
Feedback-Aware Social Event-Participant Arrangement

Jieying She†, Yongxin Tong‡, Lei Chen†, Tianshu Song‡
†Department of Computer Science and Engineering, The Hong Kong University of Science and

Technology, Hong Kong SAR, PR China
‡SKLSDE Lab, School of Computer Science and Engineering, Beihang University, PR China

†{jshe, leichen}@cse.ust.hk ‡{yxtong, songts}@buaa.edu.cn

ABSTRACT
Online event-based social networks (EBSNs) and studies on
global event-participant arrangement strategies for EBSNs
are becoming popular recently. Existing works measure sat-
isfaction of an arrangement by a linear combination of few
factors, weights of which are predefined and fixed, and do
not allow users to provide feedbacks on whether accepting
the arrangement or not. Besides, most of them only consider
offline scenarios, where full information of users is known in
advance. However, on real-world EBSN platforms, users can
dynamically log in the platform and register for events on
a first come, first served basis. In other words, online sce-
narios of event-participant arrangement strategies should be
considered. In this work, we study a new event-participant
arrangement strategy for online scenarios, the Feedback-
Aware Social Event-participant Arrangement (FASEA) prob-
lem, where satisfaction scores of an arrangement are learned
adaptively and users can choose to accept or reject the ar-
ranged events. Particularly, we model the problem as a con-
textual combinatorial bandit setting and use efficient and
effective algorithms to solve the problem. The effective-
ness and efficiency of the solutions are evaluated with ex-
tensive experimental studies and our findings indicate that
the state-of-the-art Thompson Sampling that is reported to
work well under basic multi-armed bandit does not perform
well under FASEA.

1. INTRODUCTION
Event-based social network (EBSN)[30] is a new type of

online-to-offline social media that is becoming popular in re-
cent years, on which online users can organize and register
for offline social events. The most successful EBSN platform
is Meetup1, on which users can create groups and organize
events by groups for other users to join. Other popular
EBSNs include Plancast2 and Eventbrite3. Such EBSNs fa-

1http://www.meetup.com
2http://plancast.com
3http://www.eventbrite.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064020

cilitate social event organization and ease the recruitment of
activity participants[30][37].

However, existing EBSNs only provide an information shar-
ing platform that lacks strategic event organization and per-
sonalized event planning[38][37]. Recent works start to study
global event arrangement strategies for EBSNs. [25] studies
an event-user assignment problem and [4] proposes a game
theoretical approach that can be applied for event arrange-
ment. [38] and [37] further consider practical constraints
such as conflicts of events, location information, and travel
expenditure of users. [44] considers a fairness-oriented ar-
rangement strategy. [17] considers diverse user choices. Note
that all the works above only address offline scenarios, where
the information (e.g. capacity, interest) of all the users
is known before making arrangement and the arrangement
is made simultaneously for all the users. However, in real
world, users often log in the platform dynamically and regis-
ter for events on a first come, first served basis. [39] extends
[38] to an online setting.

Though online scenarios are brought into attention re-
cently, there are still two other major drawbacks with ex-
isting works. First, existing works measure the quality of an
arrangement by a single value or a linear combination of few
factors, whose weights are predefined and fixed[25][38][37][4].
However, in many practical scenarios, the satisfaction of
event organizers and users towards the arrangement can be
complicated. For example, a user may prefer a less inter-
esting event that is closer to her/his home location[30], or
an event organized by a reputable organizer may be more
attractive to users. Unfortunately, it is not easy to deter-
mine which factors contribute to the satisfaction and it is
even harder to quantify and predefine the factors in prac-
tice. Second, existing works do not allow users to provide
feedbacks on whether they are satisfied with the arrange-
ment or not. In other words, they assume that the users
will always accept and follow their arrangement. But in real
world, users may not be satisfied with the arrangement. For
example, we may arrange a heavy metal concert to a user
who is interested in rock music, but the user may prefer folk
rock rather than heavy metal and thus would rather reject
the arrangement. Therefore, users should be allowed to ac-
cept or reject the arranged events and we can learn users’
interest more accurately from their feedbacks.

In particular, the setting of the Multi-Armed Bandit (MAB)
problem is quite suitable for addressing the above issues.
MAB has been studied for decades[6], the most basic stochas-
tic version[23] of which is that given a set of m arms, each
associated with an unknown distribution of rewards, one re-

851

peatedly picks up and plays one of the m arms in each round
aiming to maximize the total expected rewards gained in
multiple rounds. Only the reward of the arm played is ob-
served and the reward can only be observed after the arm
is played. In particular, the gap between the total rewards
gained by an algorithm and those gained by playing the
optimal arm is termed as regret, and thus the goal of an
algorithm is to minimize its regret. Numerous variants of
MAB have been studied through the years. One particular
variant related to our event-participant arrangement setting
is called the stochastic contextual bandit problem, where a
set of features for each arm, a.k.a. contexts, are revealed
in each round before one plays an arm. The expected re-
wards of the arms are functions of the features. One widely
used reward function is the linear reward function, where
the expected reward of an arm is a linear combination of
its feature values, but the weights of the linear combina-
tion are unknown[26][13][1]. By playing arms in multiple
rounds, a contextual bandit algorithm repeatedly explores
the unknown weights based on the observed rewards while
exploits the estimated optimal arm to minimize its regret.
Another variant related to our setting is called the combi-
natorial semi-bandit problem, where a subset of arms rather
than a single arm are played in each round and a reward is
observed individually for each arm played[11][12][49]. Par-
ticularly, [36] studies the two variants simultaneously, a.k.a.
the contextual combinatorial bandit problem. We can re-
gard each arm as an event and playing a subset of arms
in each around as making an online multiple-event arrange-
ment for each newly-login user. Users’ feedbacks on accept-
ing/rejecting the arranged events are the observed rewards.
Then, the contextual combinatorial bandit problem models
well the event-participant arrangement scenario, where the
contribution of each event/user factor (feature) to the satis-
faction of the arrangement is unknown but can be estimated
based on users’ feedbacks.

Specifically, we model the arrangement problem as con-
textual combinatorial bandit, which we called the Feedback-
Aware Social Event-participant Arrangement (FASEA) prob-
lem. Given a set of events V , each v of which is associated
with a capacity cv, and a set of conflicting event pairs CF ,
a set of users U log in the EBSN platform one by one as
in [39]. When a newly-login user appears, a context vector
xv is revealed for each event v, which summarizes both the
event and the user. The user also specifies her/his capac-
ity cu, which is the maximum number of events s/he would
like to attend. We then respond to the user immediately
with a proposed event-participant arrangement, which is a
set of non-conflicting events whose capacities are not yet
full, for the newly-arrived user. The user accepts each ar-
ranged event with probability E[rv|xv] = xTv θ, where θ is
an unknown and fixed weight vector that can be regarded
as determining how each factor(feature) contributes to the
satisfaction of a user towards an event. We then observe
the reward, i.e. the user’s feedback, of each arranged event,
which is either 1 if it is accepted by the user or 0 otherwise.
The total reward for this round is the number of accepted
events. Based on the revealed feature vectors and the ob-
served rewards for the arranged events, we estimate θ and
adjust our arrangement strategy adaptively. The FASEA
problem is then to maximize the total number of accepted
events arranged in multiple rounds, or equivalently to min-

imize the total regret w.r.t. the optimal strategy that has
full knowledge of θ.

We use the following toy example for illustration.

Example 1. Suppose there are 4 events v1 (football), v2
(basketball), v3 (concert) and v4 (BBQ), among which foot-
ball (v1) is conflicting with basketball (v2), on an EBSN plat-
form, each with different topics, locations, time, organizers,
etc. When a user uj logs in, who wishes to attend 2 events on
the weekend, based on the attributes of the user, e.g. his/her
interested topics, home location, age, etc., a set of features
xi regarding the user for each event vi are derived. Each
event has a reward, which can be regarded as its accept ratio
by the user and depends linearly on its features. Based on
our current estimation of the accept ratios of the events, we
arrange non-conflicting and non-full events v1 and v3 to the
user uj. uj then gives her feedback on accepting only v1. We
then adjust the estimates of the accept ratios of the events
based on the feedback. When the next user uj+1 logs in at
the next time step, we arrange another set of events based on
the adjusted estimates and adjust the estimates again based
on the user’s feedback.

There are two particularly popular methods for MAB prob-
lems. The first is the Upper Confidence Bound (UCB) algo-
rithm[5], which estimates an upper confidence bound on the
reward of each arm based on the previous observations and
plays the arm with the largest upper confidence bound in
each round. The arms with large upper confidence bounds
are either those that are actually better than the others or
those that are under-explored and thus have loose (larger)
upper confidence bounds. Therefore, UCB actually trades
off exploration and exploitation simultaneously. UCB has
been popular since it provides sound theoretical guaran-
tees. Particularly, [36] proposes a UCB-based algorithm
for contextual combinatorial bandit. Another state-of-the-
art method is the Thompson Sampling (TS) algorithm[41],
which samples a reward-depending parameter from a poste-
rior distribution of the parameter and adjusts the distribu-
tion according to the observed rewards each time. TS had
been less popular than UCB since it is challenging to ana-
lyze the performance of TS theoretically. In recent years,
TS has regained its popularity as empirical studies[9] show
that TS outperforms state-of-the-art bandit algorithms in
practice. Theoretical analysis for TS has been provided in
recent works[1][16][49]. Particularly, [1] proposes a TS-based
algorithm for contextual bandit with linear payoff. Though
existing studies[9] suggest that TS outperforms UCB under
MAB, there still lacks of complete evaluation for UCB and
TS under contextual combinatorial bandit and especially
event-participant arrangement to the best of our knowledge.
Therefore, in this paper, we use UCB and TS to solve the
FASEA problem and evaluate their performance along with
another popular greedy strategy.

The contributions of this paper are summarized as follows.

• We formulate the event arrangement problem under
a contextual combinatorial bandit setting, called the
Feedback-Aware Social Event-participant Arrangement
(FASEA) problem, which makes online arrangement
adaptively based on users’ feedbacks.

• We present effective and efficient solutions based on
state-of-the-art frameworks to solve the FASEA prob-
lem.

852

Table 1: Summary of Symbol Notations of FASEA

Notation Description
t Time step
T Total number of time steps

V = {v1, · · · , v|V |} Set of events
U = {u1, · · · , ut, · · · , uT } Users arrive at different time steps

cv Capacity of v
cu Capacity of u
xt,v Context of event v at time step t
θ Weight vector of the linear payoff
rt,v Reward of event v at time step t
At Arrangement for ut

A∗t Optimal arrangement for ut

rt,At Reward of arrangement At for ut

Reg(T) Regret of the arrangements
made in T time steps

CF A set of conflicting event pairs

cr Conflict ratio,
|CF |

|V |(|V |−1)/2

Y , b, λ, α, δ, ε Algorithm parameters

• We study the effectiveness and efficiency of the pre-
sented algorithms extensively on both synthetic and
real datasets. Particularly, according to our findings,
the state-of-the-art framework Thompson Sampling that
is reported to perform well under basic multi-armed
bandit[9] performs badly under FASEA.

The rest of this paper is organized as follows. In Section 2,
we formally formulate the FASEA problem. Then we present
algorithms based on the two state-of-the-art frameworks in
Section 3 and Section 4. We evaluate the performance of
the algorithms in Section 5. Related works are reviewed in
Section 6. We finally conclude the work in Section 7.

2. PROBLEM STATEMENT
Let V be a set of events. For each v ∈ V , it is associated

with a capacity cv on the maximum number of attendees.
Following [38][39], we constrain that users cannot attend
conflicting events and use the following definition to denote
the set of event pairs CF that are conflicting with each other.

Definition 1 (Conflicting Event Pair[38][39]). A
pair of events {vi, vj} are conflicting if a user can attend at
most one of the two events but not both.

Let U denote the set of users, where each user u arrives
at the platform in an online way. Note that the size of U
is unknown in advance. At each time step t = 1, 2, · · · , a
user ut arrives at the platform and her/his capacity cut and
contexts are revealed. Particularly, a feature vector xt,v ∈
Rd with ‖xt,v‖ ≤ 1 is observed for each v ∈ V at time step
t, which consists of the values of the factors that affect the
user’s satisfaction towards event v. Particularly, under the
setting of contextual bandit with linear payoff[5][26][13][1],
the satisfaction of a user towards an event is defined as the
reward of the event as follows.

Definition 2 (Reward of an Event). The reward rt,v
of an event v at time step t is a random variable with ex-
pectation E[rt,v|xt,v] = xTt,vθ, where θ ∈ Rd with ‖θ‖ ≤ 1
is the weight vector of the linear function, which is fixed but
unknown.

Then for each new-coming user ut at time step t, we ar-
range a set of non-conflicting events At ⊂ V where |At| ≤
cut for ut and ut chooses to accept or reject each arranged
event. The observed reward of an arranged event is 1 if it is

accepted or 0 otherwise. Therefore, xTt,vθ can be regarded
as the probability that ut accepts v. The reward rt,At of the
arrangement for ut is then the number of accepted events.

rt,At =
∑
v∈At

1(v is accepted) (1)

where 1(·) is the indicator function. Particularly, the per-
formance of an algorithm is compared against an optimal
strategy that has full knowledge of θ and selects an optimal
set of events A∗t , where A∗t = arg maxfeasible A

∑
v∈A x

T
t,vθ,

at each time step. And the gap between the rewards gained
by an algorithm in T time steps and those gained by the op-
timal strategy is called the regret of the algorithm, termed
as Reg(T):

Reg(T) =

T∑
t=1

rt,A∗t −
T∑
t=1

rt,At (2)

where rt,A∗t is the reward of the arrangement made by
the optimal strategy at time step t. We finally define the
Feedback-Aware Social Event-participant Arrangement (FASEA)
problem as follows.

Definition 3 (FASEA Problem). A set of events V ,
each v of which has capacity cv, and a set of conflicting event
pairs CF are given. At time step t, a user ut arrives at the
EBSN platform with capacity cu, which is unknown before
u appears, and a context xt,v for each v ∈ V is observed.
Find an arrangement At for each user ut and receive user’s
feedback on accepting or rejecting the arranged events such
that the total number of accepted events is maximized and
the following constraints[38][39] are satisfied:

• The arrangement for a new-coming u must be decided
before the next user appears and cannot be revoked.

• The capacity of each event and the capacity of each
user are not exceeded.

• The events arranged to a user are not conflicting with
each other.

The notations of symbols used in this paper are summa-
rized in Table 1.

Remark 1. Note that θ is shared by the users in U in
FASEA. U can be regarded as the same user sequentially
arrives at the platform at different time steps and can as
well be treated as a set of users with similar interests. It is
also easy to extend FASEA to the scenario where different
models (θ’s) are estimated for different users. That is, an
individual θ is learned for each user but the information of
events (conflicts and capacities) is shared among the users.
In other words, when an arranged event is accepted by a
user, its capacity is reduced by 1, which will affect all the
other users.

Remark 2. Note that the set of events V does not change
in FASEA. However, it is easy to extend FASEA to the
scenario where different sets of events Vt are revealed at
different time steps. For example, when a user logs in on
Monday, V could be the set of events on Tuesday and when
a user logs in on Friday, V could be the set of events on the
weekend.

853

Algorithm 1: TS

input : V , CF , {cv|v ∈ V }, λ, δ, R
1 Y ← λId×d;
2 b← 0d;
3 for t← 1 to T do
4 observe cut and {xt,v};
5 q ← R

√
9d ln(t

δ
) [2];

6 θ̂t ← Y −1b;

7 sample θ̃t from distribution N (θ̂t, q
2Y −1);

8 for v ∈ V do

9 r̂t,v ← xTt,vθ̃t;

10 At ←Oracle-Greedy(V , CF , {r̂t,v}, {cv}, cut);
11 arrange At to ut and observe {rt,v|v ∈ At};
12 reduce the capacities of the accepted events by 1;

13 Y ← Y +
∑
v∈At

xt,vx
T
t,v;

14 b← b+
∑
v∈At

rt,vxt,v;

3. THOMPSON SAMPLING BASED ALGO-
RITHM

In this section, we present the first algorithm based on the
state-of-the-art framework Thompson Sampling. The main
idea of Thompson Sampling is to assume a prior distribution
on the reward-depending parameter and play the arm based
on its posterior probability of being the best arm in each
round[1]. After observing the reward of the arm played, the
posterior probability will be adjusted. Then under contex-
tual bandit, a weight factor θ is sampled from its posterior
distribution and the best arm based on the sampled θ is
played at each time step. Notice that different with UCB,
Thompson Sampling does not estimate an upper confidence
bound for each arm individually but maintains the overall
posterior distribution of the reward-depending parameter θ.
Particularly, [1][2] develop a Thompson Sampling algorithm
for contextual bandit with linear payoff and we extend it to
our contextual combinatorial setting that considers capac-
ities/conflicts of events and arranges multiple events each
time, which we call TS.

The TS algorithm is illustrated in Algorithm 1. Specifi-
cally, we maintain a d × d matrix Y and a d × 1 vector b,
which are updated in each round using the observed contexts
and rewards of the arranged events. We make arrangement
for each new-coming user in lines 3-14. When a user arrives
at time step t, we first observe her/his capacity cut and the
feature vectors in line 4. In line 6, we estimate θ based on
Y and b following ridge regression[26]. Then based on the

estimated θ̂t, a θ̃t is sampled from the Normal distribution
N (θ̂t, q

2Y −1) [1][2] in line 7. Then based on the sampled θ̃t,
we calculate the estimated expected reward of each event in
lines 8-9. We then make an arrangement At for the current
user based on the estimated expected rewards in line 10 with
an oracle algorithm. As mentioned previously that making
a non-conflicting arrangement for a user is NP-hard[38], we
adopt a greedy strategy Oracle-Greedy to make an arrange-
ment approximately, which will be explained shortly. We
then arrange events At to ut and observe the rewards of
the arranged events, i.e. whether they are accepted or re-
jected. We finally update Y and b accordingly in lines 13-
14. Note that the parameter R in Algorithm 1 is to restrict

Algorithm 2: Oracle-Greedy

input : V , CF , {r̂t,v|v ∈ V }, {cv|v ∈ V }, cu
output: At

1 At ← ∅;
2 for v ∈ V in order of non-increasing r̂t,v do
3 break if |At| ≥ cu;
4 if v does not conflict with events in At and cv > 0

then
5 At ← At ∪ {v};

6 return At

rt,v −xTt,vθ such that it is conditionally R-sub-Gaussian ac-
cording to [1][2], and this assumption is satisfied whenever
rt,v ∈ [xTt,vθ − R,xTt,vθ + R] [1][2]. Thus, under FASEA, R
is simply 1.

As making a non-conflicting arrangement for a user is NP-
hard as [38] indicates, the Oracle-Greedy algorithm we adopt
is an approximation algorithm. The algorithm is illustrated
in Algorithm 2. When making arrangement, we visit each
event in non-increasing order of r̂t,v until the number of
arranged events has reached the capacity of ut. We then
arrange each visited non-full event to ut if it does not conflict
with the events that are already arranged.

Example 2. Back to our running example. Recall that
we have 4 events and v1 is conflicting with v2. Features and
cu of the first two rounds are presented in Table 2. In the
first round, θ is sampled as < −11.28, 0.93,−13.07, 18.60 >
and the estimated expected rewards of v1 to v4 are respec-
tively -3.94, -0.30, 1.74, -13.07. Then v2 and v3 are ar-
ranged to u1, which are all rejected. Then after updating Y
and b, in the second round, v3 is arranged to u2, which is
then accepted by u2.

Notice that Oracle-Greedy may include events with r̂ ≤ 0
into At, which could result in smaller

∑
v∈At

r̂t,v. However,
actually it is beneficial to do so: As Oracle-Greedy visits v
in non-increasing order of r̂, events with r̂ ≤ 0 are included
into At simply because At is not yet full and other events
with r̂ > 0 (visited previously) cannot be added to At due
to conflicts or such events are full. On the other hand, as
r̂ are only estimated expected rewards, events with r̂ ≤ 0
could actually have true expected rewards larger than 0. In
other words, events with r̂ ≤ 0 may be accepted by users
as the estimation of the expected rewards may not be ac-
curate. Therefore, as no other events with r̂ > 0 could be
added to At while At is not yet full, it does no harm to in-
clude events with r̂ ≤ 0 into At. Then when we next study
the approximation ratio of Oracle-Greedy, we only consider∑
v∈At|r̂t,v>0 r̂t,v.

Table 2: Features and cu of running example.

Round Features cu

1

v1: 0.1, 0, 0.5, 0.2

2
v2: 0.2, 0.1, 0, 0.1
v3: 0.2, 0.3, 0, 0.2

v4: 0, 0, 1, 0

2

v1: 0.2, 0.1, 0.2, 0.1

1
v2: 0.1, 0.2, 0, 0.1
v3: 0, 0, 0, 0.5

v4: 0.2, 0.1, 0.4, 0

854

Theorem 1. The approximation ratio of Oracle-Greedy
is 1

cu
, i.e.

∑
v∈At|r̂t,v>0 r̂t,v ≥

1
cu

∑
v∈AOPT

t |r̂t,v>0 r̂t,v, where

AOPTt is the optimal arrangement based on the estimated re-
wards r̂t,(·).

Proof. Please refer to the Appendix.

Complexity Analysis. Oracle-Greedy takesO(|V | log |V |)
to sort V in order and at most cu|V | time to check con-
flicts. Therefore, the time complexity of Oracle-Greedy is
|V |(log |V |+ cu) and its space complexity is O(|V |). In each
round of TS, it takes O(d3) time to calculate the inverse of Y

and O(d2) time to calculate θ̂t. Then sampling θ̃t takes ad-
ditional O(d3) time. Calculating the estimated expected re-
wards takes O(d|V |) time. Updating Y and b takes O(cud

2)
time. Therefore, the overall time complexity of TS to pro-
cess a user is O(d2(cu+d)+d|V |+|V |(log |V |+cu)). The ma-
jor space is consumed by Y besides storing expected rewards
of V and thus the space complexity of TS is O(d2 + |V |).
Since d is usually small in practice or after applying dimen-
sionality reduction, TS is still efficient in time and space.

4. UCB BASED ALGORITHM
The Upper Confidence Bound (UCB) framework is popu-

lar for MAB problems due to its sound theoretical guaran-
tees. Since it was introduced in [5], it has been adapted to
solving different variants of MAB problems, such as contex-
tual bandit with linear payoff [5][26][36] and combinatorial
bandit [11][12][36].

The main idea of the UCB framework is to infer an upper
confidence bound on the reward of each arm and the arm(s)
with the largest upper bound(s) is(are) played in each round.
One typical way to infer the upper bound is to use concen-
tration inequalities, which bound the deviation of a random
variable from its expectation. Initially, all the arms have the
same upper confidence bound, which is quite loose. Then as
we play arms repeatedly, the observations of the arms played
will help estimate their upper confidence bounds more ac-
curately. Therefore, the arms without enough exploration,
which generally have large(loose) upper confidence bounds,
can be explored with high probability and thus the algo-
rithm can avoid being trapped in local optimum. In addi-
tion, by playing the arm(s) with the largest upper bound(s),
i.e. the largest possible reward(s), we are actually trying
to play the most optimal arm(s) in each round. Therefore,
UCB is a general framework that does exploration and ex-
ploitation simultaneously. Adaptations of UCB to different
variants of MAB generally calculate different upper confi-
dence bounds on the arms based on different concentration
inequalities. Particularly, we adapt the UCB framework
from [36], a UCB-based algorithm for contextual combinato-
rial bandit based on [26][13], by providing Oracle-Greedy to
select events and considering capacities/conflicts of events
to solve our FASEA problem.

The adapted UCB[36] algorithm is illustrated in Algo-
rithm 3. When a new-coming user arrives, we first estimate
θ̂t in line 5 similar as TS. Then for each event, we estimate
its expected reward based on the estimated θ̂t in line 7 and
calculate an upper confidence bound on its reward in line
8 based on the concentration inequality[48][26]. We then
use Oracle-Greedy again to find an approximate arrange-
ment for the user based on the estimated upper confidence
bounds in line 9 and observe the rewards and update the
capacities and estimates in lines 10-13.

Algorithm 3: UCB

input : V , CF , {cv|v ∈ V }, λ, α
1 Y ← λId×d;
2 b← 0d;
3 for t← 1 to T do
4 observe cut and {xt,v};
5 θ̂t ← Y −1b;
6 for v ∈ V do

7 r̃t,v ← xTt,vθ̂t;

8 r̂t,v ← r̃t,v + α
√
xTt,vY

−1xt,v;

9 At ←Oracle-Greedy(V , CF , {r̂t,v}, {cv}, cut);
10 arrange At to ut and observe {rt,v|v ∈ At};
11 reduce the capacities of the accepted events by 1;

12 Y ← Y +
∑
v∈At

xt,vx
T
t,v;

13 b← b+
∑
v∈At

rt,vxt,v;

Algorithm 4: eGreedy

input : V , CF , {cv|v ∈ V }, T , ε
1 Y ← λId×d;
2 b← 0d;
3 for t← 1 to T do
4 observe cut and {xt,v};
5 sample p from U(0, 1);
6 if p ≤ ε then
7 At ← at most cu non-conflicting events selected

randomly;

8 else

9 θ̂t ← Y −1b;

10 r̂t,v ← xTt,vθ̂t, ∀v ∈ V ;
11 At ←Oracle-Greedy(V , CF , {r̂t,v}, {cv}, cut);

12 arrange At to ut and observe {rt,v|v ∈ At};
13 reduce the capacities of the accepted events by 1;

14 Y ← Y +
∑
v∈At

xt,vx
T
t,v;

15 b← b+
∑
v∈At

rt,vxt,v;

Example 3. Back to our running example. When u1 ar-
rives, the estimated expected rewards of v1 to v4 are respec-
tively 1.10, 0.49, 0.82 and 2.00. Then v1 and v4 are arranged
to u1, which are both accepted by u1. Then after updating
Y and b, in the second round, v3 is arranged to u2, which is
also accepted by u2.

Complexity Analysis. Compared with TS, UCB saves
O(d3) time of sampling but takes additional O(d2) time for
each event to calculate the upper confidence bounds. There-
fore, the overall time complexity of UCB to process a user is
O(d2(cu +d+ |V |)) + |V |(log |V |+ cu)). Similarly, the space
complexity of UCB is O(d2 + |V |).

4.1 Two Heuristics
In UCB, exploration is performed by the upper confidence

bound in line 8 of Algorithm 3. In the literature, ε-Greedy
[47] is another heuristic that trades off between exploration
and exploitation, the main idea of which is to greedily play
some random arms in certain rounds while play the arms
with the largest estimated expected rewards in the other
rounds. Specifically, extending to FASEA, with probability

855

ε, we arrange events randomly, which is exploration; with
probability 1 − ε, we arrange events greedily based on the
current estimates, which is exploitation. We call this heuris-
tic eGreedy, which is illustrated in Algorithm 4. Note that
the difference between eGreedy and UCB is that (1) events
are arranged randomly with probability ε (lines 6-7); (2)
events are arranged greedily based on their estimated ex-
pected rewards with probability 1− ε (lines 9-11).

Another heuristic is a pure greedy strategy, which is a
special case of UCB or eGreedy: always arranging events
based on their estimated expected rewards greedily. Specif-
ically, letting α = 0 for UCB or ε = 0 for eGreedy, this pure
greedy strategy only conducts exploitation each time. We
call this strategy Exploit. The time complexity of eGreedy
and Exploit to process a user is both O(d2(cu + d) + d|V |+
|V |(log |V |+cu)) and their space complexity is O(d2 + |V |).

5. PERFORMANCE EVALUATION

5.1 Experiment Setup

Table 3: Real Dataset of FASEA

Category Sub-Category
Pop Concert Pop, classic, folk, jazz

Theater Drama, opera, musical, children drama
Sports Basketball, football, boxing

Folk Art Cross talk, magic, acrobatics
Music Piano, orchestral, choral

Movie
Adventure, cartoon, romance,

fantasy, documentary, horror, comedy

Other Features Values
Performers Male, female, group

Hong Kong, Taiwan, Mainland China,
Country/District Japan, USA, UK, France, Denmark

Germany, Canada, Poland

Lowest Price
0-49, 50-99, 100-149, 150-199, 200-299

300-399, 400-599, ≥600
Day of Week Wed, Fri, Sat, Sun, Any

Normalized Distance [0, 1]

Table 4: Synthetic Dataset of FASEA

Factor Setting
|V | 100, 500, 1000
T 100000
d 1, 5, 10, 15, 20

Distribution Uniform: [-1, 1], Power: 2,
of θ N (0, 1)

Distribution Uniform: [-1, 1], Power: 2,
of x N (0, 1), Shuffle

cv
N (100, 100), N (200, 100),

N (500, 200)
cu Uniform: [1, 5]
cr 0, 0.25, 0.5, 0.75, 1

Algorithm parameter λ 0.5, 1, 2
UCB parameter α 1, 1.5, 2, 2.5
TS parameter δ 0.05 0.1, 0.2

eGreedy parameter ε 0.05, 0.1, 0.2

We use both real and synthetic datasets for experiments.
For real dataset, we collected 50 popular events in Beijing
from Damai.com and asked 19 users to provide ground-truth
feedbacks. Specifically, six categories of events were col-
lected, which are respectively pop concerts, theaters, sports,
folk arts, music and movies, and each category is further
classified into several sub-categories as shown in Table 3. We
also collected other features such as performers, location, the
lowest price, etc. for each event. Details of categorization

and other features are presented in Table 3. For each cate-
gorical feature, we encode it into a binary vector following
[26]. For example, the performer(s) of an event can be male,
female or group, and thus the corresponding feature values
are respectively encoded as < 0, 1 >, < 1, 0 > and < 1, 1 >.
We calculate the earth distances between users’ home loca-
tions and the events’ locations and further normalize each
distance to interval [0, 1] and use it as a numerical feature.
Concatenating the categorical and the numerical features,
each event is represented by a 20-dimensional feature vector.
We finally normalize the feature vectors by dividing each fea-
ture value by d = 20 to satisfy that ‖xt,v‖ ≤ 1. Events’ time
and location information is used to decide which event pairs
are conflicting. For example, a concert at 2016.10.21 7:30
pm is conflicting with another one at 2016.10.21 7:00 pm. 19
users were asked to give “Yes” or “No” feedbacks on attend-
ing each of the 50 events or not. We test two types of user
capacities. One is that each user has capacity of 5, which
we denote as “cu = 5”, and another one is that the capacity
of each user is equal to the number of events with feedbacks
of “Yes”, which we denote as “cu = full”. For example, a
user with 12 “Yes” and another one with 11 “Yes” will have
“cu = full” capacities of 12 and 11 respectively. In the real
dataset, to test how quickly each algorithm can learn users’
favored events, we display the same set of feature vectors in
each round for the 50 events. We further calculate at most
how many events can be accepted by each user given their
ground-truth feedbacks and the conflict information, which
we denote as “Full Knowledge”.

For synthetic dataset, we generate real θ and feature val-
ues following Uniform, Normal and Power distributions. For
feature vectors, we further generate their values in a “shuf-
fle” way to generate more “random” features: the value of
each dimension i is generated following Uniform, Normal
with mean i/d and Power distributions in turn. For exam-
ple, the values of the 1st, 4th, ..., dimensions follow Uni-
form distribution, that of the 2nd dimension follow Normal
distribution with mean 2/d and those of the 3rd, 6th, ...,
dimensions follow Power distribution. θ and feature vec-
tors are normalized to unit lengths. Then the feedback of
an event is 1 with probability xTt,vθ and 0 otherwise. Ca-
pacities of events and users are generated following Normal
and Uniform distributions, respectively. Statistics and con-
figuration of synthetic data are illustrated in Table 4, where
default values are marked in bold font. Particularly, cr de-

notes the conflict ratio of events, which is |CF |
|V |(|V |−1)/2

. We

denote “OPT” as the strategy that knows the true values of
θ and uses Oracle-Greedy to select events greedily based on
the true expected rewards of the events.

In addition to“Full Knowledge”for real dataset and“OPT”
for synthetic dataset, we compare 5 algorithms on both
real and synthetic dataset, which are respectively UCB, TS,
eGreedy, Exploit and Random. The Random algorithm vis-
its each v ∈ V in a random order and the rest is the same as
lines 3-5 of Oracle-Greedy. We introduce the following met-
rics to evaluate the algorithms: (1) Accept ratio. The ratio
of the number of accepted events to the number of arranged
events at each time step t, i.e.

rt,At
|At| . (2) Total rewards. The

accumulated number of accepted events in multiple rounds,
i.e.

∑T
t=1 rt,At . (3) Total regrets. The accumulated re-

grets (compared with “Full Knowledge” for real dataset and
“OPT” for synthetic dataset) in multiple rounds. (4) Regret
ratio. The ratio of total regrets to total rewards. (5) Average

856

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(a) Accept Ratio

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

R
e

g
re

t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

(b) Regret Ratio

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(c) Total Regrets

0 2 4 6 8 10

x 10
4

10
0

10
2

10
4

10
6

T

T
o

ta
l
R

e
w

a
rd

s

UCB

TS

eGreedy

Exploit

Random

OPT

(d) Total Rewards

Figure 1: Results of FASEA under default setting.

running time of each round and memory consumption. Note
that we calculate the accept ratio of “Full Knowledge” as the
maximum number of non-conflicting events that can all be
accepted by a user divided by the user’s capacity, assuming
that we still arrange cu events to a user even if it is impos-
sible to arrange cu non-conflicting events all with feedbacks
of “Yes”. Otherwise, the accept ratio of “Full Knowledge”
would always be 1, which would be meaningless to compare
with. The algorithms are implemented in C++, and the
experiments were performed on a Windows 7 machine with
Intel i7-2600 3.40GHZ 8-core CPU and 8GB memory.

5.2 Experiment Results

0 2 4 6 8 10

x 10
4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

T

K
e
n
d
a
l’s

 τ

UCB

TS

eGreedy

Exploit

Random

Figure 2: Kendall’s rank correlation coefficients under de-
fault setting of FASEA.

In this section, we compare all the experiments under
FASEA.

Results under default setting. Figure 1 shows the re-
sults under default setting, which is marked in bold font in
Table 4. First, we can observe that all the algorithms ex-
cept Random performs better as t increases, as their accept
ratios gradually increase and their regret ratios gradually
decrease. It indicates that the estimation of the algorithms
on θ becomes more accurate as they observe more feedbacks.
Notice that the total regrets and regret ratios of the algo-
rithms drop suddenly around t = 70000. The reason is that
as under FASEA, events have limited capacities, OPT has
assigned all the events when t = 65664 and thus no events
are available when t > 65664 for OPT and thus the total
rewards of OPT no longer increase afterwards. Therefore,
the gap between the total rewards of the other algorithms
and those of OPT will be narrowed down. Thus, algorithms
that reduce their regrets to 0 faster, e.g. UCB and Exploit,
perform better than the others. And we can also notice that
the accept ratios of UCB, Exploit and eGreedy drop a bit
before becoming constant, at the time step where their re-
grets become zero. The drop of accept ratios is because only
few events are available at that time and those few events
may not be accepted by some upcoming users. Note that

the total regrets result can reflect the regret ratio and to-
tal rewards results. Second, except Random, TS performs
the worst and Exploit is slightly better than UCB, which
is different from the literature that TS generally performs
better, though under basic MAB setting rather than con-
textual combinatorial setting. One possible reason is that
under contextual bandit, all the arms (events) are corre-
lated due to the shared θ and thus playing one arm can help
estimate all the other arms while under basic MAB, all the
arms have independent reward distributions and thus play-
ing one arm cannot help estimate others. Therefore, the
sampling strategy of TS that intends to exploit the uncer-
tainty of the rewards of arms does not help to estimate the
expected rewards of arms in reality, and UCB, eGreedy, Ex-
ploit that can improve their estimation in each round simply
based on the feedbacks observed can gradually improve their
performance.

For further investigation, we study whether the algorithms
can estimate the expected rewards of the events accurately
by comparing their rankings on the expected rewards of
the events with the ground-truth ranking (based on the
ground-truth θ). Figure 2 shows the Kendall’s rank cor-
relation coefficient of the rankings of the algorithms com-
pared with that of OPT under the default setting of FASEA,
where the Kendall’s rank correlation is calculated as follows:
τ = (#of concordant pairs)−(#of discordant pairs)

n(n−1)/2
[19]. Specifically,

we calculate the correlation coefficient between two rank-
ings of the events based on their estimated / ground-truth
expected rewards at time steps 100, 200, ..., 900, 1000, 2000,
3000, ..., 100000. We can on one hand observe that the cor-
relation coefficients of UCB and Exploit approach to 1 as t
increases, indicating that these two algorithms estimate the
expected rewards of the events more accurately, which ex-
plains their good performance. Notice that eGreedy gener-
ally has large correlation coefficients but has low correlation
with OPT sometimes due to its random strategy. On the
other hand, the correlation between TS and OPT fluctuates
a lot though increases gradually. The fluctuation indicates
that TS could bring a lot of noise due to its sampling strat-
egy, which could explain the bad performance of TS. Finally,
as expected, Random is generally uncorrelated with OPT.

As for efficiency, the average running time of each round
and the memory consumption of the algorithms are pre-
sented in the column “|V | = 500” of Table 5. We can see
that all the algorithms are quite efficient and eGreedy and
Exploit are the most efficient in time (except Random). As
TS takes additional time to sample a θ each time, TS is less
efficient than eGreedy and Exploit.

In the following groups of experiments, for brevity, we
mainly present the results of accept ratios and total regrets

857

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

A
c
c
e
p
t
R

a
ti
o

 UCB

TS

eGreedy

Exploit

Random

OPT

(a) Accept Ratio, |V | = 100

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(b) Total Regrets, |V | = 100

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(c) Accept Ratio, |V | = 1000

0 2 4 6 8 10

x 10
4

10
0

10
2

10
4

10
6

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(d) Total Regrets, |V | = 1000

Figure 3: Results of FASEA when |V | = 100 and 1000.

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(a) Accept Ratio, d = 1

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(b) Accept Ratio, d = 5

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(c) Accept Ratio, d = 10

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(d) Accept Ratio, d = 15

0 2 4 6 8

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(e) Total Regrets, d = 1

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(f) Total Regrets, d = 5

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(g) Total Regrets, d = 10

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(h) Total Regrets, d = 15

Figure 4: Results of FASEA on effect of dimension.

Table 5: Average Running Time and Memory Consumption
of FASEA with Varying |V |.

Algorithm
Avg Time(sec)

|V | = 100 |V | = 500 |V | = 1000
UCB 0.0015 0.0055 0.0090
TS 0.0024 0.0033 0.0042

eGreedy 0.0007 0.0015 0.0025
Exploit 0.0008 0.0014 0.0027
Random 2.1e-5 8.4e-5 0.0001

Algorithm
Memory(MB)

|V | = 100 |V | = 500 |V | = 1000
UCB 4.13 5.49 9.52
TS 4.15 5.52 9.55

eGreedy 4.06 5.31 9.59
Exploit 4.05 5.30 9.57
Random 4.04 5.41 9.46

as the results of the other two metrics can be reflected from
these two metrics.

Effect of |V |. The results when |V | is respectively 100
and 1000 are presented in Figure 3. Similar to the previ-
ous group of experiments, we can observe that except Ran-
dom, TS is still the worse while UCB and Exploit are still
the best. Comparing with Figure 1, we can observe that
the algorithms (except Random) generally have larger ac-
cept ratios when |V | is larger. The possible reason is that
as the features are randomly generated following the same
distribution, more events are likely to have large expected
rewards and thus to have feedbacks of 1 when |V | is larger.
Notice that the total regrets drop earlier when |V | is 100
while the total regrets do not drop when |V | is as large as

Table 6: Average Running Time and Memory Consumption
of FASEA on Effect of Dimension.

Avg Time(sec)
d = 1 d = 5 d = 10 d = 15

UCB 0.0014 0.0020 0.0028 0.0039
TS 0.0003 0.0007 0.0013 0.0021

eGreedy 0.0003 0.0005 0.0007 0.0011
Exploit 0.0003 0.0005 0.0008 0.0012
Random 7.7e-5 7.3e-5 6.9e-5 6.5e-5

Memory(MB)
d = 1 d = 5 d = 10 d = 15

UCB 5.43 5.43 5.44 5.47
TS 5.45 5.45 5.47 5.48

eGreedy 5.37 5.38 5.39 5.40
Exploit 5.37 5.37 5.36 5.39
Random 5.36 5.36 5.37 5.39

1000, which indicates that enough events are still available
at later time steps when |V | is 1000. Table 5 shows the ef-
ficiency results of the algorithms. We can observe that the
algorithms consume more time and space when |V | is larger,
which is expected. Notice that since UCB takes additional
time to calculate an upper confidence bound for each event,
the running time of UCB increases more obviously than the
other algorithms do when |V | increases. Note that the in-
crease of memory consumption is also due to the increasing
size of input data. Again, all the algorithms are quite effi-
cient in both time and space and eGreedy and Exploit are
again the fastest.

Effect of dimension. Figure 4 presents the results when
varying d. We can observe that all the algorithms perform

858

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(a) Accept Ratio, Uniform

0 2 4 6 8 10

x 10
4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T

A
c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(b) Accept Ratio, Power

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(c) Accept Ratio, Shuffle

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(d) Total Regrets, Uniform

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(e) Total Regrets, Power

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(f) Total Regrets, Shuffle

Figure 5: Results of FASEA when θ and features follow different distributions.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(a) Accept Ratio, N (100, 100)

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(b) Total Regrets, N (100, 100)

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(c) Accept Ratio, N (500, 200)

0 2 4 6 8 10

x 10
4

10
0

10
2

10
4

10
6

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(d) Total Regrets, N (500, 200)

Figure 6: Results of FASEA when cv follows N (100, 100) and N (500, 200).

better when d is smaller, especially TS, as TS can finally
compete with UCB, eGreedy and Exploit when d is only 1.
With this observation, we conjecture that another possible
reason that TS performs badly is that TS needs to sample a
d-dimension vector each time and thus the noise of sampling
is enlarged when d increases, which could greatly impact the
accuracy of the estimation on the expected rewards of the
events. Notice that again due to the limited capacities of
events, the accept ratios and total regrets of the algorithms
drop suddenly at certain time steps. The efficiency results
are presented in Table 6. We can observe that more time
and space is consumed when d is larger, which is expected.

Results following other distributions. The results
when θ and the features follow different distributions are
presented in Figure 5. We can observe similar results. No-
tice that the accept ratios of the algorithms are generally
large and the regrets of the algorithms drop earlier when θ
and features follow Power distribution. The reason is that
under Power distribution, the values of the elements of θ
and the features are generally large (closer to 1) and thus
the expected rewards of the events are generally large and
much more events have feedbacks of 1, which also explains
why Random performs well. As the efficiency results are
similar, we omit them for brevity.

Effect of cv. The results when varying cv are presented in
Figure 6. We can observe that when cv follows N (100, 100),
again as all the events become unavailable at certain time
steps, the accept ratios and total regrets of the algorithms
drop suddenly. When cv is generally larger, i.e. following

N (500, 200), there are still quite a few events available even
when t is large and thus OPT can still assign events to late-
coming users and the accept ratios and total regrets of the
algorithms do not drop suddenly. The efficiency results are
similar and we omit them for brevity.

Effect of conflicts. The results when varying cr are pre-
sented in Figure 7, where the conflict ratio (cr) of events is
0, 0.5, 0.75 and 1 respectively. Note that when cr = 0, no
events are conflicting and when cr = 1, all the events are
conflicting with each other. Again we can see that except
Random, TS is the worst while UCB and Exploit are still
the best. We can observe that when cr is smaller, the ac-
cept ratios and total regrets of the algorithms drop earlier
and when cr = 1, the accept ratios and total regrets do not
drop suddenly. The reason is that when cr is small, more
events are available for users arriving at earlier stages as
fewer events are conflicting with each other and thus the
events will become out of quotas earlier when cr is small.
Note that when cr = 1, actually only one event can be ar-
ranged to one user each time and thus quite a few events are
still available when t is large and thus OPT is still arrang-
ing events for late-coming users. The efficiency results are
similar and we omit them for brevity.

Effect of algorithm parameters. Figure 8 presents the
results with different λ values. Note that Figure 8b shows
the results of regret ratios of TS as the difference of total
regrets is not obvious. We can observe that the algorithms
generally perform better when λ = 1 or 2. Figure 9a presents
the results of UCB with different α values. We can observe

859

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(a) Accept Ratio, cr = 0

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(b) Accept Ratio, cr = 0.5

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T

A
c
c
e

p
t

R
a

ti
o

 UCB

TS

eGreedy

Exploit

Random

OPT

(c) Accept Ratio, cr = 0.75

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(d) Accept Ratio, cr = 1

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(e) Total Regrets, cr = 0

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(f) Total Regrets, cr = 0.5

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(g) Total Regrets, cr = 0.75

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(h) Total Regrets, cr = 1

Figure 7: Results of FASEA when conflict ratio is 0, 0.5, 0.75 and 1.

0 2 4 6 8 10

x 10
4

0

50

100

150

200

250

300

T

T
o

ta
l
R

e
g

re
ts

UCB−λ=0.5

UCB−λ=1

UCB−λ=2

(a) UCB

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

R
e

g
re

t
R

a
ti
o

TS−λ=0.5

TS−λ=1

TS−λ=2

(b) TS

0 2 4 6 8 10

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

T

T
o

ta
l
R

e
g

re
ts

eGreedy−λ=0.5

eGreedy−λ=1

eGreedy−λ=2

(c) eGreedy

0 2 4 6 8 10

x 10
4

0

50

100

150

200

250

300

350

400

T

T
o

ta
l
R

e
g

re
ts

Exploit−λ=0.5

Exploit−λ=1

Exploit−λ=2

(d) Exploit

Figure 8: Results of FASEA on effect of λ.

that UCB generally performs better when α = 2. Figure 9b
shows the effect of δ on TS and we can observe that TS
performs worse when δ = 0.05. Figure 9c shows the effect
of ε on eGreedy. We can observe that generally eGreedy
performs when better when ε is smaller, which indicates that
the random strategy of eGreedy does not help improve its
performance. Efficiency results are omitted for brevity.

Real dataset. We then study the performance of the al-
gorithms on real datasets. The results of real dataset for u1

are presented in Figure 10, where we present the (accumula-
tive) accept ratios for the first 1000 rounds for clearer obser-
vation of the performance of the algorithms at early stages
and present the total regrets for the whole 10000 rounds.
Particularly, cu is 5 or full as explained in Section 5.1. Val-
ues of cu under the “cu = full” setting are presented in the
last row of the table. We can observe that UCB performs
the best when cu = 5 and both UCB and Exploit perform
well when cu = full. Similar to synthetic data results, TS
does not perform well under both settings. Notice that even
“Full Knowledge” cannot achieve accept ratio of 100% when
cu = full due to conflicts of events. Due to limited space, we
present the accept ratio results of the other users in Table 7.
We can observe that in most cases UCB performs the best
and for some users Exploit and eGreedy are better. Notice
that Exploit has accept ratio of 0 for u8, u10, and u16. This
is because the events arranged by Exploit initially all have
feedbacks of 0 and as the same set of feature vectors are
observed in each round in the real dataset, Exploit cannot
adjust its estimation of θ (due to all feedbacks are 0) and

thus keeps arranging the same set of events each time, which
always have feedbacks of 0. Note that in such cases, UCB
and eGreedy are more advantageous – even when all the ar-
ranged events have feedbacks of 0, UCB can still update its
estimation due to the upper confidence bound and eGreedy
will not keep arranging the same set of events with feed-
backs of 0 due to its random strategy. Therefore, though
both UCB and Exploit perform well in most cases of both
synthetic dataset and real dataset, UCB is still more advan-
tageous than Exploit in practice. Notice that we addition-
ally compare with the OnlineGreedy-GEACC algorithm in
[39] (named as Online in Table 7), where we use category-
sub-categories as tags of events and asked users to select
their preferred tags, which are used to calculate the inter-
estingness values as in [39]. Note that since OnlineGreedy-
GEACC does not change its strategy based on the observed
feedbacks, it keeps making the same arrangement even run-
ning in multiple rounds. Therefore, the reported accept ratio
of OnlineGreedy-GEACC is single-round rather than accu-
mulative as the accept ratios of other feedback-aware al-
gorithms are. Compared with OnlineGreedy-GEACC that
does not utilizes users’ feedbacks, we can observe that UCB
and eGreedy are generally better, especially when the num-
ber of arranged events is limited in each round, i.e. cu = 5.
Notice that in some cases there is slight difference between
the accept ratio of the best feedback-aware algorithm and
that of OnlineGreedy (e.g. u4 and u5 when cu =full). This
is because the accept ratios of feedback-aware algorithms are
accumulative over 1000 rounds.

860

0 2 4 6 8 10

x 10
4

0

50

100

150

200

250

300

350

400

T

T
o

ta
l
R

e
g

re
ts

UCB−α=1

UCB−α=1.5

UCB−α=2

UCB−α=2.5

(a) Varying α

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

R
e

g
re

t
R

a
ti
o

TS−δ=0.05

TS−δ=0.1

TS−δ=0.2

(b) Varying δ

0 2 4 6 8 10

x 10
4

0

5000

10000

15000

T

T
o

ta
l
R

e
g

re
ts

eGreedy−ε=0.05

eGreedy−ε=0.1

eGreedy−ε=0.2

(c) Varying ε

Figure 9: Results of FASEA on effect of α, δ and ε.

Table 7: Accept Ratios of Real Dataset of FASEA after 1000 rounds.

cu = 5 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19
UCB 0.99 0.99 0.20 0.97 0.94 0.98 0.91 0.20 0.99 0.99 0.95 1.00 0.96 0.63 0.98 0.95 0.20 0.97 0.59

TS 0.27 0.62 0.19 0.25 0.24 0.47 0.34 0.17 0.49 0.29 0.28 0.48 0.44 0.27 0.22 0.16 0.19 0.26 0.36

eGreedy 0.82 0.93 0.39 0.89 0.77 0.89 0.89 0.65 0.92 0.90 0.73 0.94 0.88 0.52 0.74 0.81 0.42 0.73 0.57

Exploit 0.96 0.98 0.40 0.91 0.80 0.86 0.96 0 0.97 0 0.77 0.99 0.94 0.59 0.79 0 0.20 0.78 0.60

Random 0.24 0.52 0.22 0.19 0.31 0.43 0.33 0.14 0.45 0.23 0.26 0.39 0.47 0.21 0.22 0.14 0.18 0.25 0.34

Full Kn. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Online[39] 0.8 0.8 0.8 0.6 0.6 0.4 0.6 0.4 1 0.6 0.4 0.4 1 0.4 0.8 1 0.6 1 0.8

cu =full u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19
UCB 0.50 0.80 0.63 0.69 0.65 0.63 0.56 0.14 0.86 0.75 0.66 0.78 0.71 0.39 0.51 0.93 0.22 0.83 0.60

TS 0.30 0.57 0.23 0.27 0.33 0.48 0.35 0.15 0.59 0.27 0.32 0.47 0.52 0.26 0.26 0.14 0.20 0.31 0.42

eGreedy 0.48 0.71 0.27 0.56 0.66 0.62 0.59 0.29 0.84 0.70 0.67 0.75 0.74 0.38 0.47 0.57 0.31 0.61 0.59

Exploit 0.50 0.72 0.27 0.60 0.66 0.63 0.56 0 0.77 0 0.69 0.76 0.74 0.27 0.49 0 0.11 0.58 0.62

Random 0.24 0.52 0.23 0.20 0.31 0.45 0.32 0.15 0.47 0.23 0.26 0.39 0.48 0.22 0.21 0.14 0.18 0.26 0.36

Full Kn. 0.92 0.92 1 1 0.93 0.91 0.94 1 1 0.91 1 0.95 1 0.91 0.82 1 0.89 1 0.94

Online[39] 0.67 0.73 0.64 0.7 0.67 0.64 0.56 0.43 0.86 0.73 0.54 0.74 0.70 0.55 0.64 0.86 0.56 0.69 0.59

cu 12 26 11 10 15 22 16 7 22 11 13 19 23 11 11 7 9 13 17

Further experiment results under basic contextual
bandit. Finally, we further study the performance of the
algorithms under the basic contextual bandit model, where
capacities of events are unlimited, no events are conflicting
and only one event is arranged for one user each time. We
denote the results under the basic contextual bandit as ”Ba-
sic”.

Figure 11 shows the results when varying |V | and the other
parameters are set to default values. Similar to the results
under FASEA, we can observe that TS still performs badly
under basic contextual bandit. Notice that since capacities
of events are ignored, the regrets of the algorithms do not
experience sudden drop as those under FASEA do.

Due to limited space, additional results when varying d
and distributions are in the appendix. Again we can observe
that TS still performs badly under basic contextual bandit.
Similarly, TS performs better when d is smaller.

Finally, Figure 13 shows the results when θ and the fea-
tures follow other distributions and similar results can be
observed.

Summary. We finally summarize our experimental find-
ings.

• In most cases of both synthetic dataset and real dataset,
UCB and Exploit perform the best while TS that is re-
ported to perform well under basic multi-armed ban-
dit[9] only performs better than Random. We conjec-
ture that the sampling strategy of TS on θ brings a lot
of noise that affects all the estimates of the expected
rewards of events, which could be the possible reason
of the poor performance of TS.

• UCB can avoid being trapped in arranging the same
set of events with feedbacks of 0 in real world and thus
is more advantageous than Exploit.

• All the algorithms are efficient in time and space while
eGreedy and Exploit are the most efficient in time.

6. RELATED WORK

6.1 Mining and Managing EBSNs
[30] is the first study to formulate and analyze EBSNs

at scale. A large category of works focus on recommenda-
tion problems, which utilize learning-based models to train
data of EBSNs and then recommend certain items to related
parties, e.g. [52][21][35][51][54] [32][10][31][34]. These works
mainly focus on the benefits of one particular party, i.e. the
ones being recommended to, and lack of a global strategy
that satisfies most event organizers and users. Some other
works try to find either influential event organizers[14] or
influential participants[53]. But still, they only focus on one
single side’s benefit.

Global arrangement strategies are studied recently. [25]
studies the Social Event Organization (SEO) problem that
maximizes the sum of the overall satisfaction of users to-
wards the arrangement and the social affinity among the
users participating in the same event. [4] studies a graph
partition problem based on a game theoretic approach, which
can be applied to making event-participant arrangement.
[38][37] study global arrangement problems that allow users
to attend multiple events and consider conflict constraints
and location information. [44] studies another objective
function max-min, i.e. maximizing the benefit of the least
satisfied user, regarding the event arrangement problem.
[17] considers diverse user choices. However, all these works
only consider offline scenarios. Recently, [39] extends [38] to
online scenarios. But still, none of existing works uses gen-
eral satisfaction measurement or allows users to give feed-
backs on accepting the arrangement or not. In this work, we
address online event arrangement that allows users to give
feedbacks and learns how to make satisfactory arrangement
based on users’ feedbacks.

Most existing works on event arrangement are variants of
the classic maximum weighted bipartite matching problem

861

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

A
c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

Full Knowledge

(a) Accept Ratio, cu = 5

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

10
4

10
5

T

T
o
ta

l
R

e
g
re

ts

UCB

TS

eGreedy

Exploit

Random

(b) Total Regrets, cu = 5

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

A
c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

Full Knowledge

(c) Accept Ratio, cu = full

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

10
4

10
5

T

T
o
ta

l
R

e
g
re

ts

UCB

TS

eGreedy

Exploit

Random

(d) Total Regrets, cu = full

Figure 10: Results of real dataset of FASEA (u1).

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

A
c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(a) Accept Ratio, |V | = 100

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(b) Accept Ratio, |V | = 500

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

A
c
c
e

p
t

R
a

ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(c) Accept Ratio, |V | = 1000

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(d) Total Regrets, |V | = 100

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(e) Total Regrets, |V | = 500

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o

ta
l
R

e
g

re
ts

UCB

TS

eGreedy

Exploit

Random

(f) Total Regrets, |V | = 1000

Figure 11: Results when varying |V | under basic contextual bandit.

[7][50][46][45][40] and its online scenario[18][33][20][42][43].
However, these works still do not consider users’ feedbacks.

6.2 Multi-Armed Bandit
Multi-armed bandit (MAB) problem has been studied for

decades due to its wide applications[6]. The main chal-
lenge of solving MAB is the exploitation-exploration trade-
off, where one is trying to maximize the total rewards gained
by playing arms (exploitation) while having to explore dif-
ferent arms enough (exploration) to avoid being trapped in
a local optimum. The most basic bandit problem is the
stochastic multi-armed bandit[23], where each arm is asso-
ciated with an unknown but fixed distribution of rewards.
Numerous variants of MAB have been studied. One par-
ticular variant related to our event-participant arrangement
setting is the stochastic contextual bandit problem. Particu-
larly, [24][26][13][1][22] study the contextual bandit problem
with linear payoff. As pointed out by [13] and [1], contextual
bandit with linear payoff is also studied under other names,
details of which can be referred to [13] and [1]. By playing
arms in multiple rounds, a contextual bandit algorithm re-
peatedly explores or estimates the unknown weights based
on the observed rewards and exploits the estimated optimal
arm to maximize its total rewards. Another variant related
to our setting is called the combinatorial bandit problem,
where a subset of arms rather than a single arm are played in
each round[3][8][29][15][11][12][28][16][49]. Particularly, [36]
studies the two variants simultaneously, a.k.a. the contex-
tual combinatorial bandit problem, while [27] further stud-

ies a contextual combinatorial cascading bandit problem. In
this paper, we bring contextual combinatorial bandit with
linear payoff to event-participant arrangement to make sat-
isfactory arrangement for the users based on their feedbacks.

7. CONCLUSION
In this paper, we study a new event-participant arrange-

ment strategy, called the Feedback-Aware Social Event-participant
Arrangement (FASEA) problem, for online EBSNs that can
learn the satisfaction of users towards the arrangement through
their feedbacks on accepting or rejecting the events. We
first model the problem as a contextual combinatorial ban-
dit setting, a variant of multi-armed bandit. We then use a
Thompson Sampling-based solution and a UCB-based solu-
tion to solve the problem. We further present two heuristics,
eGreedy and Exploit, based on UCB. We evaluate the algo-
rithms extensively on both real and synthetic datasets. Our
experimental results indicate that TS that is reported to
work well under basic multi-armed bandit[9] does not per-
form well under FASEA while UCB is the best in overall.

Acknowledgements: We are grateful to anonymous re-
viewers for their constructive comments on this work. This
work is supported in part by the Hong Kong RGC Project
16202215, National Grand Fundamental Research 973 Pro-
gram of China under Grant 2014CB340303, NSFC Grant
No. 61502021, 61328202, 61300031 and 61532004, Microsoft
Research Asia Collaborative Grant and NSFC Guang Dong
Grant No. U1301253. Yongxin Tong and Lei Chen are the
corresponding authors of this paper.

862

8. REFERENCES
[1] S. Agrawal and N. Goyal. Thompson sampling for

contextual bandits with linear payoffs. In ICML’13,
pages 127–135.

[2] S. Agrawal and N. Goyal. Thompson sampling for
contextual bandits with linear payoffs. arXiv preprint
arXiv:1209.3352, 2012.

[3] V. Anantharam, P. Varaiya, and J. Walrand.
Asymptotically efficient allocation rules for the
multiarmed bandit problem with multiple plays-part i:
Iid rewards. IEEE Transactions on Automatic
Control, 32(11):968–976, 1987.

[4] N. Armenatzoglou, H. Pham, V. Ntranos,
D. Papadias, and C. Shahabi. Real-time multi-criteria
social graph partitioning: A game theoretic approach.
In SIGMOD’15, pages 1617–1628.

[5] P. Auer. Using confidence bounds for
exploitation-exploration trade-offs. The Journal of
Machine Learning Research, 3:397–422, 2002.

[6] D. A. Berry and B. Fristedt. Bandit problems:
sequential allocation of experiments (Monographs on
statistics and applied probability). Springer, 1985.

[7] R. E. Burkard, M. Dell’Amico, and S. Martello.
Assignment Problems, Revised Reprint. SIAM, 2009.

[8] F. Caro and J. Gallien. Dynamic assortment with
demand learning for seasonal consumer goods.
Management Science, 53(2):276–292, 2007.

[9] O. Chapelle and L. Li. An empirical evaluation of
thompson sampling. In NIPS’11, pages 2249–2257.

[10] C. C. Chen and Y.-C. Sun. Exploring acquaintances of
social network site users for effective social event
recommendations. Information Processing Letters,
116(3):227–236, 2016.

[11] W. Chen, Y. Wang, and Y. Yuan. Combinatorial
multi-armed bandit: General framework and
applications. In ICML’13, pages 151–159.

[12] W. Chen, Y. Wang, and Y. Yuan. Combinatorial
multi-armed bandit and its extension to
probabilistically triggered arms. 2014.

[13] W. Chu, L. Li, L. Reyzin, and R. E. Schapire.
Contextual bandits with linear payoff functions. In
AISTATS’11, pages 208–214.

[14] K. Feng, G. Cong, S. S. Bhowmick, and S. Ma. In
search of influential event organizers in online social
networks. In SIGMOD’14, pages 63–74.

[15] Y. Gai, B. Krishnamachari, and R. Jain.
Combinatorial network optimization with unknown
variables: Multi-armed bandits with linear rewards
and individual observations. IEEE/ACM Transactions
on Networking (TON), 20(5):1466–1478, 2012.

[16] A. Gopalan, S. Mannor, and Y. Mansour. Thompson
sampling for complex online problems. In ICML’14,
pages 100–108.

[17] J. Huang, Y. Zhou, X. Jia, and H. Sun. A novel social
event organization approach for diverse user choices.
The Computer Journal, 2016.

[18] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An
optimal algorithm for on-line bipartite matching. In
STOC’90, pages 352–358.

[19] M. G. Kendall. A new measure of rank correlation.
Biometrika, 1938.

[20] T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking.
An optimal online algorithm for weighted bipartite
matching and extensions to combinatorial auctions. In
ESA’13, pages 589–600.

[21] H. Khrouf and R. Troncy. Hybrid event
recommendation using linked data and user diversity.
In RecSys’13, pages 185–192.

[22] A. Krishnamurthy, A. Agarwal, and M. Dudik.
Contextual semibandits via supervised learning
oracles. 2015.

[23] T. L. Lai and H. Robbins. Asymptotically efficient
adaptive allocation rules. Advances in applied
mathematics, 6(1):4–22, 1985.

[24] J. Langford and T. Zhang. The epoch-greedy
algorithm for multi-armed bandits with side
information. In NIPS’08, pages 817–824.

[25] K. Li, W. Lu, S. Bhagat, L. V. S. Lakshmanan, and
C. Yu. On social event organization. In KDD’14,
pages 1206–1215.

[26] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news
article recommendation. In WWW’10, pages 661–670.

[27] S. Li, B. Wang, S. Zhang, and W. Chen. Contextual
combinatorial cascading bandits. In ICML’16, pages
1245–1253.

[28] T. Lin, B. D. Abrahao, R. D. Kleinberg, J. Lui, and
W. Chen. Combinatorial partial monitoring game with
linear feedback and its applications. In ICML’14,
pages 901–909.

[29] H. Liu, K. Liu, and Q. Zhao. Logarithmic weak regret
of non-bayesian restless multi-armed bandit. In
ICASSP’11, pages 1968–1971.

[30] X. Liu, Q. He, Y. Tian, W.-C. Lee, J. McPherson, and
J. Han. Event-based social networks: linking the online
and offline social worlds. In KDD’12, pages 1032–1040.

[31] C. Luo, W. Pang, Z. Wang, and C. Lin. Hete-cf:
Social-based collaborative filtering recommendation
using heterogeneous relations. In ICDM’14, pages
917–922.

[32] A. Q. Macedo, L. B. Marinho, and R. L. Santos.
Context-aware event recommendation in event-based
social networks. In RecSys’15, pages 123–130.

[33] A. Mehta. Online matching and ad allocation.
Theoretical Computer Science, 8(4):265–368, 2012.

[34] T.-A. N. Pham, X. Li, G. Cong, and Z. Zhang. A
general graph-based model for recommendation in
event-based social networks. In ICDE’15, pages
567–578.

[35] Z. Qiao, P. Zhang, Y. Cao, C. Zhou, L. Guo, and
B. Fang. Combining heterogenous social and
geographical information for event recommendation.
In AAAI’14, pages 145–151.

[36] L. Qin, S. Chen, and X. Zhu. Contextual
combinatorial bandit and its application on diversified
online recommendation. In SDM’14, pages 461–469.

[37] J. She, Y. Tong, and L. Chen. Utility-aware social
event-participant planning. In SIGMOD’15, pages
1629–1643.

[38] J. She, Y. Tong, L. Chen, and C. C. Cao.
Conflict-aware event-participant arrangement. In
ICDE’15, pages 735–746.

863

[39] J. She, Y. Tong, L. Chen, and C. C. Cao.
Utility-aware social event-participant planning and its
variant for online setting. Transactions on Knowledge
and Data Engineering, 2016.

[40] Y. Sun, J. Huang, Y. Chen, R. Zhang, and X. Du.
Location selection for utility maximization with
capacity constraints. In CIKM’12, pages 2154–2158.

[41] W. R. Thompson. On the likelihood that one
unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 1933.

[42] H. F. Ting and X. Xiang. Near optimal algorithms for
online maximum edge-weighted b-matching and
two-sided vertex-weighted b-matching. Theoretical
Computer Science, 607:247–256, 2015.

[43] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen.
Online mobile micro-task allocation in spatial
crowdsourcing. In ICDE’16, pages 49–60.

[44] Y. Tong, J. She, and R. Meng. Bottleneck-aware
arrangement over event-based social networks: the
max-min approach. World Wide Web,
19(6):1151–1177, 2015.

[45] L. H. U, K. Mouratidis, M. L. Yiu, and N. Mamoulis.
Optimal matching between spatial datasets under
capacity constraints. ACM Transactions on Database
Systems (TODS), 35(2):9, 2010.

[46] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis.
Capacity constrained assignment in spatial databases.
In SIGMOD’08, pages 15–28.

[47] J. Vermorel and M. Mohri. Multi-armed bandit
algorithms and empirical evaluation. In ECML’05,
pages 437–448.

[48] T. J. Walsh, I. Szita, C. Diuk, and M. L. Littman.
Exploring compact reinforcement-learning
representations with linear regression. In AUAI’09,
pages 591–598.

[49] Z. Wen, A. Ashkan, H. Eydgahi, and B. Kveton.
Efficient learning in large-scale combinatorial
semi-bandits. In ICML’15.

[50] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao.
On efficient spatial matching. In VLDB’07, pages
579–590.

[51] H. Yin, B. Cui, L. Chen, Z. Hu, and C. Zhang.
Modeling location-based user rating profiles for

personalized recommendation. ACM Transactions on
Knowledge Discovery from Data (TKDD), 9(3):19,
2015.

[52] H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen. Lcars: a
location-content-aware recommender system. In
KDD’13, pages 221–229.

[53] Z. Yu, R. Du, B. Guo, H. Xu, T. Gu, Z. Wang, and
D. Zhang. Who should i invite for my party?:
combining user preference and influence maximization
for social events. In UbiComp’15, pages 879–883.

[54] W. Zhang and J. Wang. A collective bayesian poisson
factorization model for cold-start local event
recommendation. In KDD’15, pages 1455–1464.

APPENDIX
Proof of Theorem 1

Proof. For brevity, in the following proof, we simply re-
gard At and AOPTt as that they do not include events with
r̂t,v ≤ 0. Notice that for each v ∈ AOPTt \ At, it is not
arranged by Oracle-Greedy due to two cases: (1)it is con-
flicting with events that are already arranged in At before v
is visited; (2)|At| = cu before v is visited and thus v is not
visited by Oracle-Greedy. Therefore, there must exist an
event v′ ∈ At \AOPTt that leads to that v is not included in
At: either due to v′ is conflicting with v or v′ “occupies the
place”of v and v′ must be visited before v by Oracle-Greedy.
Therefore, r̂t,v′ ≥ r̂t,v. Notice that v′ leads to at most cu
such v’s that v ∈ AOPTt \ At (due to the first conflicting
case). Therefore, cu×

∑
v∈At\AOPT

t
r̂t,v ≥

∑
v∈AOPT

t \At
r̂t,v.

Therefore, we have

∑
v∈At

r̂t,v =
∑

v∈At∩AOPT
t

r̂t,v +
∑

v∈At\AOPT
t

r̂t,v

≥
∑

v∈At∩AOPT
t

r̂t,v +
1

cu

∑
v∈AOPT

t \At

r̂t,v

≥ 1

cu

∑
v∈AOPT

t

r̂t,v (3)

Additional results under basic contextual bandit.

864

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

A
c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(a) Accept Ratio, d = 1

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T
A

c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(b) Accept Ratio, d = 5

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

A
c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(c) Accept Ratio, d = 10

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

A
c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(d) Accept Ratio, d = 15

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o
ta

l
R

e
g
re

ts

UCB

TS

eGreedy

Exploit

Random

(e) Total Regrets, d = 1

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o
ta

l
R

e
g
re

ts

UCB

TS

eGreedy

Exploit

Random

(f) Total Regrets, d = 5

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o
ta

l
R

e
g
re

ts

UCB

TS

eGreedy

Exploit

Random

(g) Total Regrets, d = 10

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o
ta

l
R

e
g
re

ts

UCB

TS

eGreedy

Exploit

Random

(h) Total Regrets, d = 15

Figure 12: Results when varying d under basic contextual bandit.

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

T

A
c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(a) Accept Ratio, Uniform

0 2 4 6 8 10

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

T

A
c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(b) Accept Ratio Power

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

A
c
c
e
p
t
R

a
ti
o

UCB

TS

eGreedy

Exploit

Random

OPT

(c) Accept Ratio, Shuffle

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o
ta

l
R

e
g
re

ts

UCB

TS

eGreedy

Exploit

Random

(d) Total Regrets, Uniform

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

T

T
o
ta

l
R

e
g
re

ts

UCB

TS

eGreedy

Exploit

Random

(e) Total Regrets, Power

0 2 4 6 8 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

T

T
o
ta

l
R

e
g
re

ts

UCB

TS

eGreedy

Exploit

Random

(f) Total Regrets, Shuffle

Figure 13: Results when θ and features follow different distributions under basic contextual bandit.

865

