

Trichromatic Online Matching in Real-time Spatial Crowdsourcing

Tianshu Song¹, Yongxin Tong¹, Libin Wang¹, Jieying She², Bin Yao³, Lei Chen², Ke Xu¹

¹ SKLSDE Lab and IRI, Beihang University, China

² The Hong Kong University of Science and Technology, Hong Kong, China

³ Shanghai Jiao Tong University, China

¹ {yxtong, songts, lbwang, kexu}@buaa.edu.cn, ² {jshe, leichen}@cse.ust.hk, ³ yaobin@cs.sjtu.edu.cn

Introduction

Greedy Algorithm

- Spatial Crowdsourcing (a.k.a Mobile Crowdsourcing)
 - Online platforms that facilitate spatial tasks to be assigned and performed by crowd workers, e.g. O2O applications.

- Motivation
 - Most O2O platforms work on real-time scenarios.
 - Some emerging O2O applications need to assign three types of objects :
 - Sports trainers, sports facilities and users.
 - Hairstylists, salon and customers.

The GOMA Problem

- Given
 - A set of tasks requester *T*
 - Each $t \in T$: location l_t , arriving time b_t , leaving time e_t and range radius r_t .

- Match all triples when it is possible
- Competitive Ratio: $CR = \frac{1}{3U_{max}}$

Basic-Threshold Algorithm

• Steps

- 1. Choose an integer k from 1 to $[\ln(U_{max} + 1)]$ randomly.
- 2. filter the edges with weights greater than e^k .
- 3. Use a greedy strategy on the remaining edges.

- A set of crowd workers *W*
 - Each $w \in W$: location l_w , arriving time b_w , leaving time e_w , range radius r_w .
- A set of crowd workplaces P
 - Each $p \in P$: location l_p , arriving time b_p , leaving time e_p .
- Utility Function: U(t, p, w).
- Find a matching M to maximize the total utility $MaxSum(M) = \sum_{t \in T, p \in P, w \in W} U(t, p, w)$ s.t.
 - Deadline Constraint.
 - Range Constraint.
 - Invariable Constraint: Once a task t is assigned to a worker w, the allocation of (t, p, w) cannot be changed.
- Online Algorithm Evaluation: Competitive Ratio (CR)
 - Randomized Algorithm

	• $CR = min_{\forall G(T,W,P,U)}$ and $\forall v \in V \frac{\mathbb{E}[MaxSum(M)]}{MaxSum(OPT)}$						
Object	Location	Arrival Time	Leaving Time	Y A			
t_1	(4.50,6.00)	8:00	8:10	7-			

• Competitive Ratio: $CR = \frac{1}{3e[\ln(U_{max}+1)]}$

Adaptive-Threshold Algorithm

Threshold	t_1	<i>w</i> ₁	t_2	<i>W</i> ₂	t_3	p_3
e^{0}	1	1.02	1.02	1.04	1.04	1.05
e^1	1	1.02	1.02	1.04	1.04	1.05
e ²	1	1.02	1.02	1.04	1.04	1.05
e ³	1	1	1.09	1.09	1.14	1.22
e^4	1	1	1.09	1.09	1.09	1.17

- Adaptively adjust the probability distribution of choosing different thresholds.
- When an object appear, choose a new threshold according to the learned probability distribution
- $MaxSum \ge (1 \varepsilon)MaxSum(OPT_{Basic-Threshold}) \frac{\varepsilon(1 \varepsilon)}{2D} \sum_{\nu} (g_{\nu}^*)^2 \frac{D(1 \varepsilon)}{\varepsilon} \ln(\theta)$

Experimental Evaluation

p_1	(4.50,4.75)	8:02	8:12	6
<i>w</i> ₁	(5.50,5.00)	8:05	8:15	Ŭ
t_2	(3.00,4.50)	8:08	8:18	5
p_2	(2.50,3.00)	8:10	8:20	4
<i>W</i> ₂	(4.00,3.25)	8:11	8:21	3
W ₃	(3.25,2.00)	8:13	8:23	
t_3	(1.50,3.50)	8:15	8:25	2
t_4	(5.50,2.00)	8:17	8:27	1
p_3	(4.50,2.00)	8:19	8:29	

Match	Utility Score	Match	Utility Score
(t_1, p_1, w_1)	18	(t_2, p_2, w_3)	20
(t_1, p_1, w_2)	10	(t_3, p_2, w_2)	12
(t_2, p_1, w_1)	90	(t_3, p_2, w_3)	48
(t_2, p_1, w_2)	20	(t_4, p_3, w_2)	72
(t_2, p_2, w_2)	20	(t_4, p_3, w_3)	12

2

1

2

25