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Abstract—Realtime traffic speed estimation is an important
issue in urban computation. Existing approaches usually focus
on exploiting the periodicity properties of the traffic speed and
utilize crowdsourcing techniques to facilitate real-time estimation.
The quality of such estimation is limited in real world: 1)
the accuracy of existing estimation over-relies on the probed
data; 2) the accidental traffic variance is ignored; 3) existing
strategies incur exhaustive usage of human workers to get
fine-grained estimation results. Thus, a more intelligent RTSE
approach is desired. In this paper, we propose the framework
of CrowdRTSE (Crowdsourcing-based Real-time Traffic Speed
Estimation), which adopts a hybrid offline-online process to col-
laboratively exploit the historical and real-time data to produce
high-quality RTSE. To accomplish such a framework, we devise
effective algorithms to judiciously select the best group of human
workers with a constant approximation ratio, and effectively
propagate the crowdsourced data with high efficiency. Com-
prehensive evaluations have been conducted on both synthetic
and real world datasets. The experimental results verify the
effectiveness and efficiency of our proposed methods.

I. INTRODUCTION

Realtime traffic speed estimation (RTSE) is a crucial com-

ponent in many urban applications, such as traffic surveillance,

route planning, accident detection, and so on. Given a set of

queried roads within a traffic network, RTSE estimates the

realtime traffic speed for the corresponding queries. Despite

the deployment of various traffic monitoring and participatory

sensing devices (e.g. inductive sensors and mobile GPS de-

vices [1], [2]), it is still difficult to obtain high-quality realtime

traffic speed estimation for the entire interested area, as a result

of the limited coverage of sensor deployment and the concern

of privacy.

In recent years, thanks to the availability of high-volume

offline traffic data, like realtime speed record and trajectories,

numerous data-driven techniques have been developed for

RTSE. To improve the estimate quality, researchers mainly

focus on exploring and utilizing the two statistical properties

of traffic data: periodicity and correlation. On one hand,

considering that there is always a normal pattern for the

traffic speed on one road, the periodicity can be captured

using the historical data and RTSE can be therefore inferred

with the periodic property [3], [4], [5]. However, as these

periodicity based methods can only predict the overall trend

of traffic speed, they are incapable of predicting the accidental

variations and it is difficult to produce fine-grained result for

the RTSE. On the other hand, given the fact that roads are

connected with each other through the traffic network, the

speeds of different roads are highly correlated. By making use

of the correlation, the traffic speed on one queried road can

be estimated with other probed data (realtime traffic speed)

from the road network [6], [7]. While the performance of the

correlation based approaches highly depends on the quality of

probed data: if the probed data is inadequate, or has weak

correlations with the queried roads, the estimation quality

will be inevitably coarsened. As such, based on the above

analysis, it can be inferred that only relying on the periodicity

or correlation is insufficient to produce quality estimations.

However, to the best of our knowledge, currently there is

no approach that makes joint usage of the periodicity and

correlation to generate quality results for RTSE.

Inspired by the rapid development of crowdsourcing ser-

vices, such as Field Agent, CheckPoints and OpenStreetMap,

a promising option of enhancing the current RTSE techniques

is to utilize the power of crowd. Given a specific realtime

speed query, we can ask the human workers to report the speed

measurement of certain locations and the realtime speed for

the queried road can be estimated based on the crowdsourced

data. Although there are some preliminary works proposed

along this direction, such as [8], [9], their practical applications

have been seriously hindered by some methodology defects

and unrealistic assumptions. Firstly, the existing techniques

on realtime traffic speed estimation cannot effectively work

with the crowdsourced data. Secondly, the inherent periodicity

property of the traffic road has been overlooked by these exist-

ing methods: in fact, for those roads of strong periodicity, their

realtime traffic speed can be effectively estimated with little

assistance from crowdsourcing. As crowdsourcing services are

normally conducted with a limited budget, such a limitation on

resource allocation will easily make the existing methods eco-

nomically impractical to handle the RTSE tasks. Lastly, most

existing methods implicitly require workers to travel physically

so as to collect the desirable crowdsourced data. However,

such a requirement will inevitably incur unacceptable delay

and reduce workers’ willingness to execute the tasks.

To deal with the above challenges, we propose CrowdRTSE

(Crowdsourcing-based Realtime Traffic Speed Estimation),
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which produces high-quality RTSE with a modest budget.

To be specific, CrowdRTSE works with a hybrid offline-

online framework, as shown in Fig. 1. In the offline stage,

a probabilistic graphical model, RTF (Realtime Traffic-Speed

Field), is constructed in the form of Gaussian Markov Random

Field (GMRF). By exploring the historical data, RTF seam-

lessly bridges the inherent topology of traffic network and the

statistical properties (i.e., periodicity and correlation) of traffic

speed, which is also the foundation for online-processing. In

the online stage, two main steps are involved to produce RTSE

for a presented query. In the first step, CrowdRTSE needs

to select some roads from the pool of roads currently with

workers distributed (referred as crowdsourced roads), aiming

to allocate the crowdsourcing resource in an effective way.

To optimize the selection, the OCS (Optimal Crowdsourced

Road Selection) problem is solved to find the best group

of crowdsourced roads w.r.t. the presented query and the

given budget. Then the realtime traffic speed is sampled

for these selected roads (referred as sampled roads). In the

second step, using the data collected from sampled roads,

the realtime traffic speed can be inferred for all non-sampled

roads. Seeking for more reliable inferences, GSP (Graph-based

Speed Propagation) is developed on top of RTF, which exploits

the statistical properties to obtain the most likely speed for

non-sampled roads.

The proposed CrowdRTSE can handle the above difficulties

properly, including the challenges to utilize the periodicity and

correlation in a collative way, the limitations to incorporate

with crowdsourced data, the deficiency in crowdsourcing re-

source allocation and the restrictive requirement of physical

movement. To summarize, the following contributions are

made in this work.

• We propose a novel framework, CrowdRTSE, which col-

laboratively exploits the historical data and the crowdsourcing

data to produce high quality RTSE with a modest budget.

• A graphical model RTF is constructed to encode the

topology structure of traffic network and statistical properties,

i.e., periodicity and correlation, of traffic data. Quality speed

estimation can be obtained based on this elegant graphical

model. To allocate crowdsourcing resource in an effective way,

the OCS problem is proposed, which selects the optimal set

of crowdsourced roads w.r.t. the presented query and budget.

The OCS problem is proved to be NP-hard, and effective

algorithms are designed to find its approximate solution.

• We verify the effectiveness and efficiency of the proposed

methods through extensive experiments on both real and

synthetic datasets.

The rest of the paper is organized as follows. The related

work is discussed in Section II and the problem overview is

made in Section III. Then, the formulation of RTF is presented

in Section II. After that, the optimal crowd selection and speed

propagation are discussed in Section V and VI, respectively.

Finally, we report the experimental results in Section VII and

conclude in Section VIII.

II. RELATED WORK

In this section, we discuss the related work under two

categories: the techniques for traffic speed estimation and the

crowdsourcing assisted computation.

A. Traffic Speed Estimation

To estimate the realtime traffic speed, the regression based

approaches are extensively exploited in the existing works,

such as [3], [10], [6], [11], [12], [13], [14], [9]. Regardless

the adoption of different statistical modeling (e.g., Linear

Regression, SVR, Neural Network), all the regression based

approaches assume the constant correlation a fixed set of

observation variables (e.g., the realtime traffic speed of a

set of observation roads) and the realtime traffic speed of

all the interested roads, and the model parameters can be

inferred from the historical records. Because of the capability

of capturing the complex correlation between the traffic speed

of different roads, the regression based approaches are proved

to be effective in making accurate estimation for the realtime

traffic speed. However, the significant limitations about such

methods are two-fold. Firstly, because of the sparse connection

of the traffic network, each road may only closely correlated

with a few neighboring roads (as discussed in [9]). Therefore,

to make accurate estimation, the number of observation sites

must be large enough, which enables the close correlation

with all the interested roads. However, when the number

of observation sites is small, the estimation result will be

severely coarsened. Secondly, the regression based methods

simply model the correlation between the interested roads and

a fixed set of variables. Although it works well for scenarios

where the data is collected from the deployed loop sensors or

cameras (whose positions are fixed), it is not suitable for the

scenario of crowdsourcing where the data is usually collected

from unfixed locations (because the workers’ distribution is

time variant). To make of the regression based methods, [9]

implicitly asks workers to travel physically to the selected

observation sites. However, such operation leads to extra time

cost (which is crucial in making realtime estimation) and

reduces the worker’s willingness to carry out the task.

An alternative way to estimate the realtime traffic speed

relies on the technique of matrix completion ([15], [16]). Let

each road crossing (or end) specify a unique row and column

of a matrix M, the realtime traffic speed of one road can be

represented by a specific entry of M. With the realtime traffic

speed collected for a certain set of roads, the missing values

of M can be recovered through matrix completion. And to

improve the estimation quality, the Graph Laplacian factor

([17]) is usually added to enforce the spatial smoothness.

Apparently, such methods is free from the requirement of

fixed observation sites. However, the statistical properties of

the historical data is not fully effectively captured, which

significantly harms its estimation accuracy.

Different from the existing works, our proposed approach

collaboratively exploits the correlational and periodic proper-

ties of the traffic speed, which is able to produce accurate

estimation even with a limited size of realtime crowdsourced
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Fig. 1: System Infrastructure. The blue dash box and green dash box
demonstrate the offline and online stage, respectively.

data. Besides, the proposed approach naturally works with the

crowdsourced data, and it is exempted from the restriction of

fixed observation sites.

B. Crowdsourcing Assisted Computation

With the quick development of crowdsourcing services, e.g.,

Amazon MTurk and Yahoo Answer, human intelligence is ef-

fectively employed for many challenging problems, like entity

resolution [18] and data cleaning [19]. Besides, crowdsourcing

is also widely applied to many spatial applications, where

workers’ are paid to perform spatial tasks traffic surveillance

[20], [9], [8], [21]. However, the existing works cannot fully

address the problem of realtime traffic estimation due to

the following limitations: firstly, there is no effective real-

time speed estimation approach designed to work with the

crowdsourced data; secondly, the allocation of crowdsourcing

resource is not optimized in practice.

III. PROBLEM OVERVIEW

A. Preliminaries

Traffic Network A traffic network is composed of two basic

components: the roads (R) and the adjacency relationship (E).

In this work, each road represents a unique isolated interval of

path jointing two adjacent crossings (or the end of a path). In

other words, each road is an atomic unit, which contains no

other roads as its sub-components. For each road, we assume

there is a unique realtime traffic speed associated with it,

which can be comprehended as the average traffic speed of the

road for the current timestamp. The given traffic network is

formulated on a undirected graph N{R,E}, where the vertexes

R denote the universal set of roads and the edges E represent

the adjacent relationship.

For a given traffic network N(R,E), a realtime traffic speed

query (Q) is launched to a certain set of roads Rq , whose

realtime traffic speed is returned by the CrowdRTSE.

Crowdsourcing Crowdsourcing is utilized to probe the

realtime traffic speed for a small fraction of roads, based

on which the realtime traffic speed estimation is made to

the given query. While conducting the crowdsourcing, each

worker has to make a task demand to the system and provide

her localization information. Once a worker is selected by the

system, she will be allocated with a task, which asks her to

report the realtime traffic speed of her current location. Since

most modern mobile devices have the ability to detect the

realtime traveling speed, the workers will submit their answers

easily. If a worker’s answer is successfully submitted, she will

be paid with a predefined payment (or credit) as reward.

B. System Infrastructure

The architecture of CrowdRTSE is sketched in Figure 1,

with major components presented as follows.

Realtime Traffic Speed Field (RTF) RTF is a probabilistic

graphical model, which is constructed under the framework

of Gaussian Markov Random Field. RTF shares the same

topological structure of the given traffic network, and the

model’s parameters are inferred with the historical record

of traffic data. The function of RTF is two-fold. On one

hand, RTF captures the speed periodicity of each road and

the speed correlation between each pair of adjacent roads.

Based on such information, the best group of crowdsourced

roads is selected. On the other hand, a belief-propagation

based approach, namely Graph-based Speed Propagation, is

devised on top of RTF, which exploits the crowdsourced data

to estimate realtime traffic speeds for the whole road network.

Optimal Crowdsourced Roads Selection (OCS) OCS

selects the best group of roads, whose realtime traffic speed

is probed through crowdsourcing. Specifically, the selection

of the crowdsourced roads is conducted with the joint con-

sideration of both utility and feasibility. From the perspective

of utility, the crowdsourced data should help to increase the

quality of RTSE as much as possible. From the perspective of

feasibility, the crowdsourced data has to be collected from the

roads where workers are currently distributed (which makes

the workers free from extra traveling effort). Besides, the

selection of the crowdsourced roads is subject to a given

budget because of the economic concern.

Graph-based Speed Propagation (GSP) With the data

collected from the crowdsourcing workers, the realtime traffic

speed is inferred for the whole traffic network though speed

propagation. Such a method is inspired by the previous works

on belief propagation, which has been successfully applied

to various problems, such as image segmentation and topic

modeling. While making the inference, GSP iteratively refines

the estimated speed of each road, which finally leads to

the most credible result w.r.t. the collected data and RTF.

Thanks to the full exploitation of the statistical properties,

GSP significantly improves the quality of RTSE, especially

for the cases where the size of collected data is small.

Workflow of CrowdRTSE CrowdRTSE works in a hybrid

offline-online approach. In the offline part, the graphical

model, RTF, is constructed based on the historical record of

traffic speed. Such a model provides the foundation for the

online processing. In the online part, a presented query is

answered with three steps. Firstly, the system conducts OCS,

which selects the best set of crowdsourced roads. Secondly,

the crowdsourcing is launched, which probes the realtime

traffic speed for all the crowdsourced roads. Thirdly, with data

collected from the crowd, the speed propagation is performed

to infer the traffic speed for the whole traffic network, which
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R the universal set of roads

ri a specific road

n(ri) the adjacent roads of ri

E the adjacency relationship of all roads

N(R,E) the traffic network of roads R and adjacency relationship E

Rq the queried road segments

Rw the set of roads where workers are distributed

Rc the crowdsourced roads

vti the realtime traffic speed of road ri at time slot t

TABLE I: General Notations

can produce the RTSE for all the queried roads as well. Then

the RTSE is returned to the user as the answer to her query.

To ease the presentation, the frequent used symbols are

summarized in Table I.

IV. REALTIME TRAFFIC SPEED FIELD

A. Model Construction

In this paper, a graph model G = (R,E) is proposed to

reflect the topology structure of the traffic network. Each road

ri (ri ∈ R) in the traffic network is regarded as one node in the

graph. If two roads ri and rj are adjacent, there is an edge

eij (eij ∈ E) connecting them. Following the conventional

way of modeling temporal-spatial data, graph G is formulated

under the framework of Gaussian Markov Random Field[22],

such that fundamental statistical properties of traffic speed:

periodicity and correlation, can be substantially captured.

Periodicity. Similar with previous works[5], [23], each day is

divided into 288 fine-grained time slots so that each 5-minutes

interval becomes a unique slot. Considering the recurrent

pattern of traffic speed, similar value is expected for the same

time-slot of different days. As such, for each road ri in time

slot t (t ∈ T ), the road speed vti follows Gaussian distribution:

vti ∼ N (μt
i, σt

i
2
), (1)

where μt
i is the expectation and σt

i is the standard deviation.

Correlation. The correlation of traffic speeds is captured with

their differences. In particular, given that vi and vj are Gaus-

sian variables, the following relationship can be derived[24]:

vti − vtj ∼ N (μt
ij , σt

ij
2
), (2)

where μt
ij = μt

i − μt
j and σt

ij =
√

σt
i
2
+ σt

j
2 − 2ρtijσ

t
iσ

t
j .

Here, ρtij quantifies the correlation between vti and vtj , which

acts as the edge weight in the graph (ρij ∈ [0, 1]).
Based on Eq. (1) and (2), the conditional log likelihood of

vti given the traffic speed of R \ {ri} can be derived as:

L(vti | V t
R\{ri})

= log(P(vti | V t
R\{ri})/

∫ ∞

vt
i=0

P(vti | V t
R\{ri}))

= − (v
t
i − μt

i)
2

σt
i
2 −

∑
V t
R\{ri}

[(vti − vtj)− μt
ij ]

2

σt
ij

2 ,

(3)

where the first item shows the speed’s periodicity, and the

second item indicates the correlation with other roads.

Notice that the road network is a flow system, where traffic

condition of each road is determined by the status of itself and

its direct-adjacent neighbors. Thus, given traffic speeds of ri’s
direct neighbors, vti is conditionally independent with vtj iff.

ri and rj are non-adjacent, which makes Eq. (3) simplified as:

L(vti | V t
R\{ri}) = L(vti | V t

n(ri))

= − (v
t
i − μt

i)
2

σt
i
2 −

∑
V t
n(ri)

[(vti − vtj)− μt
ij ]

2

σt
ij

2 ,
(4)

where n(ri) denotes the adjacent roads of ri. In fact, similar

operations are common in semi-supervised learning[25], [26],

where structural information (i.e., correlations between ver-

texes) are utilized without introducing unnecessary parameters.

As each day has been divided into T time slots, a series of

graphical models Gt (t ∈ 1, · · · , T ) are combined together

to represent the realtime traffic speed field (RTF). There

are two attributes associated with Gt: V t
R and P t

E , where

V t
R = {vti | ri ∈ R} denotes the realtime traffic speeds for

all roads and P t
E = {ρtij | eij ∈ E} represents the correlation

coefficients for all pairs of adjacent roads. In addition, there

are two auxiliary variables for each vti : μt
i and σt

i , which

represents the expectation and variance of the realtime traffic

speed, respectively. Based on Eq. (4), the joint likelihood of

Gt can be presented as follows:

LGt = −
∑

V t
R

(
(vti − μt

i)
2

σt
i
2 +

∑
V t
n(ri)

[(vti − vtj)− μt
ij ]

2

σt
ij

2 ). (5)

Remark 1. (Physical Meaning of RTF) The physic meaning

of RTF is two-fold. On one hand, the graph-based RTF

follows the same topological structure of the traffic network,

as each vertex (or edge) of RTF corresponds to one unique

road (or roads-adjacency) of the traffic network. On the other

hand, both periodicity and correlation of the traffic speed are

encoded within RTF. Firstly, the parameter μt
i captures the

expected speed of road ri within time slot t and the “intensity”

of periodicity is reflected in the parameter σt
i . If the value of σt

i

is small, it indicates that the traffic speed of ri is stable within

the time slot t, thus, the expected speed μt
i will be an effective

approximation of vti . Otherwise, it won’t be appropriate to

approximate vti with μt
i. Secondly, the value of ρtij represents

the “strength” of correlation: a larger value of ρtij means a

closer correlation between the realtime traffic speed of road

ri and rj . Therefore, the speed of one road can be effectively

inferred with the knowledge of the other one.

B. Parameter Inference

In RTF, there are three sets of parameters to be inferred for

the graph G, the expectations of V t
R: M = {μt

i |ri ∈ R, t ∈ T},
the standard variances of V t

R: Ω = {σt
i | ri ∈ R, t ∈ T},

and the correlation coefficients between V t
R: P = {ρtij | eij ∈

E, t ∈ T}. Given the historical record of traffic speed (denoted

as H), the parameter inference is conducted so that the joint

likelihood LG can be maximized accordingly:

max
M,Ω,P

LG(M,Ω,P|H). (6)
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Algorithm 1: Parameter Inference

input : H, λ
output: M, Ω, P

1 begin
2 Initialize: M, Ω, P ← small random values;

3 while Not covnverge do
4 for μt

i ∈ M do
5 μt

i ← μt
i + λ∂LG

∂μt
i

;

6 for σt
i ∈ Ω do

7 σt
i ← σt

i + λ∂LG

∂σt
i

;

8 for ρtij ∈ P do
9 ρtij ← ρtij + λ∂LG

∂ρt
ij

;

10 Return M, Ω, P;

To achieve the maximization, partial derivatives of Eq. (6), i.e.,
∂LG

∂μt
i

, ∂LG

∂σt
i

and ∂LG

∂ρt
ij

, are firstly calculated w.r.t. each of the

parameters, based on which cyclic coordinate descent (CCD)

[27] approach is adopted for optimization. To be specific, the

parameters of M, Ω, and P are updated in a sequential manner:

for each x ∈ X , where X = M∪Ω∪P, the following gradient

ascension is conducted: x ← x + λ∂LG

∂x , where λ is the step

size. During each iteration, only one parameter is selected to be

updated, with the rest parameters (X/x) remained unchanged.

The updating process is repetitively carried out until the

convergence threshold (or the maximum number of iterations)

is reached. The whole process of the parameter inference is

summarized as Alg. 1.

Time Efficiency of Parameter Inference. The convergence

of Alg. 1 has been discussed in [27], and it is clear that the

time complexity of each update iteration is O(|R|2), where

|R| is the total number of roads within the traffic network.

Denoting the maximum converging iteration with a constant

Cv , the overall complexity of Alg. 1 turns out to be O(Cv|R|2).
V. OPTIMAL CROWDSOURCED ROADS SELECTION

In this section, we will first discuss the criteria for crowd

(crowdsourced roads) selection and then provide the formal

formulation of optimal crowd selection (OCS). A hybrid

greedy-based algorithm is further developed, which can find

the near-optimal solution for OCS within polynomial running

time and the approximation ratio is strictly above (1− 1
e )/2.

A. Formulation of OCS

Given a set of queried roads, we need to consider two

significant factors during the selection of crowdsourced roads:

the periodicity of queried roads and the correlation between

the crowdsourced and queried roads. As explained in Remark
1, the road speed with strong periodicity can be effectively pre-

dicted with historical data, while those with weak periodicity

need additional assistances and should be emphasized during

OCS; as a closer correlation can benefit the speed inference

between two roads, it is preferable that the correlation between

the crowdsourced and queried roads can be maximized. Apart

from these two desirable factors, the formulation of OCS

also needs to meet the following two constraints: regarding

to the limited budget, the selection of crowdsourced roads

should satisfy the feasibility requirement; the redundancy
among crowdsourced roads (the internal correlation between

the crowdsourced roads) should be restricted for the sake

of efficiency. In the following, we will give the detailed

formulations of these factors and constraints.

Correlation. Here a general correlation is defined for three

different scenarios: road-road, road-set and set-set.
The road-road correlation covers two cases: two roads are

adjacent or non-adjacent. As mentioned above, given the RTF

model, the road-road correlation between two adjacent roads,

ri and ri′ , can be measured with the edge weight. Specifically,

corrt(ri, ri′) = ρtii′ , iff. eii′ ∈ E. (7)

For two non-adjacent roads ri and rj , the road-road correlation

between them is measured with the maximal cumulative

product of the edge weights along their joining paths:

corrt(ri, rj) = max
φij∈Φij

{
∏

ekl∈φij

ρtkl}, (8)

where Φij is the universal set of joining paths between ri and

rj . Let φ∗
ij denotes the path which leads to the optimization of

Eq. (8), and it is straightforward to verify that φ∗
ij also satisfies

the following relationship:

φ∗
ij = argmin{

∑
ekl∈φij

1/ρtkl | ∀ φij ∈ Φij}. (9)

In other words, φ∗
ij gives rise to the shortest path between ri

and rj by converting the original edge weights to their recip-

rocals (i.e., 1/ρtij). With φ∗
ij found using Dijkstra’s Algorithm,

Eq. (8) can be re-written as:

corrt(ri, rj) =
∏

ekl∈φ∗
ij

ρtkl. (10)

The correlation calculation between each pair of roads is

performed offline, whose result ΓR ({corrt(ri, rj) | ∀ ri, rj ∈
R, t ∈ T}) can be directly accessed when necessary.

The road-set correlation, which measures the correlation

between a road (e.g., ri) and a set of roads (e.g., Rc), is defined

as the maximum road-road correlation between them:

corrt(ri, R
c) = max{corrt(ri, rj) | rj ∈ Rc}. (11)

The set-set correlation is proposed to indicate relationship

between the queried roads Rq and the crowdsourced roads

Rc. Specifically, it is defined as the summation of road-set

correlation for roads in Rq given Rc:

corrt(Rq, Rc) =
∑

ri∈Rq
corrt(ri, R

c). (12)

Periodicity-weighted Correlation. As discussed in last

section, the intensity of periodicity for each road is different

and reflected in the parameter of standard variance σt
i . For

a road with weak periodicity (i.e., the value of σt
i is large),

the expected speed μt
i cannot approximate the ground-truth of

realtime traffic speed well. In this case, we need to rely more

on the crowdsourced data to make a quality inference for the
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Algorithm 2: Ratio Greedy

input : Rq , Rw, ΓR, Ω, K, θ
output: Rc

1 begin
2 Initialize: Rc ← ∅, budget← K,

feasible set ← {ri|ci ≤ K, ri ∈ Rw};
3 while feasible set �= ∅ do
4 r∗ = argmax{ratio(r, Rc)| feasible set };
5 Rc ← Rc + r∗, budget ← budget− cr∗ ,

feasible set ← {ri|ci ≤ budget,
ri∈Rw/Rc, corrt(ri, R

c)≤θ};

6 Return Rc;

traffic speed. Considering that the crowdsourcing resource is

limited by the given budget, higher priority should be placed to

those roads with weak periodicity during crowdsourced roads

selection. As such, we propose to incorporate the intensity of

periodicity and the strength of correlation simultaneously dur-

ing OCS, by introducing the periodicity-weighted correlation,

which is defined as:

ĉorr(Rq, Rc) =
∑

ri∈Rq
σt
i ∗ corrt(ri, Rc), (13)

where σt
i is the intensity of periodicity for ri and corrt(ri, R

c)
refers to the correlation with crowdsourced roads. In this work,

to maximize ĉorr(Rq, Rc) becomes the objective of OCS.

Apparently, the maximization of ĉorr(Rq, Rc) will not only

maximize the correlation between Rq and Rc, but emphasize

more on the queried roads with weaker periodicity as well.

Feasibility. During the crowdsourced roads selection, there

are two feasibility constraints that must be satisfied. Firstly,

the crowdsourced roads have to be selected from the roads

where workers are currently distributed (denoted as Rw), i.e.,

Rc ⊆ Rw; Secondly, the scale of selected crowdsourced

roads must be restricted to the limited budget. In real world

applications, one single answer may not reflect the ground-

truth of realtime traffic speed on the corresponding road. To

obtain a more accurate result, multiple answers are required

to be collected and integrated for each crowdsourced road.

In this work, for each candidate road, the minimum number

of its required answers is referred as cost. Suppose that each

answer will be rewarded with one unit of payment. Given the

maximum payment K, the budget constraint can be presented

as :
∑

ri∈Rc ci ≤ K, where ci is the cost of road ri and K
denotes the total budget.

It is notable that the road cost value can be distinct with

each other. For example, vehicles on the highway are normally

traveling with a constant speed, while those on the secondary

road may experience more significant speed fluctuations. As

a result, the crowd’s answers for the highway tend to be

more stable and accurate, which leads to a smaller road cost.

Moreover, many existing approaches (e.g. [28], [29]) can be

adopted to determine the cost of each road, which estimate

the exact value from the historical answers of crowd.

Redundancy. The redundancy is introduced to evaluate the

internal correlation within Rc. Specifically, given two roads

ri and rj (ri, rj ∈ Rc), the redundancy between them is

Algorithm 3: Objective Greedy

input : Rq , Rw, ΓR, Ω, K, θ
output: Rc

1 begin
2 Initialize: Rc ← ∅, budget← K,

feasible set ← {ri|ci ≤ K, ri ∈ Rw};
3 while feasible set �= ∅ do
4 r∗ = argmax{ocs(Rc + r)− ocs(Rc)| feasible set };
5 Rc ← Rc + r∗, budget ← budget− cr∗ ,

feasible set ← {ri|ci ≤ budget,
ri∈Rw/Rc, corrt(ri, R

c)≤θ};

6 Return Rc;

measured with road-road correlation corrt(ri, rj). Clearly, it

is unnecessary to select two highly-correlated roads from Rc

at the same time, since one road’s realtime traffic speed can

be well inferred with the knowledge of the other’s. To prevent

the kind of ineffective selection, the following constraint is

enforced for each pair of crowdsourced roads:

corrt(ri, rj) ≤ θ, ∀ ri, rj ∈ Rc, (14)

where θ (0< θ <1) is the threshold of redundancy. A smaller

value of θ can bring a stronger restriction on the redundancy,

while this may narrow down the feasible candidates of Rc and

lead to some adverse impacts on the objective optimization. As

such, an optimal setting of θ is necessary for the crowdsourced

road selection, which can be appropriately tuned through the

exploration of historical data [30].

Optimal Crowdsourced Roads Selection. As the desirable

factors (periodicity and correlation) have been encoded into

the periodicity-weighted correlation, the objective of optimal

crowd selection is to maximize ĉorr(Rq, Rc). Together with

the feasibility and redundancy constraints, the formulation of

OCS is given as follows:

max ĉorr(Rq, Rc)

s.t. Rc ⊆ Rw,
∑

ri∈Rc
ci ≤ K,

corrt(ri, rj) ≤ θ, ∀ ri, rj ∈ Rc.

(15)

Remark 2. (Trivial Cases of OCS) Notice that when θ = 1
and cr = 1, ∀r ∈ R, there will be two cases where the optimal

solution of OCS is trivial to get. The first case happens when

| Rw| < K, which means the budget is over-adequate so that all

candidate roads Rw can be selected. In this case, the optimal

solution turns out to be: Rc∗ = Rw. The second trivial case

appears when |Rq| < K. In this case, it’s easy to verify that the

optimal solution is produced by selecting the highest correlated

roads for each of the queried ones, which is presented as the

following expression:

Rc∗ =
⋃
{argmaxRw{corrt(ri, rj) | ri ∈ Rq}}.

While solving OCS, we will exclude the trivial cases from

discussion. In this situation, the hardness of OCS is presented

by the following theorem.

Theorem 1: The OCS problem is NP-hard.

Proof: The NP-hardness of OCS is demonstrated by its

reduction to the Maximum k-Coverage (MKC) problem. The
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Algorithm 4: Hybrid Greedy

input : Rq , Rw, ΓR, Ω, K, θ
output: Rc

1 begin
2 Rc

ratio ← answer of Ratio-Greedy;
3 Rc

obj ← answer of Ratio-Objective;
4 Rc = argmax{ocs(Rc

x)|Rc
x ∈ {Rc

ratio, R
c
obj}};

5 Return Rc;

MKC is NP-hard, whose formulation is presented as follows.

Suppose we a set of elements: X = {x1, ..., xn}, and the

set coverage relationship: S = {s1, ..., sm}, which is defined

over the domain of X (i.e. xi ∈ sj iff. xi is covered by

sj). The MKC problem is to find the optimal subset S′

(S′ ⊂ S), which covers the maximum number of elements

subject to the condition that |S′| ≤ k. Now, we specify

the following instance of OCS: 1) let θ = 1, k = K and

cr = 1, ∀r ∈ R; 2) let corrt(xi, sj) = 1 iff. sj covers xi,

otherwise corrt(xi, sj) = 0; 3) let σt
i = 1, ∀xi∈X and t∈T .

Clearly, the optimal solution of the above OCS problem also

leads to the optimization of the corresponding MKC problem.

Hence, OCS can be regarded as a generalization of MKC,

which justifies the claim of Theorem 1.

B. Solution of OCS

In this part, we firstly propose a greedy-based approach,

namely Ratio-Greedy, which solves OCS in linear time, but

performs poorly for the worst case. Then, Ratio-Greedy is

adapted to a hybrid solution, a.k.a. Hybrid-Greedy, which not

only preserves the property of linear time complexity, but

achieves a constant approximation ratio ((1− 1
e )/2) as well.

Ratio-Greedy. The Ratio-Greedy solves OCS in an iterative

manner,and initially, Rc is set to be an empty set: Rc ← ∅.
To select the crowdsourced roads which produce large ob-

jective value of OCS, both the objective increment induced

by a candidate road and the corresponding cost have to be

considered. To capture both aspects, the objective-cost ratio

of a non-included road is defined as:

ratio(ri, R
c) = (ocs(Rc + ri)− ocs(Rc))/ci, ri ∈ Rw/Rc,

where Rc is the currently selected crowdsourced roads and

ocs(Rc) is the objective value of Rc. With such a defini-

tion, Ratio-Greedy selects the next crowdsourced road from

the non-included ones (i.e., Rw/Rc), which maximizes the

objective-cost ratio and satisfies the feasibility requirement

simultaneously in each iteration:

r∗ = argmax{ratio(r,Rc)|(Rc + r) is feasible}.
The selected road r∗ will be added to the current solution:

Rc ← Rc + r∗, and such an operation will be repetitively

conducted until no more feasible candidates can be included.

The whole process of Ratio-Greedy is summarized as Alg. 2.

It is clear that Alg. 2 converges within no more than K
iterations, and each iteration takes O(|feasible-set|) (which is

less than O(|Rw|)) time to find the best candidate to include.

Hence, the overall time complexity is O(K|Rw|). The major

space cost of Alg. 2 is induced by feasible-set, which is

bounded by O(|Rw|). Both aspects are linear in terms of |Rw|.
Although Ratio-Greedy solves OCS with economic running

time, its solution can be arbitrary bad for the worst case. Such

a property is demonstrated by the following example.

Example 1: (Worst Case Analysis of Ratio-Greedy) Sup-

pose there are two candidate roads: r1 and r2 (i.e., Rw=

{r1, r2}), whose cost equal to 1 and K (suppose K>1),

respectively. Besides, there is one queried road r3 (i.e.,

RQ={r3}), and periodicity-weighted correlation are set to be:

ĉorr({r3}, {r1})=1, ĉorr({r3}, {r2})=K-1. Assume that θ=1

(which means the redundancy requirement will always be

satisfied), and the total budget is set to be K. For such a

problem, Ratio-Greedy will produces the solution: Rc={r1},
which leads to an objective value of 1. However, the optimal

solution should be Rc={r2}, which gives a objective value of

K (since K>1). As such, the approximation ratio of Ratio-

Greedy is 1/K, which will be arbitrary small when K is large.

Hybrid-Greedy. To achieve constant approximation ratio,

the Hybrid-Greedy algorithm is developed, which incorpo-

rates two different greedy solutions: the Ratio-Greedy and

Objective-Greedy to produce its answer. The process of Ratio-

Greedy is the same as our previous discussion, while the

Objective-Greedy is presented as follows.

Similar with Ratio-Greedy, Objective-Greedy also employs

an iterative approach to generate its solution. However,

for each iteration, Objective-Greedy picks the non-included

crowdsourced road, which maximizes the objective increment,

into the current selection of Rc. Specifically,

r∗ = argmax{ocs(Rc + r)− ocs(r)|(Rc + r) is feasible}.
The selected r∗ is included to Rc, and the selection is

repetitively conducted until no feasible roads can be added.

The process of Ratio-Greedy is summarized as Alg. 3.

Finally, the Hybrid-Greedy conducts both Ratio-Greedy and

Objective-Greedy separately, and the solution with higher

objective value is selected to be its answer.

It is obvious that both Ratio-Objective and Objective-

Greedy take the same time complexity: O(K|Rw|), thus, the

overall time complexity of Hybrid-Greedy is O(K|Rw|) as

well. Besides, it’s easy to verify that Objective-Greedy takes

the same space complexity as Ratio-Greedy, hence, the space

complexity of Hybrid-Greedy is O(Rw).

The solution of Hybrid-Greedy achieves a constant ap-

proximation ratio w.r.t. the optimal value. Such a property is

presented as the following theorem.

Theorem 2: Hybrid-Greedy achieves an approximation ra-

tio of (1− 1
e )/2.

Proof: The performance of Greedy-Ratio is analyzed in

the first place. Suppose Rc is selected in l iterations, and

the temporary result of the kth iteration is denoted as: Rc
k

(k=1,...,l). Because Rc is generated through Ratio-Greedy

selection, the following inequality can be easily deduced:

ocs(Rc∗)− ocs(Rc
k−1) ≤ ocs(Rc∗/Rc

k−1)

≤ K ∗ (ocs(Rc
k)− ocs(Rc

k−1))/ck
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Algorithm 5: Graph-based Speed Propagation

input : V̂Rc , Gt, ε
output: V t

R

1 begin
2 Initialize: V t

Rc ← V̂Rs ;
3 Sorting: {V1, ..., VL} ← BFT(V t

R\Rc , V t
Rc);

4 while Not converge do
5 for l = 1, ... , L do
6 for vti ∈ Vl do
7 vti ← vt∗i ;

8 Return V t
R;

where Rc∗ is the optimal solution and ck is the cost of the

road included in the kth iteration. Based on such an inequality,

the following conclusion can be verified through induction:

ocs(Rc
l ) ≥ [1−

∏l

k=1
(1− ck/K)] ∗ ocs(Rc∗).

Now assume it’s possible to take one more road rcl+1 into Rc

through Ratio-Greedy (which produces Rc
l+1←Rc

l +rcl+1), the

following inequality will be induced:

ocs(Rc
l+1) ≥ [1−

∏l+1

k=1
(1− ck/K)] ∗ ocs(Rc∗)

≥ [1−
∏l+1

k=1
(1− ck/c(R

c
l+1))] ∗ ocs(Rc∗),

where c(Rc
l+1) =

∑
k ck. Clearly, the minimum value for last

expression of the above inequality is achieved when ck=�K/l,
k=1, ..., l, thus leading to the following inequality:

(1− 1/e)ocs(Rc∗) ≤ ocs(Rc
l+1) ≤ ocs(Rc) + ocs({rcl+1}).

Now we turn our focus back to Hybrid-Greedy. Because

Objective-Greedy generates its answer Rc′ by selecting the

candidate roads w.r.t. the descending order of the objective

growth, and Hybrid-Greedy picks the winner of Rc and R′
c as

its final answer, the following relationship can be deduced:

max{ocs(Rc), ocs(Rc′)} ≥ (ocs(Rc) + ocs(Rc′)/2

≥ ocs(Rc) + ocs({rcl+1})/2 ≥ ocs(Rc∗) ∗ (1− 1/e)/2,

which justifies the claim of Theorem 2.

VI. GRAPH-BASED SPEED PROPAGATION

With the realtime traffic speed probed for the crowdsourced

roads, the speed propagation is conducted on top of RTF,

which infers the realtime traffic speed of the whole traffic

network. As such, the RTSE is produced for the queried roads.

The speed propagation consists of two steps: the initialization

and the iterative update, which are presented as follows.
Initialization. Given the crowdsourced realtime traffic

speed (denoted as V̂Rc ), the variables of V t
Rc are updated firstly

according to the crowdsourced data, and at the same time, the

variables of V t
R\Rc are initialized with their mean values:

vti = v̂i, ∀ri ∈ Rc; vtj = μt
j , ∀rj ∈ R \Rc.

The crowdsourced data reveals the current status of the traffic

network, based on which the realtime traffic speed of all the

rest of roads (i.e. R \ Rc) is adjusted accordingly. To find

���� ���� road cost K �

Semi-syn 607 33, 51 1~5, 1~10 30~150 0.92, 1

gMission 30 50 1~10 10~50 0.92

TABLE II: Datasets’ Statics

the most likely speed for these roads, the following likelihood

maximization is derived w.r.t. the RTF model (Gt):

max LGt(V t
R\Rc | V t

Rc = V̂Rc). (16)

Iterative Update. According to Eq. (4), it’s easy to verify

that Eq. (16) is a non-convex function w.r.t. the variables

of V t
R. Therefore, an EM-based approach: iterative update, is

employed to achieve the maximization of Eq. (16). To be

specific, the maximization is carried out iteratively, and for

each iteration one single variable of V t
Rc (e.g., vti ) is selected,

which maximizes LGt with all other variables being fixed:

maxLGt(vti |V t
R/v

t
i) (17)

Let the partial derivative of LGt equal to 0: ∂LGt/∂vti = 0,

the value of vti can be optimal updated as:

vt∗i ← (
μt
i

σt
i
2+

∑
V t
n(ri)

(vtj + μt
ij)

σt
ij

2 )/(
1

σt
i
2+

∑
V t
n(ri)

1

σt
ij

2 ). (18)

Based on Eq. (18), the update of vti (ri ∈ R \ Rc) is

only triggered by the value changes of its adjacent variables.

In other words, if vti has no adjacent variables change their

values, it will remain its initialized value μt
i (which can be

easily verified with Eq. (18)). Therefore, the iterative update

should be launched from the adjacent variables of Rc (denoted

as n(Rc)), and then progressively propagated to the rest.

To incorporate such a property, the update sequence of the

all the variables is scheduled w.r.t. the hop-count towards

V t
Rc . Specifically, the variables of V t

R\Rc are sorted with the

ascending order of their minimum hop-count towards V t
Rc ,

and the update process is carried out according to the sorted

order. The iterative update has to be repetitively conducted,

and the convergence is reached iff. the value changes of all

the variables are lower than a predefined small number “ε”.

The workflow of speed propagation is presented as Alg

5. Before the iterative update is launched, the variables of

V t
Rc are partitioned into {V1, ..., VL} through BFS (breadth-

first-search) w.r.t. V t
Rc . Obviously, the variables within the

same partitioned group have the same hop-count towards V t
Rc ,

therefore, they are put to the same update loop.

Time Efficiency of GSP. Given a fixed threshold ε, it can be

proved that Alg. 5 converges with constant number (denoted

as Λ) of iterations. As such, the overall time complexity

for Alg. 5 is O(Λ|R \ Rs|). Besides, Alg. 5 can be easily

parallelized. According to Eq. (18), the calculation of vt∗i is

only determined by three types of parameters: the parameters

of vti : μt
i, σt

i , the values and parameters of vti ’s adjacent

variables: vtj , μt
ij , σt

ij , and the weights of vti ’s adjacent edges:

ρtij . Based on the conclusion of [31], the variables of vti and

vtj can be updated in a concurrent manner iff. 1) both vti and

vtj are within the same partitioned group Vl, 2) vti and vtj are

not adjacent to each other. Such a parallelization will lead
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to further reduction of running time, which contributes to the

realtime computation of RTSE.

VII. EXPERIMENTAL STUDY

A. Experiment Setup

The experiments are conducted for the traffic network of

Hong Kong, whose realtime traffic speed is published by the

Public Sector Information Portal of Hong Kong SAR1. The

realtime traffic speed is published every 5 minutes for the

road network in Hong Kong, where a total of 607 roads are

monitored. The data is continuously crawled for 3 consecutive

months, and 5244480 pieces of speed records are collected in

total. Such data is used for constructing the graphical model

RTF and provides the ground the truth for the evaluations.

Two datasets are tested for the evaluations. One is the semi-
synthesized dataset, where queried roads Rq are randomly se-

lected from R with uniform distribution, and crowd’s answers

are generated with the ground-truth speeds. In addition, work-

ers’ are assumed to cover all the tested roads, i.e., Rw = R.

The other one is the gMission dataset, which is collected

from gMission2 gMission is research-based general spatial

crowdsourcing system, which is able to provide the workers’

localization information. To perform realtime traffic speed

detection, a worker simply needs to activate the localization

option and the traveling speed can be calculated within a short

period of time. To ensure correlation between the queried and

crowdsourced roads, a mutually connected subcomponent of

R is selected as Rq , and workers are asked to travel along

such roads; as such, Rw ⊂ Rq . Finally, the roads’ costs

are generated synthetically for both datasets with uniform

distributions. Although road-length or travel cost would be

more meaningful choices in practice, such kinds of auxiliary

information are not included in our experimental data. Thus,

we adopt the randomized costs which will not affect the

correctness of evaluation.

Statistics for both semi-synthesized and gMission datasets

are shown in Table II.

B. Evaluation of OCS

1) Evaluated Methods and Metrics: We jointly evaluate

three candidate solutions for OCS: Hybrid-Greedy (Hybrid),

Ratio-Greedy (Ratio) and Objective-Greedy (OBJ). The com-

parison is carried out w.r.t. two aspects: the objective value of

OCS (VO), and the overall running time (ORT).

2) Experiment Results and Analysis: Figure 2 (a) and (b)

demonstrate the relationship between VO and the varying bud-

get. To highlight the different performance of each algorithm,

the VO’s ratios of Ratio-Greedy/Hybrid-Greedy and Objective-

Greedy/Hybrid-Greedy are shown in Figure 2 (c) and (d). In

(a) and (c), the roads’ costs are randomly generated within C1,

while in (b) and (d), the roads’ costs are randomized within

C2. There is no obvious difference between different setting

of θ, so the results are only reported for θ = 0.92 due to the

space limitation.

1https://data.gov.hk/en/
2http://www.gmissionhkust.com/.

(a)

(c)

(b)

(d)
Fig. 2: Evaluation of OCS

Effect of budget. In both Figure 2 (a) and (b), VO

monotonously grows with the incrementation of budget, and

the monotonicity can easily be verified from the process of

Alg. 2, 3 and 4. Besides, in every testing case, Hybrid-

Greedy produces the highest VO, as Hybrid-Greedy takes the

winner of Ratio-Greedy and Objective-Greedy as its output.

Moreover, the VO of both Ratio-Greedy and Objective-Greedy

are lower than that of Hybrid-Greedy when budget is small,

but Ratio-Greedy produces the same VO as Hybrid-Greedy

when budget is large enough. Such a phenomenon can be

explained as follows. Suppose Rc
rat and Rc

obj are the roads

selected by Ratio-Greedy and Objective-Greedy, respectively.

If ocs(Rc
rat) < ocs(Rc

obj), then there must exist two ele-

ments rx (rx ∈ Rc
rat) and ry (ry ∈ Rc

obj), which satisfy:

ocs(Rc
rat/rx+ry) < ocs(Rc

rat), and it can be further inferred

that cost(Rc
rat/rx) + cy > K. Whereas, if budget K is

increased to cost(Rc
rat/rx) + cy , rx can be replaced by ry:

Rc
rat←Rc

rat/rx + ry . When K is large enough, it can be

guaranteed that no elements rx ∈ Rc
rat and ry ∈ Rc

obj will

satisfy ocs(Rc
rat/rx + ry) < ocs(Rc

rat).
Effect of roads’ costs. Comparatively speaking, the differ-

ence between Hybrid-Greedy and Ratio-Greedy is larger when

the roads’ costs are generated from C1. Such a phenomenon

can be further explained based on our discussion in the last

paragraph. If ocs(Rc
rat) < ocs(Rc

obj), the elements rx and ry
must satisfy the conditions that: 1) rx ∈ Rc

rat and ry ∈ Rc
obj ,

2) ocs(Rc
rat/rx + ry) < ocs(Rc

rat), 3) cost(Rc
rat/rx) + cy >

K. Given the fact that cost(Rc
rat/rx) + cx ≤ K, if costs

of different roads are similar, the probability for occurrence

of such elements (rx and ry) will be small. On the contrary,

when costs of roads are randomized in a larger range C1, costs

between different roads will be less similar, which makes the

phenomenon more obvious.
Scalability. The running time of the evaluated algorithms

is demonstrated in Figure 4 (a), where the roads’ costs are

generated within C1. (Similar observations can be found for

the setting of C2.) According to the results, the running time

for all the algorithms grows linearly with the incrementation of

budget. When budget reaches the maximum number, the most
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Fig. 3: Evaluation of GSP

time-consuming algorithm, Hybrid-Greedy, can still return the

answer within one second, which verifies its scalability and

efficiency in terms of running time.

C. Evaluation of GSP

1) Evaluated Methods and Metrics: Three baseline meth-

ods are selected to compare with the Graph-based Speed Prop-

agation (GSP), which is proposed in this work. In particular,

LASSO Regression (LASSO, [32]) and Graph Regularized

Matrix Completion (GRMC, [33], [16]) are employed3, which

purely depend on traffic speeds’ correlation to make their esti-

mation. Both methods are popular representatives of realtime

traffic speed estimation, thanks to their effectiveness of dealing

with over-fitting and data sparsity. Besides, Per is adopted,

which purely relies on the periodicity and provides the periodic

traffic speeds as its estimation.

The comparison is conducted from four aspects: the mean

absolute percentage error (MAPE), the false estimation rate

(FER), the distribution of absolute percentage error (DAPE),

and overall running time. Specifically, the absolute percentage

error (APE) is defined as ratio between the absolute estimation

error and the ground truth: |ŷ−y|/y, where ŷ is the estimated

value and y is the ground truth. The MAPE shows the average

absolute percentage error of all the testing cases, and the

DAPE demonstrates the testing cases’ distribution over APE.

In addition, a testing case is determined to be a false estimation

iff. its APE exceeds a predefined threshold ϕ (ϕ=0.2 in our

experiments), and FER calculates the rate of false estimation

for all the testing cases.

2) Experiment Results and Analysis: The experiment re-

sults are demonstrated in Figure 4, where the 1st, 2nd and 3r

3LASSO and GRMC’s parameters, L1-regularization and latent-dimension, are tuned
within 0∼0.5 and 5∼20, respectively; and set to be 0.1 and 10 for the best performances.

rows show the results of MAPE, FER, and DAPE, respectively

(due to the limitation of space, DAPE is only demonstrated

for cases whose budgets equal to 30). Columns a, b and c

show the results whose crowdsourced roads are selected by

Hybrid-Greedy, Objective-Greedy and Randomization; column

d demonstrates comparisons of different crowdsourced roads

selections, and column e indicates the effect of different θ.

Effect of different estimation methods. From the results

of first three columns, the following phenomenons can be

observed: in most of the testing cases, the best performances

are generated by GSP; besides, the advantage of GSP is

most clear when budget equals to the minimum value 30, as

both of its MAPE and FER are significantly lower than the

others, and most of its estimation errors (APE) are closely

distributed to zero (which is captured by DAPE). Although

the performance of LASSO is comparable to GSP in terms

of MAPE when budget is large enough, there still exists clear

gap in the aspect of FER. The above phenomenons can be

summarized into the following points: firstly, GSP is able to

produce high quality speed estimation, which is comparatively

more effective with small budget. Secondly, GSP is more

effective in preventing the false estimation from happening.

Such findings are in accord with our previous discussion about

GSP, and can be clearly justified by the following explanations.

First, GSP jointly takes advantage of the periodicity and

correlation of traffic speeds, while others simply uses one of

such properties. When the realtime probed data is sparse, GSP

is more capable of producing accurate estimation because of

its sufficient exploitation of historical data. Second, the road

network is sparsely connected and one road may be only

closely correlated to very few number of other roads. In this

situation, it is almost impossible to eliminate the occurrence

over-fitting ([34], [35]), which inevitably leads to frequent
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30 60 90 120 150

OBJ 24 / 38 39 / 58 65 / 79 73 / 99 91 / 106

Rand 20 / 32 33 / 51 48 / 72 62 / 92 72 / 108

Hybrid 33 / 43 49 / 68 76 / 94 93 / 109 115 / 126

TABLE III: 1-hop and 2-hop Coverages of the Queried Roads.

(a) (b)
Fig. 4: Overall Running Time

false estimation even the budget is large.

Effect of budget size. In columns a, b and c of Figure

3, it can also be observed that stepwise improvement of

GSP’s estimation quality is large when budget is small, and it

becomes increasingly smaller with the growth of budget. Such

a tendency becomes more obvious when the crowdsourced

roads are selected by Hybrid-Greedy. A possible explanation

about this phenomenon is made as follows. As discussed

previously, some roads may have weak periodicity and it is

hard to estimate their realtime traffic speed without the help of

crowdsourced data, while others may have strong periodicity

whose traffic speed can be accurately estimated with little help

of crowdsourced data. (As such, it is reasonable to assume

that most of the estimation errors are resulted from the weak-

periodic roads.) Since the number of weak-periodic roads is

limited, and in Hybrid-Greedy, the crowdsourced roads are

selected for them with higher priority, the estimation errors

caused by such roads will be quickly reduced in the early

stage. That is why the reduction rates of MAPE and FER are

comparatively larger for the smaller budgets.

Effect of crowdsourced roads selection. The performance

of GSP is further studied with comparisons between different

crowdsourced roads selections, whose results are shown in

Figure 3 d1, d2 and d3. In addition, 1-hop and 2-hop Cover-

ages of the queried roads, i.e., roads of Rq covered by 1-hop

and 2-hop neighborhoods of Rc, are explicitly shown in Table

III. It is observed that the adoption of Hybrid-Greedy clearly

improves the estimation quality; meanwhile, more queried

roads can be covered by neighbors of the crowdsourced roads.

Such a finding is consistent with our previous evaluation of

OCS in Figure 2, which reflects that Hybrid-Greedy effectively

identifies the roads contributing the most to realtime traffic

speed estimation; whereby, the estimation quality is signifi-

cantly improved especially when budget is limited.

Effect of redundancy threshold. The GSP performance

with different settings of redundancy threshold θ is demon-

strated in Figure 3 (e1), (e2) and (e3), where Theta(1) stands

for the setting of θ = 1 while Theta(∗) represents the fine-

tuned setting θ = 0.92. From the results, it can be observed

that the fine-tuned θ is able to improve the estimation quality

Fig. 5: Convergence of RTF Training.

when the budget is small. However, there is no clear difference

between both settings when budget is large enough. The

following explanation is given for such a phenomenon. When

budget is small, an appropriate setting of θ will resist the

selection of two highly correlated roads whose probed data

is redundant. In other words, the crowdsourced roads will be

able to provide more diversified information about the current

traffic status, which help to make more accurate estimation.

However, when budget is large, the crowdsourced roads can be

adequately selected for all the queried roads, and the diversity

of information is less crucial, thereby resulting in the similar

performances of both settings.

Scalability. The running time of LASSO, GRMC and GSP

is demonstrated in Figure 4 (b) (Per is omitted as its result

can be directed accessed from RTF). According to the results,

LASSO utilizes the smallest running time, as it simply requires

one step of matrix multiplication to get the result. Both

GRMC and GSP work iteratively, thus their overall running

time is clearly higher. However, the running time of GSP is

almost independent of the budget size (which is in accord

with the process of Alg. 5), and the estimation can always

be made within half a second. As such, the time efficiency

and scalability of GSP are justified. In addition, we also

demonstrate the scalability RTF’s offline training. Specifically,

subcomponents of 150 to 600 roads are selected from the

whole road network, with training convergences measured

in terms of {μ}R’s maximum gradient4. According to tested

result in Figure 5, it takes more iterations to train RTF for a

larger network. However, the growth of convergence is roughly

linear to the network size, which means training cost for large

networks will be tolerable in practice.

gMission Dataset. Results on gMission dataset is demon-

strated in Figure 6, where GSP, LASSO, GRMC and Per are

compared in terms of MAPE and FER, with crowdsourced

roads selected by Hybrid-Greedy. Despite comparative smaller

testing scales (compared with the semi-synthesized data), the

results show similar patterns to Figure 3 a1 and a2, where

the semi-synthesized data is tested, thus further verifying our

conclusions for the semi-synthesized data.

D. Experiment Summary

The findings of the experiments can be summarized with

the following points.

• The adoption of Hybrid-Greedy guarantees that the near-

optimal solution of OCS can always be obtained, and it is

especially crucial for the cases where the budget is small

and the roads’ costs are largely varied. Although the running

4vanilla gradient descent is employed, where λ is fixed to be 0.1; and each
iteration takes less than 100 ms on the testing machine.
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(a) (b)
Fig. 6: Evaluation of gMission data.

time of Hybrid-Grid is comparatively higher, the efficiency

and scalability are still feasible for real applications.

• The estimation quality is clearly improved by GSP, espe-

cially for the situations of small budgets. Besides, the effective

solution of OCS is equally important to estimation quality.

Moreover, with proper tuning of the redundancy threshold,

the estimation quality can be further improved.

VIII. CONCLUSION

In this paper, we propose a novel framework CrowdRTSE to

estimate the realtime traffic speed within sparse crowdsourced

data. To produce high-quality estimation, CrowdRTSE works

with a hybrid offline-online manner so that the historical data

and realtime crowdsourced data are jointly exploited. In the

offline stage, a graphical model RTF is constructed based on

the historical data, which effectively captures both periodicity

and correlation of the traffic speeds. In the online stage, the

crowdsourcing resources are judiciously allocated with OCS

and fine-grained realtime traffic speeds are produced with

GSP. Extensive experiments are conducted on both real and

synthetic datasets, which verify the effectiveness and efficiency

of our proposed methods.
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