193

crowd workers, who can satisfy the requirement of skills. Furthermore, the rec-
ommended teams should not have free riders. In other words, each recommended
team cannot satisfy the required skills if any worker in the team leaves. There-
fore, in this example, the top-2 cheapest teams without free riders are {w2, w3}
and {w1, w3}, respectively, if the parameter k = 2.

As discussed above, we propose a novel team recommendation problem in
spatial crowdsourcing, called the top-k team recommendation in spatial crowd-
sourcing (TopkTR) problem. As the example above indicates, the TopkTR prob-
lem not only recommends k cheapest teams but also satisfies the constraints of
spatial range and skill requirement of tasks, capacity of workers, and no free
rider in teams. Notice that the Top-1TR problem can be reduced to the classical
team formation problem if the constraints on the capacity of workers and free
riders are removed. More importantly, the TopkTR problem needs to return k
teams instead of the cheapest team, which is its main challenge. We make the
following contributions.

– We identify a new type of team-oriented spatial crowdsourcing applications
and formally define it as the top-k team recommendation in spatial crowd-
sourcing (TopkTR) problem.

– We prove that the TopkTR problem is NP-hard and design a two-level-based
framework, which not only includes an exact algorithm to provide the exact
solution but also can seamlessly integrate an approximation algorithm to
guarantee ln |Et| theoretical approximation ratio, where |Et| is the number of
required skills of the task.

– We verify the effectiveness and efficiency of the proposed methods through
extensive experiments on real and synthetic datasets.

The rest of the paper is organized as follows. In Sect. 2, we formally define
our problem and prove its NP-hardness. In Sect. 3, we present an two-level-based
framework and its exact and approximation solutions. Extensive experiments on
both synthetic and real datasets are presented in Sect. 4. We review related works
and conclude this paper in Sects. 5 and 6, respectively.

2 Problem Statement

We formally define the Top-k Team Recommendation in spatial crowdsourcing
(TopkTR) problem and prove that this problem is NP-hard. For convenience of
discussion, we assume E = <e1, · · · , em> to be a universe of m skills.

Definition 1 (Team-oriented Spatial Crowdsourced Task). A team-
oriented spatial crowdsourced task (“task” for short), denoted by t =
<lt, Et, rt>, at location lt in a 2D space is posted to the crowd workers, who
are located in the circular range with the radius rt around lt, on the platform.
Furthermore, Et ⊆ E is the set of the required skills of the task t for the recruited
team of crowd workers.

194 D. Gao et al.

Definition 2 (Crowd Worker). A crowd worker (“worker” for short) is
denoted by w = <lw, Ew, pw, cw>, where lw is the location of the worker in
a 2D space, Ew ⊆ E is the set of skills that the worker is good at, pw is the pay-
off for the worker to complete a crowdsourced task, and cw is the capacity of the
worker, namely the maximum number of skills used by the worker to complete a
crowdsourced task.

Note that the team-oriented spatial crowdsourced tasks studied in this paper,
e.g. organizing a party, renovating a room, etc., usually need to be completed in
teams. Though a worker may be good at multiple required skills, he/she cannot
finish all the works by himself/herself. Therefore, we limit the capacity of each
worker to balance the workload of the whole team. To simplify the problem,
we assume that each worker receives the same payoff for different tasks since
the capacity of the used skills of each user can be restricted. On one hand, these
workers often have similar workloads and do not need a team leader to do a task.
On the other hand, our model can be also easily extended to address the scenario
where workers ask for different rewards for his/her different skills. Finally, we
define our problem as follows.

Definition 3 (TopkTR Problem). Given a team-oriented spatial crowd-
sourced task t, a set of crowd workers W , and the number of recommended
crowdsourced teams k, the TopkTR problem is to find k crowdsourced teams,
{g1, · · · , gk} (∀gi ⊆ W, 1 ≤ i ≤ k) with k minimum Cost(gi) =

∑
w∈gi

pw such
that the following constraints are satisfied:

– Skill constraint: each required skill is covered by the skills of at least one
worker.

– Range constraint: each worker w ∈ gi must locate in the restricted range of
the task t.

– Capacity constraint: the number of skills used by each worker w ∈ gi cannot
exceed w’s capacity cw.

– Free-rider constraint: no team still satisfies the skill constraint if any worker
in the team leaves.

Theorem 1. The TopkTR Problem is NP-hard.

Proof. When k = 1 and the capacity constraint is ignored, such special case of
the TopkTR problem is equivalent to the team formation problem [8], which has
been proven to be NP-hard. Therefore, the TopkTR problem is also an NP-hard
problem.

3 A Two-Level-Based Framework

To solve the problem effectively, we present a two-level-based algorithm frame-
work. The first level aims to find the current top-1 feasible team with the min-
imum price, and the second level utilizes the function in the first level to itera-
tively maintain the top-k best teams. Particularly, the two-level-based framework
has a nice property that the whole algorithm can keep the same approximation
guarantee of the algorithm as in the first level.

Top-k Team Recommendation in Spatial Crowdsourcing 195

Algorithm 1. Two-Level-based Framework
input : W = {w1, · · · , w|W |}, t, k, and top-1 function top-1(.,.)
output: Top-k teams G ={g1, · · · , gk}.

1 Queue ← ∅; G ← ∅;
2 Insert the team generated by the function top-1(W,t) into Queue;
3 while Queue �= ∅ do
4 res ← top of Queue;
5 G ← G

⋃{res};
6 if |G| = k then
7 return G;

8 Remove top of Queue;
9 foreach w ∈ res do

10 Insert the team generated by the function top-1(Wres − {w},t) into Queue;

3.1 Overview of the Framework

The main idea of the two-level framework is that the top-2 best team can be
discovered if and only if the top-1 best team is found first. In other words, after
excluding the top-1 best team from the solution space, not only the size of the
solution space is shrunken, but also the global top-2 best team must be the local
top-1 best team in the shrunken solution space. The function of finding the local
top-1 best team is denoted as the top-1 function in the first level, which will be
described in details as the approximation algorithm and the exact algorithm in
Sects. 3.1 and 3.2, respectively.

The framework is shown in Algorithm1. We first initialize an empty priority
queue of teams Queue, which sorts the elements in non-increasing prices of the
teams, and the top-k teams G in lines 1–2. In line 3, we use a given algorithm,
which can be exact or approximate, to get the exact or approximate top-1 team
and insert it into Queue. In lines 4–11, if Queue is not empty, we get the top
element res of Queue and insert res into G. For each w in res, we reduce the
solution space of res to Wres −{w}, find a solution in it, and insert the solution
into Queue. We repeat this procedure until we get k teams.

As introduced above, the framework has a nice property that the whole
algorithm can keep the same approximation guarantee of the algorithm (top-1
function) in the first level.

Theorem 2. If the top-1 function top-1(.,.) in the framework is an approxima-
tion algorithm with approximate ratio of r, the approximate cost of the i-th team
in the approximation top-k teams by the framework keeps the same approximate
ratio compared to the cost of the corresponding i-th exact team.

Proof. We represent the approximation top-k teams generated by the framework
as {ga1 , · · · , gak}, and the exact top-k teams is denoted as {gex1 , · · · , gexk }. Because
the top-1 function top-1(.,.) has approximate ratio of r, Cost(ga1)≤ r× Cost(gex1).
When the framework excludes ga1 from the solution space and utilizes the top-1
function to obtain the other local top-1 team, it has the following two cases: (1)
if ga1 = gex1 , we have ga2 ≤ r × gex2 ; (2) ga1 �= gex1 , ga2 ≤ r × gex1 .

196 D. Gao et al.

Algorithm 2. Top-1 Greedy Approximation Algorithm
input : W = {w1, · · · , w|W |}, t
output: Team g.

1 g ← ∅;
2 while the team g cannot satisfy the requirement of Et do

3 w ← argmaxw∈W (
MAXITEM(g

⋃{w})−MAXITEM(g)
pw

);

4 g ← g
⋃{w};

5 return Refine(g)

3.2 Top-1 Approximation Algorithm

The main idea of the top-1 approximation algorithm utilizes the greedy strategy
to choose the best worker w, who can bring the maximum gain to the current
partial team g. Algorithm 2 illustrates the top-1 approximation algorithm. We
first initialize a empty team g in line 1. In lines 2–4, when g cannot satisfy
the requirement of skills of the task t, denoted by Et, the algorithm selects a
worker w with the maximum gain and the least price for the current team. The
function MAXITEM(.) is used to calculate the number of skills in Et that can
be covered by a specific team. In line 5, since g may contain free-rider workers,
we have to refine the team.

Example 2. Back to our running example in Example 1. The running process of
the top-1 approximation algorithm is shown in Table 2. In the first round, we
choose w2 with the biggest benefit 1. Since {w2} can not handle the task, we
proceed to choose w3 with the biggest benefit of 2

3 . Now, we can handle the task
with {w2, w3} and the price is 4.

Approximation Ratio. The approximation ratio of the algorithm is O(ln |Et|).
Inspired by [10], it is easy to get the approximation ratio of Algorithm2. Due
to the limited space, the details of the approximation ratio proof are omitted in
this paper.

Table 2. The running process of Top-1 approximation algorithm

Round w1 w2 w3

1 1/2 1 2/3

2 1/2 2/3

Complexity Analysis. The time consumed by MAXITEM is O(|Et|2
log(|Et|)). Line 3 will be executed at most |Et| times. The Refine step takes
O(2|Et|) time. Thus, the total time complexity is O(|W ||Et|3 log(|Et|) + 2|Et|).
Since |Et| is usually very small in real applications, the algorithm is still efficient.

Finally, the following example illustrates the whole process of the complete
approximation algorithm based on the two-level-based framework.

Top-k Team Recommendation in Spatial Crowdsourcing 197

Algorithm 3. Top-1 Exact Algorithm
input : W = {w1, · · · , w|W |}, t
output: Team g.

1 Cg ← Price of Top-1 Greedy Approximation Algorithm(W, t);
2 state ← ∅;
3 foreach w ∈ W do
4 if pw � Cg then
5 foreach cover condition of w as c do
6 foreach s ∈ state do
7 if s.P + c.P � Cg then
8 Insert new cover condition of s + c into temp state;

9 Insert c into temp state;

10 update state using temp state and clear temp state;

11 T ← cover condition of skills Et;
12 return T ;

Example 3. Back to our running example in Example 1. Suppose k = 2 and the
required skills of the task t = {1, 2, 3}. We first use the Top-1 greedy approxi-
mation algorithm to get a team of {w1, w3} in the first level of the framework.
Then we continue to adopt the Top-1 greedy approximation algorithm to find
the local top-1 teams from W − {w1} and W − {w3}. The returned teams are
{w1, w3} and ∅ respectively. Thus, the final top-2 teams generated by the whole
framework are {w2, w3} and {w1, w3}.

3.3 Top-1 Exact Algorithm

Since the number of skills required by a task is often not large, the main idea of
the Top-1 exact algorithm is to enumerate the cover state of every proper subset
of the intersection of the skills between a worker and a task. For each proper
subset, we maintain a cover state of the covered skills and the total price of
workers. We update the global cover state when processing each worker. When
we have processed all the workers, the cover states of all the required skills of
the task are the exact solution.

The exact algorithm is shown in Algorithm3. We first get a approximate
solution using a greedy algorithm and store the price of the solution in Cg in
line 1. We then initialize state to store the currently best cover state. In lines
4–10, we successively process each worker in W . For worker w, if wp is not larger
than Cg, we enumerate all the cover states of wp. For each cover state c, we
combine it with cover state state. If the combined price is not larger than Cg,
we store the current cover state in temp state. We finally store c in temp state
and use it to update state. After we have processed all the workers in W , we
check the cover state of the required skills of task t and its associated team is
the best team. In line 4 and line 7, we adopt two pruning strategies. In line 4,
we use Cg to prune a single worker whose price is too high. In line 7, we use Cg

to prune a new cover state whose price is too high.

198 D. Gao et al.

Example 4. Back to our running example in Example 1. We first use the top-
1 approximation algorithm shown in Algorithm2 to get an approximate solu-
tion T = {w2, w3} with total price of 4, which is used as the current lower
bound. Then we maintain the cover state using a triple structure, which
contains the covered skills, the workers and the total price of the current
optimal team for each possible combination of the required skills. w1 can
cover skill 1 or 2 with price 2, which is less than the lower bound of 4,
so the cover state of w1 can be {<{1}, {w1}, 2>,<{2}, {w1}, 2>}. As w1 is
the first worker we process, we just update the current best cover state as
{<{1}, {w1}, 2>,<2, {w1}, 2>}. We then proceed to process w2. We combine
the only cover state, <{1}, {w2}, 1> with the cover states in state, and then
we get a new cover state of <{1, 2}, {w1, w2}, 2>. After processing w2, the cur-
rent best cover state is {<{1}, {w2}, 1>,<{2}, {w1}, 2>,<{1, 2}, {w1, w2}, 2>}.
We can process w3 similarly and the final cover state is {<{1}, {w2}, 1>,<{2},
{w1}, 2>,<{1, 2}, {w1, w2}, 2>,<{1, 2, 3}, {w2, w3}, 4>} and the best team
is {w2, w3}.

Complexity Analysis. Line 3 runs |W | times, line 5 runs C(|Et|, |Et|/2) times,
and line 8 runs 2|Et| times. Therefore, the total time complexity is O(|W |(2|Et|)).
When |Et| is not too large, the exact algorithm can be used.

4 Experimental Study

4.1 Experimental Setup

We use a real dataset collected from gMission [5], which is a research-based
general spatial crowdsourcing platform. In the gMission dataset, every task has
a task description, a location, a radius of the restricted range, and the required
skills. Each worker is also associated with a location, a set of his/her owning
skills, a price, and a capacity of skills that s/he completes a task. Currently, users
often recruit crowd workers to organize all kinds of activities on the gMission
platform. In this paper, our real dataset includes the information of 11205 crowd
workers, where the average number of skills and the average capacity owned by
the workers are 5.46 and 4.18, respectively. We also use synthetic dataset for
evaluation. In the synthetic dataset, the capacity and the number of skills owned
by a worker follow uniform distribution in the range of 1 to 20, respectively.
Statistics of the synthetic dataset are shown in Table 3, where we mark our
default settings in bold font.

Based on the two-level-based framework, we evaluate an approximation algo-
rithm (Algorithms 1 and 2), called TTR-Greedy, and two exact algorithms (Algo-
rithms 1 and 3), called TTR-Exact (which does not use the proposed pruning
rules) and TTR-ExactPrune, and a baseline algorithm in terms of total utility
score, running time and memory cost, and study the effect of varying parame-
ters on the performance of the algorithms. The baseline algorithm uses a simple
random greedy strategy, which first finds the best team, then randomly removes

Top-k Team Recommendation in Spatial Crowdsourcing 199

Table 3. Synthetic Dataset

Factor Setting

|W | 1000, 3000, 5000, 7000, 9000

k 4, 8, 12, 16, 20

|Et| 4, 8, 12, 16, 20

μ|Ew| 2, 4 6, 8, 10

σ|Ew| 8, 10, 12, 14, 16

Scalability (|W |) 10K, 30K, 50K, 70K, 90K

a worker from the best team from the set of workers, and iteratively finds the
other k − 1 best teams following the two steps above. The algorithms are imple-
mented in Visual C++ 2010, and the experiments were performed on a machine
with Intel(R) Core(TM) i5 2.40 GHz CPU and 4GB main memory.

4.2 Experiment Results

In this subsection, we test the performance of our proposed algorithms through
varying different parameters.

Effect of Cardinality of W. The results of varying |W | are presented in Fig. 2a
to c. Since TTR-Exact and TTR-ExactPrune return the same utility results,
only utility results of TTR-ExactPrune are plotted. We can first observe that
the utility decreases as |W | increases, which is reasonable as more high-quality
workers can are available. Also, we can see that TTR-Greedy is nearly as good
as the exact algorithms. As for running time, TTR-Exact consumes more time
with more workers due to larger search space while the TTR-ExactPrune is
quite efficient due to its pruning techniques. The other algorithms do not vary
much in running time. For memory, TTR-ExactPrune is the most efficient while
TTR-Exact and TTR-Greedy are less efficient.

Effect of Parameter k. The results of varying k are presented in Fig. 2d to f.
We can observe that the utility, running time and memory generally increase as
k increases, which is reasonable as more teams need to be recommended. Again,
we can see that TTR-Greedy is nearly as good as the exact algorithms but runs
much faster. Also, we can see that the pruning techniques are quite effective as
TTR-ExactPrune is much faster than TTR-Exact. Finally, TTR-Greedy is the
most inefficient in terms of memory consumption.

Effect of the Number of Required Skills in Tasks. The results are pre-
sented in Fig. 2g to i. We can see that the utility values increase first with
increasing number of required skills |Et| but decrease later when |Et| further
increases. The possible reason is that when |Et| is not large, the required skills
are still quite diverse and thus more workers need to be hired to complete the
task as |Et| increases. However, as |Et| becomes too large, many workers may

200 D. Gao et al.

10
00

30
00

50
00

70
00

90
00

|W|

50

100

150

200

250

300

350

U
til
ity

Baseline
TTR-ExactPrune
TTR-Greedy

(a) Utility of varying |W |

10
00

30
00

50
00

70
00

90
00

|W|

0

50

100

150

200

250

300

350

400

450

Ti
m
e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

(b) Time of varying |W |

10
00

30
00

50
00

70
00

90
00

|W|

3

3.5

4

4.5

5

M
em

or
y(
M
B)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

(c) Memory of varying |W |

4 8 12 16 20

k

0

50

100

150

200

250

300

U
til
ity

Baseline
TTR-Exact
TTR-Greedy

(d) Utility of varying k

4 8 12 16 20

k

0

200

400

600

800

1000

1200

1400

Ti
m
e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

(e) Time of varying k

4 8 12 16 20

k

0

5

10

15

20

25

M
em

or
y(
M
B)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

(f) Memory of varying k

4 8 12 16 20

|E
t
|

20

40

60

80

100

120

140

160

180

200

U
til
ity

Baseline
TTR-ExactPrune
TTR-Greedy

(g) Utility of varying |Et|

4 8 12 16 20

|E
t
|

0

20

40

60

80

100

120

Ti
m
e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

(h) Time of varying |Et|

4 8 12 16 20

|E
t
|

3

3.5

4

4.5

5

5.5

6

M
em

or
y(
M
B)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

(i) Memory of varying |Et|

Fig. 2. Results on varying |W |, k, and |Et|.

use their own multiple skills to complete the task and thus less workers may
be needed. As for running time and memory, we can observe that the values
generally increase. Again, TTR-ExactPrune is highly inefficient compared with
the other algorithms. Notice that the exact algorithms run very long time when
|Et| is large, so we do not plot their results when |Et| is larger than 12.

Effect of the Distribution of the Number of Skills Per Each Worker
(μ and σ). The results are presented in Fig. 3a to f. We can first observe that
the utility value first increases as μ and σ increase and then drops when μ and
σ further increase. The possible reason is that when μ and σ first increase, the
skills of workers are more diverse and may not cover the requirements of the tasks
and thus more workers are still needed. However, as μ and σ further increase,
many workers can utilize their multiple skills and thus less workers are needed.
As for running time, TTR-Exact is again very inefficient. Finally, for memory,
TTR-ExactPrune is more efficient than TTR-Exact and TTR-Greedy.

Scalability. The results are presented in Fig. 3g to i. Since the exact algorithms
are not efficient enough, we only study the scalability of TTR-Greedy. We can

Top-k Team Recommendation in Spatial Crowdsourcing 201

Fig. 3. Results on varying μ|Ew|, σ|Ew|, and scalability test.

see that the running time and memory consumption TTR-Greedy is still quite
small when the scale of data is large.

Real Dataset. The results on real dataset are shown in Fig. 4a to c, where we
vary k. We can observe similar patterns as those in Fig. 2d to f. Notice that the
exact algorithms are not efficient enough on the dataset, so no result of them
when k is larger than 8 is presented.

Conclusion. For utility, TTR-Greedy is nearly as good as the exact algorithms,
and TTR-Greedy and the exact algorithms all perform better than the baseline
algorithm do. As for running time, TTR-Exact is the most inefficient, while
TTR-ExactPrune is much more efficient than TTR-Exact due to its pruning
techniques but is still slower than TTR-Greedy.

5 Related Work

In this section, we review related works from two categories, spatial crowdsourc-
ing and team formation.

202 D. Gao et al.

4 8 12 16 20
k

0

50

100

150

200

250

300

350

400

450

U
til
ity

Baseline
TTR-ExactPrune
TTR-Greedy

(a) Utility in real data

4 8 12 16 20

k

0

50

100

150

200

250

Ti
m
e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

(b) Time in real data

4 8 12 16 20

k

2

4

6

8

10

12

14

16

M
em

or
y(
M
B)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

(c) Memory in real data

Fig. 4. Performance on the real dataset.

5.1 Spatial Crowdsourcing

Most works on spatial crowdsourcing study the task assignment problem. [6,14]
aim to maximize the number of tasks that are assigned to workers. Further-
more, the conflict-aware spatial task assignment problems are studied [11,12,18].
Recently, the issue of online task assignment in dynamic spatial crowdsourcing
scenarios is proposed [17]. [7] further studies the reliability of crowd workers
based on [6]. [13] studies the location privacy protection problem for the workers.
[7] studies the route planning problem for a crowd worker and tries to maximize
the number of completed tasks. The corresponding online version of [7] is studied
in [9]. Although the aforementioned works study the task allocation problem on
spatial crowdsourcing, they always assume that spatial crowdsourcing tasks are
simple micro-tasks and ignore that some real spatial crowdsourced tasks often
need to be collaboratively completed by a team of crowd workers.

5.2 Team Formation Problem

Another closely related topic is the team formation problem [8], which aims
to find the minimum cost team of experts according to skills and relationships
of users in social networks. [1,2] further studies the workload balance issue in
the static and dynamic team formation problem. The capacity constraint of
experts is also considered as an variant of the team formation problem in [10].
Moreover, the problems of discovering crowed experts in social media market
are also studied [3,4]. The above works only consider to find the minimum cost
team, namely top-1 team, instead of top-k teams without free riders. In addition,
we address the spatial scenarios rather than the social networks scenarios.

6 Conclusion

In this paper, we study a novel spatial crowdsourcing problem, called the Top-
k Team Recommendation in spatial crowdsourcing (TopkTR), which is proven
to be NP-hard. To address this problem, we design a two-level-based framework,
which not only includes an exact algorithm with pruning techniques to get the

Top-k Team Recommendation in Spatial Crowdsourcing 203

exact solution but also seamlessly integrates an approximation algorithm to guar-
antee theoretical approximation ratio. Finally, we conduct extensive experiments
which verify the efficiency and effectiveness of the proposed approaches.

Acknowledgment. This work is supported in part by the National Science Founda-
tion of China (NSFC) under Grant No. 61502021, 61328202, and 61532004, National
Grand Fundamental Research 973 Program of China under Grant 2012CB316200, the
Hong Kong RGC Project N HKUST637/13, NSFC Guang Dong Grant No. U1301253,
Microsoft Research Asia Gift Grant, Google Faculty Award 2013.

References

1. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Power
in unity: forming teams in large-scale community systems. In: CIKM 2010, pp.
599–608 (2010)

2. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online
team formation in social networks. In: WWW 2012, pp. 839–848 (2012)

3. Cao, C.C., She, J., Tong, Y., Chen, L.: Whom to ask?: jury selection for decision
making tasks on micro-blog services. Proc. VLDB Endowment 5(11), 1495–1506
(2012)

4. Cao, C.C., Tong, Y., Chen, L., Jagadish, H.V.: Wisemarket: a new paradigm for
managing wisdom of online social users. In: SIGKDD 2013, pp. 455–463 (2013)

5. Chen, Z., Fu, R., Zhao, Z., Liu, Z., Xia, L., Chen, L., Cheng, P., Cao, C.C., Tong,
Y., Zhang, C.J.: gMission: a general spatial crowdsourcing platform. Proc. VLDB
Endowment 7(14), 1629–1632 (2014)

6. Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowd-
sourcing. In: GIS 2012, pp. 189–198 (2012)

7. Kazemi, L., Shahabi, C., Chen, L.: Geotrucrowd: trustworthy query answering with
spatial crowdsourcing. In: GIS 2013, pp. 304–313 (2013)

8. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
SIGKDD 2009, pp. 467–476 (2009)

9. Li, Y., Yiu, M.L., Xu, W.: Oriented online route recommendation for spatial crowd-
sourcing task workers. In: Claramunt, C., Schneider, M., Wong, R.C.-W., Xiong,
L., Loh, W.-K., Shahabi, C., Li, K.-J. (eds.) SSTD 2015. LNCS, vol. 9239, pp.
137–156. Springer, Heidelberg (2015)

10. Majumder, A., Datta, S., Naidu, K.: Capacitated team formation problem on social
networks. In: SIGKDD 2012, pp. 1005–1013 (2012)

11. She, J., Tong, Y., Chen, L.: Utility-aware social event-participant planning. In:
SIGMOD 2015, pp. 1629–1643 (2015)

12. She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrange-
ment. In: ICDE 2015, pp. 735–746 (2015)

13. To, H., Ghinita, G., Shahabi, C.: A framework for protecting worker location pri-
vacy in spatial crowdsourcing. Proc. VLDB Endowment 7(10), 919–930 (2014)

14. To, H., Shahabi, C., Kazemi, L.: A server-assigned spatial crowdsourcing frame-
work. ACM Trans. Spat. Algorithms Syst. 1(1), 2 (2015)

15. Tong, Y., Cao, C.C., Chen, L.: TCS: efficient topic discovery over crowd-oriented
service data. In: SIGKDD 2014, pp. 861–870 (2014)

204 D. Gao et al.

16. Tong, Y., Cao, C.C., Zhang, C.J., Li, Y., Chen, L.: Crowdcleaner: Data cleaning
for multi-version data on the web via crowdsourcing. In: ICDE 2014, pp. 1182–1185
(2014)

17. Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation
in spatial crowdsourcing. In: ICDE 2016 (2016)

18. Tong, Y., She, J., Meng, R.: Bottleneck-aware arrangement over event-based social
networks: the max-min approach. World Wide Web J. (to appear). doi:10.1007/
s11280-015-0377-6

http://dx.doi.org/10.1007/s11280-015-0377-6
http://dx.doi.org/10.1007/s11280-015-0377-6

	Top-k Team Recommendation in Spatial Crowdsourcing
	1 Introduction
	2 Problem Statement
	3 A Two-Level-Based Framework
	3.1 Overview of the Framework
	3.2 Top-1 Approximation Algorithm
	3.3 Top-1 Exact Algorithm

	4 Experimental Study
	4.1 Experimental Setup
	4.2 Experiment Results

	5 Related Work
	5.1 Spatial Crowdsourcing
	5.2 Team Formation Problem

	6 Conclusion
	References

