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Abstract—The prevalence of mobile Internet techniques and
Online-To-Offline (O2O) business models has led the emergence
of various spatial crowdsourcing (SC) platforms in our daily life.
A core issue of SC is to assign real-time tasks to suitable crowd
workers. Existing approaches usually focus on the matching
of two types of objects, tasks and workers, or assume the
static offline scenarios, where the spatio-temporal information
of all the tasks and workers is known in advance. Recently,
some new emerging O2O applications incur new challenges:
SC platforms need to assign three types of objects, tasks,
workers and workplaces, and support dynamic real-time online
scenarios, where the existing solutions cannot handle. In this
paper, based on the aforementioned challenges, we formally define
a novel dynamic online task assignment problem, called the
trichromatic online matching in real-time spatial crowdsourcing
(TOM) problem, which is proven to be NP-hard. Thus, we first
devise an efficient greedy online algorithm. However, the greedy
algorithm can be trapped into local optimal solutions easily. We
then present a threshold-based randomized algorithm that not
only guarantees a tighter competitive ratio but also includes
an adaptive optimization technique, which can quickly learn
the optimal threshold for the randomized algorithm. Finally, we
verify the effectiveness and efficiency of the proposed methods
through extensive experiments on real and synthetic datasets.

I. INTRODUCTION

The prevalence of mobile Internet and sharing economy
has led to the emergence of all kinds of spatial crowdsourcing
(SC) platforms, where the online crowd workers are employed
through their smartphones to participate in and complete offline
crowdsourcing tasks in the physical world [1]. Many rep-
resentative commercial applications of spatial crowdsourcing
are ubiquitous in daily life, such as the real-time taxi-calling
service, e.g. Uber [2], the product placement checking service
of supermarkets, e.g. Gigwalk [3], the on-wheel meal-ordering
service, e.g. GrubHub [4].

In such spatial crowdsourcing platforms, one of the most
important issues is to assign real-time tasks to suitable crowd
workers. Existing studies usually model this task assignment
problem as a static maximum unweighted/weighted bipartite
graph matching problem [5], [6], [7], [8], [9], which is to match
tasks to suitable workers such that the total number/weighted
value of the assigned pairs of tasks and workers is maximized.
These studies only consider matching two types of objects,
tasks and workers, in an offline scenario, where the full
bipartite graph of all the tasks and workers is known before
the matching is conducted.

However, some new emerging O2O applications, e.g.

InterestingSport[10] and Nanguache[11], bring new challenges
to the existing task assignment techniques in SC platforms. For
example, InterestingSport needs to find suitable sports trainers
and book the corresponding sports facilities for its users in
real time. Imagine the following scenario. Diane is a tennis
beginner and hopes to find a suitable trainer to practice tennis
near her home once she has free time. However, Diane usually
encounters a dilemma if she wants to practice tennis shortly.
That is because she first needs to know the availability of
her trainer and the nearby tennis court and it is hardly that
both her trainer and the nearby tennis court are available at
the same time. In fact, there may be some other available
trainers and tennis courts near her home when Diane is free,
and a more intelligent SC platform that can match customers,
trainers and tennis courts in real time can solve Diane’s
dilemma. Another example is the Nanguache platform, which
aims to help customers to find suitable makeup artists (or
hairstylists). In particular, Nanguache would suggest a nearby
3rd-party workplace, e.g. salon, where the makeup artist and
the customer would meet. Such assignment of makeup artist
and 3rd-party workplace needs to be conducted in real time
whenever a user makes a request.

For these new SC platforms, on one hand, three types of
objects, tasks, workers and workplaces, need to be matched.
On the other hand, the assignment is dynamic: tasks are
usually submitted by customers in real time, workers (trainers
or makeup artists) log in the platform dynamically, and the
availability of facilities/workplaces is dynamically updated.
Thus, the assignment for these new SC platforms should be
conducted under dynamic online scenarios, where each task,
worker and workplace may appear anywhere at anytime and
requires immediate responses from the SC platforms. Notice
that a recent study [12] also studies online allocation in SC,
but it only considers two sides (tasks and workers) and cannot
address the matching problem involving three types of objects.
Therefore, the core challenge for these new emerging SC
platforms is how to model the new matching problem involving
three types of dynamic objects and design a quality-guaranteed
algorithm to conduct the online matching.

As discussed above, some emerging SC platforms need
to match three types of objects. Under the offline scenar-
ios, such matching problem can be reduced to the classical
3-dimensional matching (3DM) problem [13], where tasks,
workers and workplaces correspond to the three disjoint sets of
nodes in a tripartite graph. Moreover, there is an edge between
a task (worker) and a workplace if the workplace locates in
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TABLE I: Statistics for requesters, workers and workplaces

Object Location Arrival Time Leaving Time

t1 (4.50, 6.00) 8:00 8:10

p1 (4.50, 4.75) 8:02 8:12

w1 (5.50, 5.00) 8:05 8:15

t2 (3.00, 4.50) 8:08 8:18

p2 (2.50, 3.00) 8:10 8:20

w2 (4.00, 3.25) 8:11 8:21

w3 (3.25, 2.00) 8:13 8:23

t3 (1.50, 3.50) 8:15 8:25

t4 (5.50, 2.00) 8:17 8:27

p3 (4.50, 2.00) 8:19 8:29

TABLE II: Utility of all possible matches

ID Match Utility Score ID Match Utility Score

1 (t1, p1, w1) 18 6 (t2, p2, w3) 20

2 (t1, p1, w2) 10 7 (t3, p2, w2) 12

3 (t2, p1, w1) 90 8 (t3, p2, w3) 48
4 (t2, p1, w2) 20 9 (t4, p3, w2) 72
5 (t2, p2, w2) 20 10 (t4, p3, w3) 12

the limited range of the task requester (worker). Although
there are some existing solutions for the offline 3DM problem,
they cannot address the dynamic online scenarios, where the
current decision can only be made based on partial tripartite
graph information and needs to be conducted immediately. To
further illustrate this motivation, we go through a toy example
as follows.

Example 1: Suppose we have four task requesters t1− t4,
three workers w1−w3 and three workplaces p1− p3 on a SC
platform, and their corresponding locations are shown in a 2D
space (X,Y) in Fig. 1 (a). Each requester and each worker have
a limited activity range, which is shown as the dotted circle and
the solid circle in Fig. 1 (a), respectively. A requester (worker)
can only be matched to the workplaces that are located within
the range of the requester (worker). Table. II shows the utility
scores of each triple, which represents the satisfaction of the
matching involving the corresponding task requester, worker
and workplace. The arrival and leaving time of the objects are
shown in the last two columns of Table. I. Under the offline
scenario, the matching problem can be modeled as a variant of
the 3DM problem shown in Fig. 1 (b). Thus, the total utility of
the optimal matching, which is shown in bold font in Table. II,
is 210. However, under the dynamic online scenario, when a
new object arrives, the platform has to process it immediately,
and the decision cannot be changed once it was made. We
next show a possible matching procedure in the SC platform.
When w1 arrives, the platform matches it with t1 and p1 or
does nothing. Suppose the platform conducts the matching (t1,
p1, w1), and it then gains utility score of 18. Subsequently, the
platform then further matches two triples, (t3, p2, w3) and (t4,
p3, w2), and the total utility score is 18+48+72 = 138. Notice
that the total utility of the online matching cannot be greater
than that of optimal total utility under the offline scenario.

Based on the aforementioned example, we formally define
a new task assignment problem in real-time SC, called the
trichromatic online matching in real-time spatial crowdsourc-
ing (TOM) problem, where the three types of objects, task
requesters, workers and workplaces, will dynamically arrive
at the SC platform one by one in an online way and the
platform has to make decision for a newly arrived object based
on the current information before the next object arrives. In
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Fig. 1: Locations of requesters, workers and places.

particular, as discussed later, even the offline version of the
TOM problem is NP-hard, and thus the TOM problem is very
difficult to address. A close branch of existing studies is the
online weighted bipartite graph matching problem [14], [15],
[16], [17]. However, all of them only focus on two types of
objects and cannot handle three types of objects. In summary,
to solve this problem, we make the following contributions.

• Inspired by some emerging SC applications, we
identify a new dynamic matching problem, called
the trichromatic online matching in real-time spatial
crowdsourcing (TOM) problem, and propose a formal
definition of TOM problem. We also prove that even
the offline version of TOM is NP-hard.

• We develop a greedy algorithm, which is efficient but
has worse theoretical guarantee since it can be trapped
into local optimal solutions easily.

• We present a threshold-based randomized algorithm
framework, which not only guarantees a tighter com-
petitive ratio, 1

3e�ln(Umax+1)� , where Umax is the

maximum utility of a triple involving task, worker and
workplace, but also includes an adaptive optimization
technique, which can learn the best threshold for the
randomized algorithm.

• We verify the effectiveness and efficiency of the
proposed online methods with extensive experiments
on real and synthetic datasets.

The rest of the paper is organized as follows. We define
the TOM problem in Section II. Section III presents a greedy-
based online algorithm and analyzes its competitive ratio.
To enhance the effectiveness of the greedy-based algorithm,
a threshold-based framework and its adaptive optimization
techniques with better competitive ratios are presented in
Section IV. Section V discusses extensive experiment results
on both synthetic and real datasets. We review related works
in Section VI and conclude in Section VII.

II. PROBLEM STATEMENT

We first formally define the trichromatic online matching
in real-time spatial crowdsourcing (TOM) problem, and then
introduce competitive ratio, which measures the quality of
an online algorithm compared with the offline optimal result.
Finally, we prove that the offline version of the TOM problem
is NP-hard.

101210121012998998998998998998101010101010



A. Problem Definition

We first introduce three basic concepts, task requester,
crowd worker and crowd workplace, and then formally define
the online model of TOM and the utility score of a single
match, i.e., a triple of a requester, a workplace and a worker.
We define the TOM problem.

Definition 1 (Task Requester): A task requester
(“requester” for short) is denoted by t =< lt, rt, bt, et >. lt is
the location of t in a 2D space. bt and et are the arrival and
leaving time of t, respectively. rt is the radius of the limited
circular range of t, whose center is lt.

Definition 2 (Crowd Worker): A Crowd worker (“worker”
for short) is denoted by w =< lw, rw, bw, ew >. lw, rw, bw
and ew represent the location, the radius, the arrival time and
leaving time of w, respectively, which are similar as those of
task requester.

Definition 3 (Crowd Workplace): A Crowd workplace
(“workplace” for short) is denoted by p =< lp, bp, ep >.
Particularly, a workplace p has a location lp, an arrival time
bp and a leaving time ep.

After defining the above three basic concepts, we next
introduce the online model used in the TOM problem.

Definition 4 (Online Model): A three-sided online model
is adopted. Concretely, three types of objects, requesters,
workers and workplaces, arrive and leave dynamically on the
crowdsourcing platform. On the arrival of each object, the
platform matches it to the other two types of objects actively.
Alternatively, an object can wait to be matched to subsequent
arrival objects passively. A match cannot be changed once it
is made.

We then define the utility score of a triple.

Definition 5 (Utility Score): The utility score of a triple
(t, p, w) of requester t, workplace p and worker w is defined
as U(t, p, w), where U can be any function derived from the
profiles and spatial-temporal information of t, p and w.

Finally, we define our problem as follows.

Definition 6 (TOM Problem): Given a set of requesters T ,
a set of workers W , a set of workplaces P , and a utility
function U(., ., .) on a SC platform, which has no object
initially and allows each object to arrive and leave at any
time, the TOM problem is to find a matching M among the
requesters, the workers and the workplaces to maximize the
total utility MaxSum(M) =

∑
t∈T,p∈P,w∈W U(t, p, w) such

that the following constraints are satisfied:

• Deadline constraint: each object should either be
matched to existing objects at the arrival time, or be
matched to new arrival objects before its leaving time,
or otherwise remains unmatched after the deadline.

• Invariable constraint: once a triplet (t, p, w) of re-
quester t, workplace p and worker w is matched, it
cannot be changed.

• Range constraint: any workplace matched to a re-
quester t and a worker w must locate in the restricted
range of both t and w.

B. Evaluation Model

Competitive analysis [14], [15], [16] is a method for
analyzing online algorithms, which compares the performance
of an online algorithm to that of an optimal offline algorithm
has full information in advance.

Definition 7 (Competitive Ratio): The competitive ratio of
a deterministic online algorithm for the TOM problem is the
following minimum ratio between the result of the online
algorithm and the optimal result over all possible inputs,

CR = min
∀G(T,W,P,U)

MaxSum(M)

MaxSum(OPT )

where G(T,W,P, U) is an arbitrary input of requesters, work-
ers, workplaces and the utility score function, MaxSum(M)
is the total utility score produced by the deterministic online
algorithm. MaxSum(OPT ) is the optimal total utility score
of the offline scenario.

The competitive ratio of a randomized online algorithm is

CR = min
∀G(T,W,P,U)

E[MaxSum(M)]

MaxSum(OPT )

where E[MaxSum(M)] is the expectation of the total utility
scores produced by the randomized online algorithm, and
the expectation comes from the coin flip in the randomized
algorithm.

C. Hardness of the Offline Version of TOM

The offline version of the TOM problem is identical to the
online TOM problem except that the first two constraints are
excluded. In other words, the spatiotemporal information of
all the requesters, workers and workplaces is known before
the matching is conducted. We next analyze the hardness of
the offline version of the TOM algorithm.

Theorem 1: The offline version of the TOM problem is
NP-hard.

Proof: We consider the special case of the offline version
of the TOM problem, where |T | = |W | = |P |, and the utility
score of any triple that satisfies all the constraints is 1. Since
the decision problem of the 3-dimensional matching (3DM)
problem, which is a well-known NP-complete problem [13],
is equivalent to that of the aforementioned special case, we
can reduce the 3DM problem to the special case of the offline
version of the TOM problem. Therefore, the offline version of
the TOM problem is NP-hard.

III. GREEDY ALGORITHM

In this section, we propose and analyze a straightforward
solution of TOM, the Greedy algorithm.

The main idea is that when a new object arrives, Greedy
finds all the triples that can be matched to the new object
and chooses the one with the largest utility score with ties
broken arbitrarily. Note that the greedy strategy is reflected
in two aspects. First, Greedy will make a matching whenever
possible, even if the corresponding utility score is low. Second,
if several triples are available at the same time, Greedy always
chooses the one with the largest utility score.

101310131013999999999999999999101110111011
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Fig. 2: Illustrated example of Greedy.

Algorithm 1: Greedy Algorithm

input : T,W,P, U(., .)
output: A feasible matching result M

1 foreach new arrival object v do
2 Cand← {∀u|u is a triple containing v and

satisfying all the constraints};
3 if Cand = ∅ then
4 continue;

5 else
6 m← the item in Cand with the largest utility;
7 M ←M ∪ {m};
8 return M

The whole procedure of Greedy is illustrated in Algorithm
1. In lines 1-2, when a new object v arrives, Greedy puts all
the triples that contain v and satisfy all the constraints into
the candidate set Cand. In lines 3-7, if Cand is not empty,
Greedy chooses the triple with the largest utility from Cand,
and adds it to the matching result M .

Example 2: Back to our running example in Example
1. According to the arrival time in Table. I, the matching
procedure of Greedy is shown in Fig. 2. In Fig. 2 (a), when w1

arrives, Greedy matches (t1, p1, w1) with utility of 18. When
t2 arrives in Fig. 2 (b), the candidate set Cand = ∅ because
p1 and w1 have been matched. After w2 arrives, which is
shown in Fig. 2 (c), Greedy matches (t2, p2, w2) with utility
of 20. After t4 arrives, which is shown in Fig. 2 (d), Greedy
matches (t4, p2, w3) with utility of 12. Thus, the total utility
is 18 + 20 + 12 = 50.

Competitive Analysis. Next, we analyze the competitive
ratio of Greedy.

Lemma 1: If MOPT and MGRD are the matching results
of the offline optimal algorithm and Greedy respectively, we

have |MGRD| ≥ |MOPT |
3 , where | · | represents cardinality of

a set.

Proof: For each triple m in MOPT , at least one object
of m must be matched by Greedy. Therefore the number of
objects matched by Greedy is at least 1

3 of those matched
by the offline optimal algorithm. Thus we have |MGRD| ≥
|MOPT |

3 .

Theorem 2: If the utility score of each triple is in the range
of [1, Umax], the competitive ratio of Greedy is 1

3Umax
.

Proof:

MaxSum(MGRD) ≥ |MGRD| · 1
≥ |MOPT |

3

≥ 1

3Umax
|MOPT | · Umax

≥ MaxSum(MOPT )

3Umax

Thus, the competitive ratio of Greedy is

CR =
MaxSum(MGRD)

MaxSum(MOPT )
=

1

3Umax
.

Complexity Analysis. For each new arrival object, the
time and space complexity of the Greedy algorithm are both
O(max(|T ||W |, |T ||P |, |W ||P |)).

IV. THRESHOLD-BASED ALGORITHMS

From Example 2, we can observe that Greedy does not
perform well. In particular, when Greedy matches a triple
with a small utility score, subsequent triples with large utility
scores may not be matched. To address the above limitation,
we propose a threshold-based framework. Basically, we filter
the triples whose utility scores are less than a certain threshold
so that they will not block subsequent triples that may have
larger utility scores. Inspired by [17], we devise a randomized
algorithm called Basic-Threshold in Section IV-A. We next
enhance Basic-Threshold to Adaptive-Threshold that learns the
optimal threshold in Section IV-B.

A. Basic-Threshold Algorithm

The main idea of Basic-Threshold is to first randomly
choose a threshold on the utility of triples. Then for each
new arrival object, an arbitrary triple containing the new object
with utility no less than the chosen threshold is added to the
matching result.

The whole procedure of Basic-Threshold is illustrated in
Algorithm 2. In lines 1-2, Basic-Threshold randomly chooses a
threshold ek on the utility of triples according to the estimated

101410141014100010001000100010001000101210121012
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Fig. 3: Illustrated example of Basic-Threshold.

Algorithm 2: Basic-Threshold Algorithm

input : T,W,P, U(., ., .)
output: A feasible match result M

1 θ ← �ln(Umax + 1)�;
2 k ← randomly choosing an integer from {0, · · · , θ− 1};
3 foreach new arrival requester or worker or workplace

v do
4 Cand← {∀u|u is an allocation containing v and

satisfying all the constraints, and the utility score
of u calculated by U(., ., .)is no less than ek};

5 if Cand = ∅ then
6 continue;

7 else
8 m← an arbitrary item in Cand;
9 M ←M ∪ {m};

10 return M

maximum utility Umax, which can be learned from historical
records on the crowdsourcing platforms. In lines 3-4, when
a new object v arrives, which may be a requester, a worker
or a workplace, Basic-Threshold then adds all triples of v that
have utility scores no less than ek and satisfy all the constraints
into Cand. In lines 5-9, if Cand is not empty, Basic-Threshold
chooses an arbitrary triple from Cand and adds it to M .

We then explain Basic-Threshold with a running example.

Example 3: Back to our running example in Example 1.
The Basic-Threshold algorithm set θ = �ln(90 + 1)� = 5,
so k ∈ {0, · · · , 4}. If k is chosen as 3, the threshold is
e3 ≈ 20.1. The matching procedure of Basic-Threshold is
shown in Fig. 3. According to the arrival time in Table. I,
when w1 arrives, which is shown in Fig. 3 (a), the candidate
set Cand = ∅ because the utility of (t2, p1, w1) is less than
the threshold. When t2 arrives in Fig. 3 (b), the candidate
set Cand = {(t2, p1, w1)}, and the algorithm matches the
triple of (t2, p1, w1). Similarly, in Fig. 3 (c), when t3 arrives,
Basic-Threshold filters (t3, p2, w2) with utility score of 12, and
matches (t3, p2, w3). When p3 arrives in Fig. 3 (d), Basic-
Threshold matches (t4, p3, w2). Thus, when k = 3, the total
utility is 210. Since Basic-Threshold is a randomized algorithm
on choosing k, the expectation of the total utility for all
possible k is (50 + 50 + 50 + 210 + 162)/5 = 104.4.

We next give the competitive ratio and the complexity of

Basic-Threshold.

Theorem 3: The competitive ratio of Basic-Threshold is
1

3e�ln(Umax+1)� .

Proof: We denote G as the corresponding weighted tri-
partite graph of the TOM input. Let G[ei,ei+1) be a subgraph
of G, which only contains the edges whose utility scores
lies in [ei, ei+1). Let OPT[ei,ei+1) and M[ei,ei+1) be the
optimal match and the one returned by Basic-Threshold on
G[ei,ei+1), respectively. According to Lemma 1, |M[ei,ei+1)| ≥
|OPT[ei,ei+1)|/3. Then, we have

E[MaxSum(M)] =
1

θ

θ−1∑

i=0

MaxSum(M[ei,ei+1))

≥ 1

θ

θ−1∑

i=0

ei|M[ei,ei+1)|

≥ 1

θ

θ−1∑

i=0

ei
|OPT[ei,ei+1)|

3

≥ 1

3eθ

θ−1∑

i=0

MaxSum(OPT[ei,ei+1))

≥ 1

3eθ
MaxSum(OPT )

Thus, the competitive ratio of Basic-Threshold is

CR =
E[MaxSum(M)]

MaxSum(OPT )
=

1

3eθ
=

1

3e�ln(Umax + 1)�
since θ = �ln(Umax+1)�, where Umax is the maximum utility
score of the TOM input.

Complexity Analysis. For each new arrival object, the time
and space complexity of the Basic-Threshold algorithm are
both O(max(|T ||W |, |T ||P |, |W ||P |)).

B. Adaptive-Threshold Algorithm

The performance of Basic-Threshold is not stable, because
different thresholds have significant influence on the matching
results, which is shown in Example 3. Thus, how to choose an
appropriate threshold becomes a new challenge. To solve the
problem, we devise the Adaptive-Threshold algorithm, which
combines with the polynomial weights algorithm [18] and
can adaptively adjust the probability distribution of choosing

101510151015100110011001100110011001101310131013



Algorithm 3: Adaptive-Threshold Algorithm

input : T,W,P, U(., ., .)
output: A feasible match result M

1 θ ← �ln(Umax + 1)�;
2 set wi = 1 for i = 0, 1, · · · , θ − 1;

3 set W =
∑θ−1

i=1 wi;

4 set pi =
wi

W
for i = 0, 1, · · · , θ − 1;

5 foreach new arrival object v do
6 k ← randomly choosing an integer from

{0, 1, · · · , θ − 1} according to
�p = (p0, p1, · · · , pθ−1);

7 Cand← {∀u|u is a match containing v and
satisfying all the constraints, and the utility score
of u calculated by U(., ., .)is no less than ek};

8 if Cand = ∅ then
9 continue;

10 else
11 m← an arbitrary match in Cand;
12 M ←M ∪ {m};
13 Update wi = wi(1 + ηui) for i = 0, 1, · · · , θ − 1,

where ui is the utility score got from v if using ei

as the threshold from the beginning;
14 Update W and �p;

15 return M

different thresholds according to the information that has been
provided.

The main idea of Adaptive-Threshold is to combine all the
fixed thresholds strategies probabilistically. In particular, once
a new object arrives, we choose a threshold according to some
probability distribution to filter triples with low utility scores.
After processing each object, for each threshold, we calculate
how well we would have done if we used the threshold from
the beginning. According to the above information, we adjust
the probability distribution of choosing different thresholds
adaptively.

The whole procedure of the Adaptive-Threshold algorithm
is illustrated in Algorithm 3. In line 1, Adaptive-Threshold
first calculates the value of θ according to Umax, which
is the same with Basic-Threshold. In lines 2-3, for each
threshold ei, we initially set the weight at 1, and the total

weight W =
∑θ−1

i=1 wi. Thus, the initial probability for ei is
pi = wi/W . In lines 4-13, when a new object arrives, we
choose a threshold ek according to �p = (p0, p1, · · · , pθ−1),
and use it to filter matches, just as what Basic-Threshold does.
After processing v, we update wi following wi = wi(1+ ηui)
for i = 0, 1, · · · , θ−1, where ui is the utility got from v if we
use ei as the threshold from the beginning, and the parameter
η is used to control the rate of updating wi, which will be
explained later.

We next use a running example to explain how Adaptive-
Threshold works.

Example 4: Back to our running example in Example 1.
In this example, we use η = 0.001 to show how we update
the weights of choosing different thresholds. The procedure

TABLE III: Updating procedure of Adaptive-Threshold

Threshold t1 w1 t2 w2 t3 p3

e0 1 1.02 1.02 1.04 1.04 1.05

e1 1 1.02 1.02 1.04 1.04 1.05

e2 1 1.02 1.02 1.04 1.04 1.05

e3 1 1 1.09 1.09 1.14 1.22

e4 1 1 1.09 1.09 1.09 1.17

of how wi updates is shown in Table. III. Initially, Adaptive-
Threshold sets θ = �ln(90 + 1)� = 5, so k ∈ {0, · · · , 4}, and
wi = 1, pi = 1/5 for i ∈ {0, · · · , 4}. After w1 arrives, if we
use k = 0, 1, 2 from the beginning, we can gain the utility
of 18 from (t1, p1, w1), and the corresponding weights will
be updated to 1.02 in the third column of Table. III. After t2
arrives, if we use k = 3, 4 from the beginning, utility of 90
will be gained and the corresponding weights will be updated
to 1.09 in the fourth column of Table. III. After w2 arrives, if
we use k = 0, 1, 2 from the beginning, we can gain the utility
of 20 from (t1, p1, w1), and the corresponding weights will
be updated to 1.04 in the fifth column of Table. III. After t3
arrives, if we use k = 3 from the beginning, utility of 48 will
be gained and the corresponding weights will be updated to
1.14 in the sixth column of Table. III. After p3 arrives, if we
use k = 3, 4 from the beginning, utility of 72 will be gained
and the weights of e3 and e4 will be updated to 1.22 and 1.17
respectively in the last column of Table. III. After the whole
procedure, it can be observed that the threshold e3 has the
largest weight, which means if there are new objects arriving,
the probability of choosing e3 to filter triples is the largest,
as it performs best on the objects that have arrived, which is
shown in Example 3.

In Basic-Threshold, a threshold is chosen and used during
the whole matching procedure. However, as mentioned, the
performance of Basic-Threshold is not stable, since the total
utility of Basic-Threshold using different thresholds varies
significantly. We cannot know which threshold can achieve
the best performance until the whole matching procedure
is finished. We next prove that Adaptive-Threshold can al-
ways achieve nearly the best possible performance of Basic-
Threshold with different thresholds in hindsight, which is
shown in Theorem 4. Note that if we use the threshold which
achieves the best performance in hindsight, a competitive
ratio which is not worse than that of Basic-Threshold will be
achieved.

Theorem 4: For any ε > 0, if we use η = ε/D, and under
the assumption that D ≥ Umax, Adaptive-Threshold produces
an expected total utility score of at least

(1− ε)MaxSum(OPT )− ε(1− ε)

2D

∑

v

(g∗v)
2 − D(1− ε)

ε
ln(θ)

where GOPT is the match result of the maximum total utility
of Basic-Threshold with different thresholds in hindsight, g∗v
is the utility of processing object v using the best threshold,
and D is the upper bound of the cost incurred by switching
thresholds (how to estimate the value of D will be discussed
later).

Proof: Suppose Adaptive-Threshold currently has
weights w0, w1, · · · , wθ−1, observes a utility score
vector (u0, u1, · · · , uθ−1), then updates the weights
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to w′
0, w

′
1, · · · , w′

θ−1, where w′
i = wi(1 + ηui). Let

W =
∑θ−1

i=1 wi and W ′ =
∑θ−1

i=1 w′
i. The expected gain of

Adaptive-Threshold for object v is
∑θ−1

i=1 piui, which we will
call Ev . The expected cost due to moving from probability

distribution �p to distribution �p′ is at most

D
∑

i:p′i>pi

(p′i − pi) ≤ D

W

∑

i:p′i>pi

(w′
i − wi)

≤ D

W
(W ′ −W )

= D(
W ′

W
− 1).

According to the method of updating weights of different
thresholds,

W ′ =
θ−1∑

k=0

wi(1 + ηui) = W +
θ−1∑

k=0

ηwiui = W (1 + ηEv).

Thus, the expected gain of Adaptive-Threshold is

MaxSum(AT ) =
∑

v

Ev(1− ε).

Let Wf be the total weight in the end, so

Wf = θ
∏

v

(1 + ηEv).

Using the fact that ∀x ∈ [0, 1], ln(1 + x) ≤ x, we have

ln(Wf ) = ln(θ) +
∑

v

ln(1 + ηEv)

≤ ln(θ) + η
∑

v

Ev.

Suppose the gains of the optimal threshold for each object v
is g∗v , and then we have

Wf ≥
∏

v

(1 + ηg∗v),

ln(Wf ) ≥
∑

v

ln(1 + ηg∗v).

Using the fact that ∀x ∈ [0, 1], ln(1 + x) ≥ x− x2

2 , we have

ln(Wf ) ≥
∑

v

(ηg∗v −
(ηg∗v)

2

2
).

Therefore,

η
∑

v

Ev + ln(θ) ≥
∑

v

g∗v −
η2

2

∑

v

(g∗v)
2,

MaxSum(AT ) ≥ (1− ε)MaxSum(OPT )−
ε(1− ε)

2D

∑

v

(g∗v)
2 − D(1− ε)

ε
ln(θ).

Discussion of D. D is the upper bound of the cost incurred
by switching thresholds. If we assume that the utilities of all
triples are in [1, Umax], and the number of objects that exist
on the platform at any time is at most N , then we have D ≤
N · Umax.

Complexity Analysis. For each new arrival object, the time
and space complexity of the Adaptive-Threshold algorithm are
both O(�ln(Umax + 1)�max(|T ||W |, |T ||P |, |W ||P |)).

TABLE IV: Real Dataset

Dataset |T | |W | |P | Waiting Time

gMission 630 576 427 5,10,15,20,25

SportsCompany 856 508 179 5,10,15,20,25

TABLE V: Synthetic Dataset

Factor Setting

|T | 500, 1000, 2500, 5000, 10000

|W | 500, 1000, 2500, 5000, 25000

|P | 500, 1000, 2500, 5000, 25000

μ of position (Normal Distribution) 10, 25, 50, 70, 90

λ−1 of position (Exponential Distribution) 10, 25, 50, 70, 90

μ of utility (Normal Distribution) 10, 25, 50, 70, 90

λ−1 of utility (Exponential Distribution) 10, 25, 50, 70, 90

rw 5, 10, 15, 20, 25

Waiting Time 5, 10, 15, 20, 25

Scalability
|T | = 10K, 20K, 30K, 40K, 50K, 100K

|W |,|P | = 7500

V. EXPERIMENTAL STUDY

A. Experiment Setup

Datasets. We use two real datasets, the gMission dataset
and the SportsCompany dataset. gMission [19] is a research-
based general spatial crowdsourcing platform. In the gMission
dataset, every requester has a task description, a location, a
release time, a deadline and a payoff. Each worker is also
associated with a location, a release time, a deadline, and a
success ratio based on his/her historical records on completing
tasks. Each worker place has a location, a release time and a
deadline. We use the product of task’s reward and worker’s
success ratio as the utility of a triple. SportsCompany is a
crowdsourcing application where users can find sports venues
and trainers. In the SportsCompany dataset, users are viewed as
requesters, who have a location, a release time and a deadline.
Sports venues are viewed as workplaces which have a location,
a release time, a deadline and a price. Trainers are viewed as
workers who have a location, a release time and a price. The
utility of a triple is the sum of the price of the trainer and the
sports venue. We generate the ranges of the requesters and the
workers as there is not range information in the real datasets.
The statistics of real data are illustrated in Table. IV. We also
use a synthetic dataset for evaluation. We generate the utility
scores of triples and the locations of objects following Normal
and Exponential distribution respectively. The value of Umax

is set to be 100. The statistics and configuration of synthetic
data are illustrated in Table. V, where we mark our default
settings in bold font.

We evaluate the Random, Greedy, Basic-Threshold and
Adaptive-Threshold algorithms in terms of total utility, the
average time of processing each object and memory cost.
Random is used to be the baseline algorithm. When a new
object v arrives, Random finds all the triples that contain v
and matches one from them randomly. We study the effect
of varying parameters on the performance of the algorithms.
In each experiments, we repeat 100 times and report the
average results. The algorithms are implemented in Visual C++
2015, and the experiments were conducted on a machine with
Intel(R) Core(TM) i7-4710MQ 2.5GHz CPU and 8GB main
memory.
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Fig. 4: Results on varying the cardinality objects and the range of workers.

B. Experiment Results

Effect of cardinality. We first study the effect of varying
|T |. The first column of Fig. 4 presents the results when |T |
varies from 500 to 10000. In terms of total utility, we can first
observe that the total utility scores increase as |T | increases,
which is natural as there are more triples that can be matched
when |T | increases. Second, we can observe that Adaptive-
Threshold performs the best, followed by Basic-Threshold,
Greedy and Random. The reasons are as follows: 1) Adaptive-
Threshold can quickly learn the optimal threshold to filter
triples; 2) some thresholds do not perform well and thus the
expected performance of Basic-Threshold is affected; 3) the
Greedy algorithm is trapped in local optimal solutions. As for
the average time of processing each object and the memory
cost, we can first observe that with the increment of |T |,
the average running time increases. A possible reason is that
when a new object arrives, more possible triples have to be
considered. Second, we can observe that Adaptive-Threshold
consumes the longest time and the most memory. The reason
is that Adaptive-Threshold has to record the running history
of all thresholds to learn the optimal threshold. However, we
can find that Adaptive-Threshold is still efficient, as it can
process an object in less than 1 millisecond on average, and
the memory cost is negligible compared to the main memory.

The experiment results of varying |W | and |P | are pre-

sented in second and third columns of Fig. 4, which have
similar patterns to those of varying |T |, and we omit the
detailed analysis due to limited space.

Effect of radius of limited range. We next study the
effect of radius of workers. The last column of Fig. 4 shows
the results when we vary rw from 5 to 25. In terms of total
utility, we can observe that the total utility scores increase as
rw increases as there are more possible triples to be matched.
Second, Adaptive-Threshold still performs the best, followed
by Basic-Threshold, Greedy and Random successively. Third,
we can observe that the gaps between Random and the other
algorithms tend to be larger. A possible reason is that when
the radius of limited range is small, fewer triples can be
chosen from when processing a new arrival object. As a result,
different algorithms achieve the similar results. As for the time
and memory cost, we can observe that Adaptive-Threshold
consumes the longest time and the most memory. However,
Adaptive-Threshold is still efficient enough, as each object can
be processed in less than 1.5 milliseconds on average, and the
memory cost is negligible.

We also study the results of varying the radius of tasks. The
results have similar trending patterns, and we do not present
them for brevity.

Effect of distribution of locations. We next study the
effect of μ of objects’ coordinates under Normal distribution.
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(a) Utility of varying μ of position
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(h) Runtime of varying λ−1 of
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(k) Memory of varying μ of utility
score
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Fig. 5: Results on varying the distribution of locations of objects and utility of triples

The first column of Fig. 5 shows the results of varying μ from
10 to 90. In terms of total utility, we can observe that the total
utility scores increases as μ gets farther away from 50. The
reason is that the locations of all objects is in the range of
[0, 100]× [0, 100], thus when μ is 50, the locations of objects
are the most decentralized, leading to fewer triples that can
be matched. Second, we can observe that Adaptive-Threshold
still performs the best, followed by Basic-Threshold, Greedy
and Random. Third, we can observe that when μ gets farther
away from 50, the gaps between Random and the other three
algorithms tends to be larger. The reason is that the locations of
objects tend to be more centralized, thus Adaptive-Threshold,
Basic-Threshold and Greedy can make a better choice from
more available triples. As for the average time of processing
each object and the memory cost, we can observe that although
Adaptive-Threshold consumes the longest time and the most
memory to record the running history of all thresholds, it is
still efficient enough with negligible memory cost and time to
process each object.

We next study the effect of λ−1 of objects’ coordinates
under Exponential distribution. The second column of Fig. 5
shows the results of varying λ−1 from 10 to 90. In terms
of total utility, we can observe that the utility decreases as

λ−1 increases. The reason is that the variance of Exponential
distribution is λ−2. Therefore, with the increment of λ−1, the
locations of objects are more decentralized, leading to fewer
triples. Second, we can observe that Adaptive-Threshold still
performs the best, followed by Basic-Threshold, Greedy and
Random. Third, we can observe that when λ−1 decreases, the
gaps between Random and the other three algorithms tends
to be bigger. The reason is that locations of objects tend
to be more centralized, providing Adaptive-Threshold, Basic-
Threshold and Greedy more triples to choose from, while
Random just matches triples randomly. As for the average time
of processing each object and the memory cost, we can observe
similar patterns as those of the aforementioned experiment
results.

We also study the results of varying the locations of objects
under power law distribution and uniform distribution. The
results have similar trending patterns, and we do not present
them for brevity.

Effect of distribution of utility. We next study the effect
of μ of utility under Normal distribution. The third column
of Fig. 5 shows the results of varying μ from 10 to 90. In
terms of total utility, we can observe that the utility increases
as μ increases. The reason is that with the increment of μ,
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(e) Runtime of varying waiting
time
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Fig. 6: Results on varying waiting time, scalability and real data

each triple tends to have a higher utility score. Second, we
can observe that Adaptive-Threshold still performs the best.
However, Basic-Threshold cannot always perform better than
Greedy. A possible reason is that some thresholds used in
Basic-Threshold perform bad. With respect to the average time
of processing each object and the memory cost, Adaptive-
Threshold consumes the longest time and the most memory
because it has to record the running history of all available
thresholds.

We next study the effect of λ−1 of utility scores under
Exponential distribution. The last column of Fig. 5 shows the
results of varying λ−1 from 10 to 90. In terms of total utility
scores, we can observe that the total utility scores increase as
λ−1 increases. The reason is that with the increment of λ−1,
each triple tends to have a higher utility score. Second, we can
observe that Adaptive-Threshold still performs the best, fol-
lowed by Basic-Threshold, Greedy and Random successively.
As for the average time of processing each object and the
memory cost, Adaptive-Threshold is efficient enough, which
is similar with the aforementioned experiments.

We also study the results of varying the utility scores
following power law distribution and uniform distribution. The
results have similar trending patterns, and we do not present
them for brevity.

Effect of waiting time. We next study the effect of waiting
time. The first column of Fig. 6 presents the results when
waiting time varies from 5 to 25. In terms of total utility scores,
we can first observe that the utility scores increase with the
increment of waiting time. The reason is that longer waiting
time leads to more possible triples. Second, we can observe
that Adaptive-Threshold performs the best, followed by Basic-
Threshold, Greedy and Random. Third, the gaps between
Random and the other three algorithms tend to increase, as
the other three algorithms can choose from more available
triples. As for the average time of processing each object and
the memory cost, we can observe similar patterns to other
experiment results.

Scalability. We next show the scalability of the algorithms.
The experiment result is presented in the second column of
Fig. 6. With respect to total utility scores, we can observe that
the utility scores increase with the increment of |T |, which
is natural as more triples can be matched. Besides, Adaptive-
Threshold still performs the best, followed by Basic-Threshold,
Greedy and Random successively. In terms of the average time
of processing each object and the memory cost, we can observe
that Adaptive-Threshold consumes the longest time and the
most memory. However, Adaptive-Threshold can process each
object in less than 15 milliseconds on average, and the memory
cost is less than 70MB, which is quite small considering the
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main memory.

Real dataset. We finally present the experiment results on
real dataset. The last two columns of Fig. 6 show the results
on gMission and SportsCompany with varying waiting time
of objects respectively. With respect to the total utility scores,
it can be observed that the utility scores increase with the in-
crement of waiting time and Adaptive-Threshold still performs
the best. In terms of the average time of processing each object
and the memory cost, we can observe that although Adaptive-
Threshold consumes the longest time and the most memory,
each object can be processed in less than 1 millisecond and
the memory cost is negligible compared to the main memory.

C. Experiment Summary

In terms of total utility scores, Adaptive-Threshold can
always achieve better result compared to Basic-Threshold and
Greedy in both synthetic and real dataset. In most experiments,
Basic-Threshold performs better than Greedy. The Random
algorithm always performs the worst. In the aspect of the
average time of processing each object and the memory
cost, although Adaptive-Threshold performs the worst, it is
efficient enough to satisfy high real-time requirements with
low memory cost.

VI. RELATED WORK

In this section, we review related works from two cate-
gories, matching problem and spatial crowdsourcing.

A. Matching Problem

Due to the static/dynamic characters, they are classified
into two groups: offline matching and online matching.

1) Offline Matching: On offline matching, we review bi-
partite matching and 3-dimensional matching.

Bipartite Matching. The bipartite matching problem is
a classical problem in the combinatorial optimization field
[20]. The branch of bipartite matching problems related to the
TOM problem is the maximum weighted bipartite matching
(MWBM) problem. However, the MWBM problem only fo-
cuses on bipartite graphs rather than tripartite graphs and can
be solved in polynomial time. Furthermore, some recent works
study the bipartite matching problems in spatial data, called
the spatial matching problems[21], [22], where the two sets of
objects in a 2D space correspond to the two disjoint sets of
vertices in the bipartite graph and the distance between two
matched objects corresponds to the weight on the matched
edge in the bipartite graph. Note that the above solutions
of bipartite matching problems do not address the matching
problem in tripartite graph and focus on the offline scenarios.

3-Dimensional Matching (3DM). As discussed in Section
II, the offline version of TOM is equivalent to the optimization
version of the classical 3DM problem [13], [23]. For the
unweighted 3DM problems, existing studies prove that it is
approximable within 3/2 + ε for any ε > 0. For the weighted
3DM problem, it is approximable within 2 + ε for any ε > 0
[24]. Although the decision problem of the offline TOM prob-
lem is equivalent to the 3DM problem, the existing solutions
of 3DM problems usually adopt local search techniques, which
need to know the full information of the tripartite graphs before

conducting matching, and cannot be transferred to the online
scenarios of the TOM problem, where the current decision can
only be made based on partial tripartite graph information. In
particular, to the best of our knowledge, there is no previous
research about the online 3DM problem.

2) Online Matching: Another closely related issue is the
online maximum weighted bipartite matching (OMWBM)
problem, which is the online version of the MWBM
problem[20]. A. Mehta provides a comprehensive survey re-
garding the OMWBM problem and its variants [16]. For the
unweighted case of the OMWBM problem, the upper bound of
the competitive ratio is proven to be 3

4 [16]. For the OMWBM
problem, [17] proposes the state-of-the-art randomized algo-
rithm. These existing works only focus on the situations where
only one side or two sides of vertices dynamically arrive.
However, in our TOM problem, all three sides of vertices arrive
in an online way. Since the offline version of the OMWBM
problem can be solved in polynomial time, and that of the
TOM problem is NP-hard, the TOM problem is harder than
the OMWBM problem under the online scenario. Therefore,
it is infeasible to directly extend the existing solutions of the
OMWBM problem to solve the TOM problem.

To sum up, due to the high complexity and the dynamic
requirement of the TOM problem, the aforementioned studies
cannot be extended to solve TOM easily.

B. Spatial Crowdsourcing

Data-driven crowdsourcing has been a hot research topic.
Recently, [25], [26], [27] provide comprehensive surveys for
this topic. With the development of mobile Internet techniques
and sharing economy, spatial crowdsourcing is attracting much
attention recently [1], [5], [7], [8], [9], [19], [28], [29], [30]. In
particular, the task assignment problem is a core issue in spatial
crowdsourcing. [5], [6] propose the offline task assignment
issue in spatial crowdsourcing, which aims to maximize the
total number (or total utility) of assigned tasks. Recent studies
focus on devising online algorithms to solve the dynamic task
assignment problems in spatial crowdsourcing [12], [31], [32].
She et al. also address the conflict among different tasks in the
task assignment problem in spatial crowdsourcing [33], [34],
[35]. Moreover, different from crowdsourced data labelling
and cleaning on the web [36], Hu et al. leverage spatial
crowdsourcing to improve the quality of POI labelling [37].
Furthermore, [38] and [39] study the problem of protecting the
location privacy of workers in spatial crowdsourcing. Although
the aforementioned works study the task assignment problem
in spatial crowdsourcing, they only consider two types of
objects, i.e., tasks and workers.

In particular, a closely related research, called the online
task assignment in spatial crowdsourcing, has been studied
recently [12], [32]. They usually aim to maximize the number
or the total utility of the assigned pairs of tasks and workers.
There are two main differences between our work and [12],
[32]. First, we study different problems. They only consider
two types of objects, tasks and workers, but the TOM problem
matches three types of dynamic objects. Thus, the solution
space of the TOM problem is much larger than that of
[12], [32]. Second, we adopt different strategies to solve the
problems. For [12], the current decision can be guided by the
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offline optimal solution based on the current partial tripartite
graph. However, the offline version of the TOM problem is
already NP-hard problem. Thus, the optimal solution of the
offline TOM problem is difficult to obtain in polynomial time
and thus cannot be used to guide the online decision.

VII. CONCLUSION

In this paper, we formally define a novel dynamic task
assignment problem, called the trichromatic online matching
in real-time spatial crowdsourcing (TOM) problem. We first
analyze our differences with existing task assignment studies
in SC and prove that even the offline version of TOM is
NP-hard. In order to solve this problem, we first devise a
greedy algorithm, called Greedy, which has the competitive
ratio of 1

3Umax
but can be trapped into local optimal solutions

easily. To obtain better approximation quality, a threshold-
based framework is presented. Based on the framework, we
first devise the Basic-Threshold algorithm, which has a better
competitive ratio 1

3e�ln(Umax+1)� but has unstable approxima-

tion performance. In order to improve the stability of the
Basic-Threshold algorithm, we further develop the Adaptive-
Threshold algorithm, which can quickly seek optimal threshold
for the Basic-Threshold algorithm. Finally, we verify the ef-
fectiveness, efficiency and scalability of the proposed methods
through extensive experiments on both synthetic and real
datasets.
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