
Adaptive Holding for Online Bottleneck Matching with Delays

Kaixin Wang* Cheng Long∗ Yongxin Tong† Jie Zhang∗ Yi Xu†

Abstract
Bipartite matching between two sets of objects is widely ap-
plied in many applications such as crowdsourcing market-
places, ride-hailing services and logistics. Depending on the
applications, different objectives have been proposed, result-
ing in different matching problems. Among them, one that is
recently proposed is online bottleneck matching with delays
(OBM-D), where the objective is to optimize the maximum
cost of matches and the cost of a match depends on when
the match is formed (i.e., it is delay-aware). Existing so-
lutions for OBM-D usually adopt a holding strategy, which
holds the objects involved in a match available for a period
so as to reduce the chance that a bad match is formed. Nev-
ertheless, existing holding strategies are all based on human-
crafted rules thus cannot adapt to the dynamics of how the
objects arrive. In this paper, we propose an adaptive hold-
ing strategy which is based on reinforcement learning and
develop a method called Adaptive-H on top of the new hold-
ing strategy. Besides, we prove theoretical results on how
good a randomized algorithm could achieve for the OBM-D
problem in terms of competitive ratio. We conduct extensive
experiments on both real and synthetic datasets to verify that
Adaptive-H outperforms existing algorithms in terms of both
effectiveness and efficiency.

1 Introduction
Bipartite matching (also called “assignment problem”) is a
process of assigning objects in one set to those in another
set, and those pairs of objects that are assigned to each other
constitute a matching. It is used in various emerging ap-
plications, ranging from ride hailing platforms (e.g., assign-
ing requests to drivers by Uber [1], Didi Chuxing [2] and
Grab [3]), to food delivery services (e.g., assigning orders to
couriers by Ele.me [4] and Grubhub [5]). In these applica-
tions, the objects to be matched usually arrive dynamically
in an online fashion. Correspondingly, the matching prob-
lem is called online bipartite matching, where the informa-
tion about the objects that would appear in the future is not
available at the time point when assigning objects.

Depending on the application scenarios, different ob-
jectives have been adopted for the online bipartite match-

*Nanyang Technological University, Singapore, {kaixin.wang, c.long,
zhangj}@ntu.edu.sg

†Beihang University, China, {yxtong, xuy}@buaa.edu.cn

ing problem [26, 40, 37, 39, 16, 42, 38, 17, 19]. More
recently, people studied an objective, which is to minimize
the maximum match cost (called bottleneck cost), where the
cost of a match relies on when it is formed (i.e., it is delay-
aware) [15, 30]. For example, when assigning a driver (resp.
courier) to a passenger (resp. customer), the cost would be-
come larger if the match is formed later since it means that
the passenger (resp. customer) needs to wait longer. The
corresponding matching problem is called online bottleneck
matching with delays (OBM-D). Specifically, given a set of
requests and workers, both arriving dynamically, the OBM-
D problem is to assign workers to serve requests such that
the maximum cost of a match is minimized, where the cost
of a match consists of (1) the amount of time the request in
a match has waited before the match is formed and (2) the
amount of time the worker needs to prepare before it serves
the request. In the OBM-D problem, the worst-case match
cost is optimized, implying that the match costs tend to be
closer to one another and thus forming a fairer matching.

Different from other matching objectives that are based
on some aggregation over individual matches, the objective
of OBM-D is determined by one (or a few) matches, i.e.,
those matches with the maximum/bottleneck cost. There-
fore, extra attention is needed to push the chance of forming
a bad match as low as possible. Existing algorithms usu-
ally adopt a holding strategy, which is to hold a match for
a certain period once it is formed. The intuition is that the
worker involved in the match may be required to cater for
another request which would be matched badly otherwise.
Existing algorithms implement the holding strategy differ-
ently [15, 30]. In [30], the strategy is to hold those matches
with costs among the bottom-k where k is a pre-specified pa-
rameter. The intuition is that while the costs of these matches
increase as time goes by, it is tolerable since they have their
costs among the bottom-k and the workers involved in them
could potentially be used to cater for future requests that
would be matched badly otherwise. This strategy relies on
a pre-specified parameter k, which would be fixed through-
out the execution of the algorithm. We call the algorithm
based on this holding strategy Fixed-H. In [15], the strategy
is to hold each match for a certain amount of time that de-
pends on the match (i.e., it is set to be equal to the amount
of time the worker in the match needs to prepare before it
serves the request in the match). This strategy does not re-
quire any user parameter and the amount of time for holding

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited235

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 2

02
.1

12
.1

29
.2

31
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



varies among the matches. We call the algorithm based on
this holding strategy Variable-H.

While the holding technique has been verified to work
effectively [30, 15], its benefits have not been fully un-
leashed. Specifically, for both Fixed-H and Variable-H, they
are based on human-crafted rules and cannot be adaptive to
the dynamics of how requests and workers arrive. For in-
stance, in the taxi service scenario, the dynamics of how
passengers make their orders are very different during rush
hours and non-rush hours. As shown in our experiments, the
performance of the algorithms based on these strategies is far
from the optimum. In addition, for Fixed-H, it requires users
to set a parameter, which is demanding especially when users
do not have experience on how to set it.

In this paper, we propose a new algorithm called
Adaptive-H for the OBM-D problem, which accumulates re-
quests and workers batch by batch and then performs (of-
fline) bottleneck matching within each batch. In addition,
Adaptive-H adopts a holding strategy for matches that have
been formed. Different from existing strategies, which are
based on human-crafted rules, the holding strategy is learned
via reinforcement learning (RL) so as to adapt to the dy-
namics of how requests and workers arrive. Specifically, we
regard the OBM-D problem as a sequential decision mak-
ing process, which is to periodically make a decision on (1)
whether it continues to wait for further requests and work-
ers and (2) and if not, which matches to hold (among those
that would be formed within the batch via offline bottleneck
matching). We then model the sequential decision making
process as a Markov Decision Process (MDP) and use a stan-
dard Q-learning method to learn a policy for the MDP. We
carefully design the MDP including states, actions and re-
wards such that the states capture critical information and
are cheap to compute, the action space is manageable and
does not incur heavy learning burden, and the rewards are
consistent with the goal of the original problem. We defer
further details of the RL-based method to Section 3.

In addition, we present theoretical results on the lower
bound of the competitive ratio of any randomized online
algorithm for the OBM-D problem, thus closing the gap that
no such results are known before. Specifically, we prove
that no randomized algorithms could provide a competitive
ratio better than n

2 , assuming that we have n requests and m
workers (m ≥ n). In summary, the main contributions of
this paper are as follows.

• We propose a reinforcement learning based algorithm
Adaptive-H for the OBM-D problem. Compared with
existing methods, Adaptive-H uses a new holding strat-
egy, which is data-driven but not based on human-
crafted rules.

• We present theoretical results on the lower bound of the
competitive ratio of any randomized online algorithm

for the OBM-D problem, which closes the gap that no
such results for the OBM-D problem are known before.

• We conduct extensive experiments on both real and syn-
thetic datasets to verify that Adaptive-H outperforms
existing algorithms in terms of both efficiency and ef-
fectiveness. For example, Adaptive-H improves the ef-
fectiveness by 32% - 35% and simultaneously runs 70-
90 times faster on the real datasets, compared with the
state-of-the-art Variable-H.

The remainder of the paper is organized as follows. We
first introduce the problem definition and theoretical results
in Section 2 and the Adaptive-H method in Section 3. We
then present the experiments in Section 4 and the related
work in Section 5. Finally, we conclude the paper with future
research directions in Section 6.

2 Problem and Preliminaries
2.1 Problem Definition The OBM-D problem was orig-
inally proposed in [15]. Here, we review the problem
definition and explain the rationale behind for being self-
contained. Let R (resp. W ) be a set of requests (resp. work-
ers) that arrive dynamically. For a request ri (resp. a worker
wj), we denote the time step it arrives by ri.t (resp. wj .t).

Suppose that we assign worker wj to request ri at time
t. We say that (ri, wj , t) is a match and ri and wj are
matched with each other at time t. We consider from the
request ri’s point of view the delay before it could be served.
First, request ri has already waited for (t − ri.t) amount of
time without being assigned with any worker. Second, in
many application scenarios, once a worker wj is assigned to
request ri, wj cannot start to serve ri immediately, instead,
wj needs to do some preparation before serving ri. For
example, in the taxi service application, once a taxi is
assigned to an order from a passenger, the taxi cannot serve
the passenger immediately but needs some time to move
from its current location to the passenger’s pick-up location.
We denote by t(ri, wj) the amount of time worker wj needs
to prepare before serving ri. In conclusion, for a match
a = (ri, wj , t), we define its cost, denoted by cost(a), to
be the amount of time ri waits till wj starts to serve ri, i.e.,

(2.1) cost(a) = (t− ri.t) + t(ri, wj)

The formal definition of OBM-D is given below.

DEFINITION 2.1. Given a set R of n requests and a set W
ofm workers, which arrive dynamically (n ≤ m), the online
bottleck matching with delays (OBM-D) problem [15] is to
form a set of n matches in an online manner such that the
maximum cost of a match is minimized, i.e., it finds

(2.2) M∗ ∈
{
M | argmin

M
max
a∈M

cost(a)
}

where M is a possible matching with n matches and M∗ is
one of the optimal solutions.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited236

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 2

02
.1

12
.1

29
.2

31
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



2.2 Theoretical Results In practice, we can only design
online algorithms for the OBM-D problem since the input
of the problem is exposed piece-by-piece without having the
entire input available from the start. The performance of an
online algorithm is usually measured by its competitive ratio.
Specifically, given an online algorithm A for the OBM-D
problem, the competitive ratio of A, denoted by cr(A), is
defined to be the greatest ratio between the objective value
of the solution returned byA and that of the optimal solution
for all possible instances of the OBM-D problem. That is,

(2.3) cr(A) = max
x∈X

E
[
obj(A(x))

]
obj(M∗(x))

where X is the set containing all possible instances of the
OBM-D problem, obj(A(x)) is the objective value of the
solution returned by algorithm A on a problem instance x,
E[·] denotes the expectation operator and caters for cases
where A is a randomized algorithm, and obj(M∗(x)) is
the objective value of the optimal solution on the problem
instance x. Note that in practice, M∗(x) for a problem
instance x is not achievable because it would rely on the
full knowledge of the problem input at the very beginning.
The lower the competitive ratio is, the better the algorithm
is. A common practice is to design an online algorithm with
competitive ratio as low as possible.

In [15], it is proved that for the OBM-D problem,
no deterministic algorithms can achieve a competitive ratio
better than n

ln 2 , but no results are known for randomized
algorithms. Since our RL-based method, i.e., Adaptive-H,
to be introduced in this paper, involves some randomness
(for computing states), we are interested in knowing what
the competitive ratio boundary that a randomized algorithm
might be able to achieve. The result is shown in the following
theorem (with the proof provided in a technical report [41]).

THEOREM 2.1. No randomized algorithm can achieve a
competitive ratio better than n

2 for the OBM-D problem with
n requests.

3 Reinforcement Learning Approach
In the OBM-D problem, the requests and workers arrive dy-
namically in an online fashion. We adopt an existing strategy
that we periodically (e.g., every 10 seconds) form a batch
containing all requests and workers that have arrived but not
been matched yet [30, 26, 27]. Different from those existing
solutions, which perform an (offline) matching within every
batch, we aim to achieve an adaptive solution that would for
each formed batch, take the context of the batch into account
and decide whether to perform a matching, and if so, further
decide among those matches that have been formed in the
batch, which to hold and correspondingly which to return as
firmed matches. Specifically, we regard the OBM-D prob-
lem as a sequential decision making process and model it as

a Markov decision process (MDP) [34] (Section 3.1), adopt
the standard Q-learning method [44] for learning an optimal
policy for the MDP (Section 3.2), and then develop an algo-
rithm called Adaptive-H, which uses the learned policy for
solving the OBM-D problem (Section 3.3).

3.1 The OBM-D Problem Modeled as a MDP We model
the OBM-D problem as a MDP, which consists of four
components, namely states, actions, transitions, and rewards
as defined as follows.

3.1.1 States Let t1, t2, ... be the time steps, at which we
form batches periodically. Let C be the gap between two
adjacent time steps, i.e., C = (tk+1 − tk), k ≥ 1, which
captures the frequency that we perform actions and is tunable
based on the applications. Let Bk be the batch of requests
and workers we form at time tk (k = 1, 2, ...) and R(Bk)
(resp. W (Bk)) be the set of requests (resp. workers) in Bk.

We denote the state at time tk as sk. Intuitively, state sk
should capture the critical information of batch Bk, which is
useful for deciding which action to take for Bk at time tk.
As will be introduced later, there are two actions, namely,
one to wait till the next time step tk+1, and the other is to
perform a matching within batch Bk at time tk. We identify
the following two types of information, which are critical
for deciding an action to take at state sk: (1) how long the
requests in batch Bk have waited for since they arrived by
time tk and (2) how long the workers in batch Bk need to
prepare for before they can serve the requests. They are
aligned with the two components of the cost of a match,
defined in Equation (2.1). Next, we explain how we capture
these two types of information one by one in detail.

To capture the first type of information of batch Bk, one
straightforward idea is to use the waiting times of all requests
in batch Bk starting at the time they arrived and ending at
time tk, but then it would result in a large state space making
the model hard to train. Instead, we use the longest waiting
time of a request, which we define as the time span of batch
Bk, denoted by θ(Bk), i.e.,

(3.4) θ(Bk) = max
ri∈R(Bk)

(tk − ri.t)

The rationale is that θ(Bk) has a much smaller space and
bounds the waiting times of all requests. A special case is
that there exist no requests in batch Bk, and in this case, we
define θ(Bk) to be 0.

To capture the second type of information of batch Bk,
a first attempt could be to use the amounts of time that the
workers need to prepare for the requests in batchBk, but then
again, this would result in a very large state space making it
inefficient to train the model. A second attempt could be
to (1) build a weighted bipartite graph between the workers
and requests in batch Bk, where for each pair of a worker
and a request, there exists an edge with the weight set to be

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited237

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 2

02
.1

12
.1

29
.2

31
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



the amount of time that the worker needs to prepare before
it serves the request, and (2) use the maximum weight of a
match in the bottleneck matching on the weighted bipartite
graph, which we denote by w(Bk), to capture the second
type of information. While this idea looks intuitive and
would result in a simpler state space, it would result in a
high computational workload since it involves a bottleneck
matching procedure, which takes at least cubic time [32].

Our solution is to compute a lower bound and an upper
bound of w(Bk), each with a cheap procedure, and then
use the average of the bounds to act as an estimate of
w(Bk), which we denote by ŵ(Bk). Specifically, to obtain
a lower bound of w(Bk), for each request ri in batch Bk,
we collect the smallest amount of time that a worker in
batch Bk needs to prepare before serving ri, which we
denote by tmin(ri). Note that this procedure is much more
efficient than a bottleneck matching procedure. In addition,
it could be verified that maxri∈R(Bk) tmin(ri) corresponds
to a lower bound of w(Bk). To obtain an upper bound
of w(Bk), we form a maximum matching within batch Bk

randomly and then use the maximum weight of a match
in the formed matching as the upper bound of w(Bk), and
this could be easily verified since w(Bk) corresponds to the
smallest possible weight of a match in a maximum matching
within batch Bk by definition. Furthermore, we discretize
ŵ(Bk) by dividing it by a bin size, denoted by W , and then
feeding the result to a ceiling function. In conclusion, we
use σ(Bk) (defined as follows) to capture the second type of
information of batch Bk.

(3.5) σ(Bk) =
⌈ ŵ(Bk)

W

⌉
Here, the rationale of using a bin size is to compress the state
space.

In summary, we define state sk to be a pair of two in-
tegers, namely θ(Bk), which captures the waiting times of
requests before workers are assigned to them, and σ(Bk),
which captures the waiting times that are due to the neces-
sary preparations by the workers, i.e.,

(3.6) sk = (θ(Bk), σ(Bk))

3.1.2 Actions We denote the action we take at time tk by
ak. Recall that at tk, the state is sk and we need to decide
whether to perform a matching within batch Bk or to wait
till the next time step. If yes, then we further decide among
those matches that have been formed, which to hold and
correspondingly which to be returned. A straightforward
method to define an action to capture this decision process
would need to use at least two values, one to indicate whether
to perform a matching or not, and the other for indicating
which matches to hold (if it has formed some matches). We

(a) Case 1: l > θ(Bk). Wait

(b) Case 2: l ≤ θ(Bk). Match and Hold

Figure 1: Illustrations on the actions

achieve the same goal with one value. Specifically, we define
an action to be an integer in a range [0, D], where D is a
hyper-parameter that could be tuned, and an action l ∈ [0, D]
means to achieve a batch with its time span at least l before
we perform a matching. Depending on the time span of batch
Bk, i.e., θ(Bk), we have two cases for an action l ∈ [0, D].

• Case 1 (Wait): θ(Bk) < l. In this case, batch Bk has
the time span strictly smaller than the target one l, and
thus the action would be to wait till the next time step
tk+1. For illustration, consider Figure 1(a). Note that
θ(Bk+1) would be at least θ(Bk).

• Case 2 (Match and Hold): θ(Bk) ≥ l. In this case,
the time span of Bk has reached or surpassed the target
one l, and thus the action is to perform a bottleneck
matching within batch Bk. Furthermore, the action
would also be to hold among all formed matches, those
with the requests arriving later than (tk − l) since the
batch involving these requests would have the time span
less than l, and return all other matches. For illustration,
consider Figure 1(b).

In conclusion, the action ak = l is used as both a trigger
for performing a matching (when the time span of batch Bk

becomes at least l) and a threshold for controlling which
matches to hold (those with arriving times later than some
threshold based on l, i.e., tk − l).

3.1.3 Transitions In our process of online matching,
given a current state sk at time tk and an action ak to take,
the probability that we would observe a specific state sk+1 is
unknown since it would depend on how the future requests
and workers arrive. We note that the method that we use
for solving the MDP in this paper, i.e., Q-learning [44], is
a model-free one, which could solve the MDP even with its
transition information unknown.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited238

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 2

02
.1

12
.1

29
.2

31
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



3.1.4 Rewards We denote by Rk the reward associated
with the transition from state sk to state sk+1 after taking
action ak and define it as follows. Suppose ak = l ∈ [0, D].
In the case that θ(Bk) < l, the action is to wait till the next
time step, and thus no matches are made and the maximum
cost of the matching formed so far does not change. But
since this would increase the costs of those matches, which
are formed later on but could possibly be formed at time
tk otherwise, we define the reward to be −1 as a signal of
penalty. In the other case that θ(Bk) ≥ l, the action is
to perform a matching and then hold some matches while
returning others. We denote by ck (resp. ck+1) the maximum
cost of a match in the matching before (resp. after) the action
ak is taken. Note that since there is no matching before a1 is
taken, we define c1 to be the value of the optimal maximum
cost under the offline scenario. Also note that the maximum
cost of a match in a matching is non-decreasing, i.e., ck+1 ≥
ck. We further consider two sub-cases depending on ck+1

and ck. In the sub-case that ck+1 = ck, we define the reward
Rk to be cnt, where cnt is the number of consecutive time
steps, at which we have θ(Bk) < l (i.e., the action is to wait)
before time tk. The rationale is that the maximum cost of
a match in the matching formed so far does not change and
thus we aim to compensate the negative rewards due to the
consecutive actions of waiting. In the other sub-case that
ck+1 > ck, we define Rk to be (ck − ck+1) + cnt, where
(ck − ck+1) is a negative reward since the maximum cost
becomes worse after the action ak is taken and cnt is used
for compensation again. In summary, we have
(3.7)

Rk =


−1 if θ(Bk) < l

cnt if θ(Bk) ≥ l and ck+1 = ck

(ck − ck+1) + cnt if θ(Bk) ≥ l and ck+1 > ck

We would like to emphasize the trickiness of (1) defin-
ing the reward of a “wait” action to −1 and (2) compensat-
ing it with the rewards of “match and hold” actions. Nor-
mally, one may think when a “wait” action is taken, the re-
ward should be defined to be 0 since the matching is not
changed. But this definition would suffer from a few issues:
(1) it fails to capture the semantics of waiting and outputs
no negative signal for waiting though it would essentially in-
crease the costs of matches; (2) in the case that we take a
“match and hold” action and the objective is not changed,
the reward would still be 0, resulting very sparse rewards
(mostly zeros) and a model harder to train. These issues will
be well solved with the definition in Equation 3.7.

Note that with the rewards defined as above, the goal
of the MDP, i.e., to maximize the accumulative rewards, is
aligned with that of the OBM-D problem. To see this, sup-
pose that we go through a sequence of states s1, s2, ..., sN
and correspondingly, we receive a sequence of rewards
R1, R2, ..., RN−1. In the case that the future rewards are

not discounted, we have

(3.8)
N−1∑
t=1

Rt = c1 − cN

where cN is the maximum cost of a match after the last action
is performed, which corresponds to the maximum cost of the
matching formed.

Algorithm 1 The Adaptive-H algorithm
Require: A setR (resp. W ) of n requests (resp. mworkers)

which arrive dynamically (n ≤ m);
Ensure: A set of n matches which are formed sequentially;

1: for each time step tk where k is 1, 2, ... do
2: Batch Bt ← the set containing all requests and

workers that have arrived by tk and not matched yet;
3: State st ← the state as constructed based onBk (Refer

to Section 3.1.1);
4: Action at ← argmaxaQ(st, a);
5: if ak = l ≤ θ(Bt) then
6: Find the bottleneck matching M within batch Bk;
7: for each (ri, wj) in M do
8: if ri.t ≤ (tk − l) then
9: Output (ri, wj , tk);

10: end if
11: end for
12: end if
13: end for

3.2 Policy Learning on the MDP The core problem of
a MDP is to find an optimal policy for the agent, which
corresponds to a function that specifies the action that the
agent should choose in a specific state so as to maximize
the accumulative rewards. We learn the policy on the
MDP constructed for the OBM-D problem via a value-
based method called Q-learning [44]. The main idea is as
follows. First, it defines an action-value function Q(s, a)
(or Q function), which represents the maximum amount
of expected accumulative rewards we would receive by
following any policy after seeing state s and taking action
a. Second, it estimates Q(s, a)’s by using the following
Bellman Equation [33] as an iterative update step:
(3.9)
Q(s, a)← Q(s, a) + α · [R+ γ ·max

a′
Q∗(s′, a′)−Q(s, a)]

where s is the current state, a is the action that is chosen
based on some policy derived from Q (e.g., using the ε-
Greedy strategy), R and s′ are the reward and the next state
observed, respectively, α is the learning rate, and γ is a
discount factor. Third, it returns the policy which always
chooses the action that maximizes the Q(s, a) function for a
given state s.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited239

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 2

02
.1

12
.1

29
.2

31
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Table 1: Statistics of Real Datasets.
Dataset # of requests/workers City, Country
Didi [6] 1,992,683 Haikou, China
Olist [7] 96,475 Sao Paulo, Brazil

3.3 The Adaptive-H Algorithm Our Adaptive-H algo-
rithm, presented in Algorithm 1, is based on the learned pol-
icy for the MDP that models the OBM-D problem. Specif-
ically, it proceeds iteratively at each time step tk for k =
1, 2, ... (Line 1). At tk, it constructs a batch Bk, which
involves all those requests and workers that have arrived
before time tk and not yet matched (Line 2). Based on
Bk, it then constructs a state st = (θ(Bk), σ(Bk)) (Re-
fer to Section 3.1.1) (Line 3). Then, it takes an action ak,
which maximizes the Q function at state sk, i.e., ak =
argmaxaQ(st, a) (Line 4). Suppose ak = l. It means to
wait till the next time step tk+1 if the time span of Bk is
smaller than l, i.e., l > θ(Bk), and to form a bottleneck
matching within batch Bk otherwise (Lines 5-6). Further-
more, in the latter case, for each pair of ri and wj that are
matched to each other in the bottleneck matching, it would
return a match (ri, wj , tk) if ri arrived earlier than or at time
(tk − l) and hold the matches among the remaining requests
and workers (Lines 7-9).

The time complexity is dominated by the part of per-
forming a bottleneck matching at some time steps, which is
further determined by two factors: (1) the number of time
steps at which the action involves performing a bottleneck
matching; and (2) the sizes of the batches on which a bottle-
neck matching is performed. By the nature of the algorithm,
these two factors cannot be large simultaneously, i.e., if the
number of time steps is large, then the sizes of the batches are
small. As will be shown in the empirical study, our Adaptive-
H algorithm runs consistently faster than existing algorithms.

4 Experiments
4.1 Experimental Setup As shown in Table 1, we use
two real datasets, namely Didi and Olist. The Didi dataset
is collected from Didi Chuxing [2], which is the data
of 1,992,683 taxi orders at Haikou, China, from 2017-
05-01 to 2017-05-31 and published through its GAIA
initiative [6]. Each taxi order contains six elements,
namely pick-up latitude/longitude/timestamp and drop-off
latitude/longitude/timestamp. Following existing stud-
ies [15, 42], for each taxi order, we create a request with its
arriving time set to be the taxi order’s pick-up time and also
a worker with its arriving time set to be the taxi order’s drop-
off time (since at the drop-off time, a taxi, which corresponds
to a worker, would become available to serve other requests).
The Olist dataset is published at Kaggle [7], which contains
real-world e-commerce orders of a Brazilian company called
Olist [8]. Similar to [45], we only consider the orders with
the customer’s and seller’s locations both at the city of Sao
Paulo, Brazil, and collect 96,475 such orders from 2016 to

2018. For each order, we generate a request with its arrival
time as the order’s placement time and also a worker with its
arrival time as the order’s delivery time. Following [42], for
each pair of a request ri and a worker wj in these datasets,
we approximate t(ri, wj) as the geodesic distance between
ri and wj divided by a context-dependent speed (40km/h for
Didi and 10km/h for Olist).

We also generate some synthetic datasets by following
the existing study [15] and conduct experiments on the
datasets by varying (1) cardinality n, (2) tmax, and (3) spatial
and temporal distributions. The detailed results could be
found in a technical report [41], which show similar clues
as those on the real datasets.
Metrics and Baselines. We compare our algorithm
Adaptive-H with three existing algorithms, namely Fixed-
H [30], Variable-H [15], and RQL-Adapt [42], in terms of
the maximum cost and running time. Fixed-H devises a
strategy, which always holds those matches with the costs
among the bottom-k and matches the others, where k is a
pre-specified parameter. Variable-H is the state-of-the-art al-
gorithm, which is to hold each match for a certain amount
of time that is dependent on the match. RQL is a RL based
algorithm for the online bipartite matching problem with the
objective of maximizing the overall matching utility/weight.
In RQL, a state is defined as a pair of two integers, one equal
to the number of requests and the other equal to the number
of workers in the current batch, and an action is defined as a
binary number, 0 denoting to wait and 1 denoting to match
(i.e., this action definition provides no flexibility of holding
matches). Since it targets a different objective, directly com-
paring our algorithm and RQL in terms of the objective of
OBM-D is not fair. Therefore, we adapt RQL by replacing
its reward definition with that of Adaptive-H so as to align
its objective with that of OBM-D. We keep all other parts of
RQL unchanged and call the adapted version RQL-Adapt.
Hyperparameter Selection and Model Training. The
Adaptive-H method involves three hyperparameters: (1) the
gap C between two adjacent time steps; (2) the bin size
W for discretizing the state space; and (3) the size of the
action space D. Fixed-H involves one hyperparameter, k,
and RQL-Adapt involves two hyperparameters, namely lmin

and lmax, denoting the minimum and maximum number of
objects in a batch for matching, respectively. We use grid
search for finding the best configuration of hyperparameters
for each algorithm and on each dataset. We report the
detailed hyperparameter settings of different algorithms on
different datasets in a technical report [41].

For the Didi dataset, which consists of data spanning
over about 4 weeks, we use the data of the first three weeks
for training and the data of the last week for testing. For
the Olist dataset, which consists of data from 2016 to 2018,
we use the data of 2016 and 2017 for training and that of
2018 for testing. During the training process, we employ

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited240

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 2

02
.1

12
.1

29
.2

31
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



the ε-greedy strategy for selecting an action at a current
state, i.e., with probability ε, we select a random action
and with probability (1 − ε), we select the action which
maximizes the reward. The settings of the parameters that
are involved in the training process include: (1) the number
of episodes is set as 10,000; (2) the learning rate α is set
as 1/(100 + episode no.), i.e., the learning rate decreases
episode after episode; (3) the ε in the ε-greedy procedure is
set as 0.1 and (4) the discount rate γ is set as 1.

We implement all algorithms in C++. All experiments
are conducted on a ubuntu machine with Intel(R) Core(TM)
i5 2.70GHz CPU and 16GB main memory. Implementation
code and datasets could be found via this link https://github.
com/wangkaixin219/OBM-D.

Didi Olist0.0

0.5

1.0

1.5

2.0

2.5

Co
m

pe
tit

iv
e 

ra
tio

Adaptive-H
RQL-Adapt
Fixed-H
Variable-H

Didi Olist

102

103

104

Ti
m

e 
(m

s)

Adaptive-H
RQL-Adapt
Fixed-H
Variable-H

(a) Max cost (b) Running time

Figure 2: Results on real datasets

4.2 Experimental Results (1) Results on Real Datasets.
The results on real datasets are shown in Figure 2, where for
the maximum costs, we show their competitive ratios. Con-
sider the maximum cost (Figure 2(a)). Adaptive-H performs
the best consistently among all online algorithms. Besides,
RQL-Adapt performs better than Variable-H and Fixed-H.
These results meet our expectation that an adaptive holding
strategy works better than non-adaptive ones. In addition,
Adaptive-H captures the OBM-D problem better than RQL-
Adapt (detailed elaborations into this shall be provided in the
ablation study part). Consider the running time (Figure 2(b)).
Adaptive-H runs faster than all existing algorithms. Explain-
ing these results by comparing the worst-case time complex-
ities is not straightforward, since the time complexity cap-
tures the cost of matching and holding for each step, but the
practical efficiency relies on how frequently these actions are
performed. Therefore, we investigated some running statis-
tics of the algorithms for explanations. Take the results on
the Didi dataset as an example. For Adaptive-H, it totally
takes 17,323 actions, among which 14,337 actions are to
wait while only 2,986 actions are to match and hold (on av-
erage), i.e., the percentage of the actions of waiting (which
are cheap) is rather high, e.g., about 82.7%. For RQL-Adapt,
however, it takes 17,321 actions in all, among which 6,925
actions are to match, which is significantly larger than that
for Adaptive-H, i.e., 2,986. For Fixed-H, under the same set-
tings, it performs matching at 8,492 time steps, which is also
much larger than 2,986. For Variable-H, while it involves no
procedure of matching since it matches workers greedily, it

involves many cases where a match is formed first and then
broken because a better match is possible. In this case, a
worker is considered as a “new” worker to be matched quite
a few times, causing extra workload.

Didi Olist0.0

0.5

1.0

1.5

2.0

Co
m

pe
tit

iv
e 

ra
tio

S1 +A1 (Adaptive-H)
S1 +A2
S2 +A1
S2 +A2 (RQL-Adapt)

Didi Olist0
25
50
75

100
125
150
175
200

Ti
m

e 
(m

s)

S1 +A1 (Adaptive-H)
S1 +A2
S2 +A1
S2 +A2 (RQL-Adapt)

(a) Max cost (b) Running time

Figure 3: Results of ablation study

(2) Ablation Study (Real Datasets). In order to evaluate the
effectiveness of the state and action definitions of Adaptive-
H, separately and collectively, we replace each of them or
both with some alternative definitions, namely those adopted
in RQL [42]. We denote the state and action definitions of
Adaptive-H (RQL) by S1 and A1 (S2 and A2), respectively.
In this experiment, we explore four combinations of state
and action definitions, namely, (1) S1 + A1 (i.e., Adaptive-
H), (2) S1 + A2, (3) S2 + A1, and (4) S2 + A2 (i.e., RQL
or RQL-Adapt). The results on the real datasets are shown
in Figure 3, where for the maximum costs, we show their
corresponding competitive ratios. Consider the effectiveness
(Figure 3(a)). We observe that S1 + A1 (i.e., Adaptive-H)
performs the best and S2 + A2 (i.e., RQL-Adapt) performs
the worst, which could be possibly explained by that a state
of Adaptive-H captures richer and more relevant information
and an action makes it possible to perform holding. Consider
the efficiency (Figure 3(b)). We observe that S2+A1 runs the
fastest, which could be explained by that (1) S2 is cheaper
to compute than S1 and (2) with A1, it possibly makes less
yet high-quality match operations. In addition, S1 + A1

(Adaptive-H) runs the second fastest, only slightly slower
than S2 +A1.

5 Related Work
Bottleneck Matching Problems. The bottleneck matching
problem, also known as min-max assignment or worst case
matching problem, was first proposed in [22]. The offline
version of the problem was studied in [14, 21, 32], where
the objects to be matched are assumed to be available at the
very beginning. The one-sided online version of bottleneck
matching was formally studied in [25] and [29], where one
set of objects is given beforehand and the problem is to
assign a set of servers to a set of tasks with the same size
such that the maximum distance between a server and a
task is minimized. In [24], the authors presented a lower
bound of competitive ratio of any deterministic algorithm
for the online bottleneck matching, which is n

ln 2 and in
[13], the authors presented one of any randomized algorithm

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited241

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 2

02
.1

12
.1

29
.2

31
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://github.com/wangkaixin219/OBM-D
https://github.com/wangkaixin219/OBM-D


for the one-sided online bottleneck matching, which is n
2 .

In [9], the authors perform resource augmentation analysis
to examine the performance of algorithms and conclude
that the competitive ratio still remains linear when an extra
server is introduced at each server-vertex. There exist some
studies [20, 11, 10, 12, 15, 30], where the cost of a match
depends on when it is formed, i.e., it is delay-aware, and
among them, only [15, 30] adopt a delay-aware matching
objective as ours. Specifically, in [15], the OBM-D problem
was first proposed and in [30], a variant of OBM-D was
studied. Nevertheless, as explained in Section 1, the holding
strategies used in these studies cannot be adaptive to the
problem dynamics and these studies provide no analysis on
the competitive ratios of randomized algorithms for OBM-D.
Reinforcement Learning. Reinforcement learning assumes
that agents are in an unknown environment, seeking to
achieve a goal, in which agents need to learn how to map
situations to actions so as to maximize a numerical reward
signal. The environment is typically formulated as a Markov
Decision Process (MDP) [34]. In this paper, we adopt the Q-
learning algorithm [44] for the MDP that models the OBM-D
problem since it does not require a model of the environment,
has the ability to handle problems with stochastic transitions
and rewards, and has guarantees on convergence. While
some existing studies have attempted to use reinforcement
learning for matching problems [18, 36, 42, 28, 43, 31, 23,
35], they differ from the study in this paper in (1) they
target offline settings [18]; (2) they target max-sum/min-sum
objectives [28, 36, 42], which result in very different design
strategies from ours; and (3) they target some specialized
matching problems such as order dispatching [43, 31, 23]
and task assignment [35], which assume richer domain
contexts (e.g., spatial information) that we do not assume
available in this paper and aim to optimize domain-related
objectives (e.g., revenues) that are different from ours. For
example, the holding strategy is not touched in any of these
methods, but is critical for solving a bottleneck matching
problem that is targeted in this paper.

6 Conclusion
In this paper, we study the online bottleneck matching with
delays (OBM-D) problem, for which, a holding strategy that
holds a match for a while when it is first formed is criti-
cal. Nevertheless, existing holding strategies are all based
on some human-crafted rules. In this paper, we propose a
new holding strategy which is adaptive and based on rein-
forcement learning, and develop a method named Adaptive-
H for OBM-D. In addition, we provide theoretical results on
the performance boundary that a randomized algorithm that
could achieve for OBM-D, which are the first of their kind
for OBM-D. We conduct extensive experiments on both real
and synthetic datasets, showing that our Adaptive-H algo-
rithm outperforms existing algorithms in terms of both ef-

ficiency and effectiveness. An interesting future research
direction is to explore adaptive algorithms for the online
matching problem on general graphs.
Acknowledgments. We thank the anonymous reviewers for
their valuable suggestions and comments. This research is
supported by the Nanyang Technological University Start-
UP Grant from the College of Engineering under Grant
M4082302 and by the Ministry of Education, Singapore,
under its Academic Research Fund Tier 1 (RG20/19 (S)).
Yongxin Tong and Yi Xu’s work was partially supported
by the National Key Research and Development Program
of China under Grant No. 2018AAA0101100, the Na-
tional Science Foundation of China (NSFC) under Grant
No. 61822201 and U1811463. This work was also par-
tially supported by the A*STAR Cyber-Physical Production
System (CPPS) – Towards Contextual and Intelligent Re-
sponse Research Program, under the RIE2020 IAF-PP Grant
A19C1a0018, and Model Factory@SIMTech.

References

[1] Uber. https://www.uber.com.
[2] Didi chuxing. https://www.didichuxing.com.
[3] Grab. https://www.grab.com.
[4] Ele.me. https://www.ele.me.
[5] Grubhub. https://www.grubhub.com.
[6] Gaia. https://outreach.didichuxing.com/research/opendata/ .
[7] Olist dataset published in Kaggle. https://www.kaggle.com/

olistbr/brazilian-ecommerce.
[8] Olist. https://www.crunchbase.com/organization/olist.
[9] B. M. ANTHONY AND C. CHUNG, Online bottleneck match-

ing, Journal of Combinatorial Optimization, 27 (2014),
pp. 100–114.

[10] I. ASHLAGI, Y. AZAR, M. CHARIKAR, A. CHIPLUNKAR,
O. GERI, H. KAPLAN, R. MAKHIJANI, Y. WANG, AND

R. WATTENHOFER, Min-cost bipartite perfect matching
with delays, in Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2017), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

[11] I. ASHLAGI, Y. AZAR, M. CHARIKAR, A. CHIPLUNKAR,
O. GERI, H. KAPLAN, R. MAKHIJANI, Y. WANG, AND

R. WATTENHOFER, Min-cost matching with delays, in 20th
International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), Berkeley,
California, USA.(August 2017), 2017.

[12] Y. AZAR, A. CHIPLUNKAR, AND H. KAPLAN, Polyloga-
rithmic bounds on the competitiveness of min-cost perfect
matching with delays, in Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, 2017, pp. 1051–1061.

[13] M. C. W. BENDER AND C. CHUNG, Lowerbounds for
the online minimum matching problem on the line, in Mit
Undergraduate Research Technology Conference, 2016.

[14] R. E. BURKARD, M. DELL’AMICO, AND S. MARTELLO,
Assignment problems, Springer, 2009.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited242

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 2

02
.1

12
.1

29
.2

31
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://www.uber.com
https://www.didichuxing.com
https://www.grab.com
https://www.ele.me
https://www.grubhub.com
https://outreach.didichuxing.com/research/opendata/
https://www.kaggle.com/olistbr/brazilian-ecommerce
https://www.kaggle.com/olistbr/brazilian-ecommerce
https://www.crunchbase.com/organization/olist


[15] Z. CHEN, P. CHENG, Y. ZENG, AND L. CHEN, Minimizing
maximum delay of task assignment in spatial crowdsourcing,
in 2019 IEEE 35th International Conference on Data Engi-
neering (ICDE), IEEE, 2019, pp. 1454–1465.

[16] P. CHENG, X. LIAN, L. CHEN, AND C. SHAHABI,
Prediction-based task assignment in spatial crowdsourcing,
in 2017 IEEE 33rd International Conference on Data Engi-
neering (ICDE), IEEE, 2017, pp. 997–1008.

[17] P. CHENG, X. LIAN, Z. CHEN, R. FU, L. CHEN, J. HAN,
AND J. ZHAO, Reliable diversity-based spatial crowdsourc-
ing by moving workers, Proceedings of the VLDB Endow-
ment, 8 (2015), pp. 1022–1033.

[18] E. CURRY ET AL., Adaptive task assignment in spatial
crowdsourcing, PhD thesis, 2016.

[19] J. DICKERSON, K. SANKARARAMAN, A. SRINIVASAN,
AND P. XU, Allocation problems in ride-sharing platforms:
Online matching with offline reusable resources, in Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, 2018.

[20] Y. EMEK, S. KUTTEN, AND R. WATTENHOFER, Online
matching: haste makes waste!, in Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing,
ACM, 2016, pp. 333–344.

[21] H. N. GABOW AND R. E. TARJAN, Algorithms for two
bottleneck optimization problems, Journal of Algorithms, 9
(1988), pp. 411–417.

[22] O. GROSS, The bottleneck assignment problem, tech. report,
RAND CORP SANTA MONICA CALIF, 1959.

[23] J. HOLLER, Z. QIN, X. TANG, Y. JIAO, T. JIN, S. SINGH,
C. WANG, AND J. YE, Deep q-learning approaches to dy-
namic multi-driver dispatching and repositioning, in NeurIPS
2018 Deep Reinforcement Learning Workshop, 2018.

[24] R. IDURY AND A. SCHAFFER, A better lower bound for on-
line bottleneck matching. http://www.ncbi.nlm.nih.gov/core/
assets/cbb/files/Firehouse.pdf , 1992.

[25] B. KALYANASUNDARAM AND K. PRUHS, Online weighted
matching, Journal of Algorithms, 14 (1993), pp. 478–488.

[26] L. KAZEMI AND C. SHAHABI, Geocrowd: enabling query
answering with spatial crowdsourcing, in Proceedings of
the 20th international conference on advances in geographic
information systems, ACM, 2012, pp. 189–198.

[27] L. KAZEMI, C. SHAHABI, AND L. CHEN, Geotrucrowd:
trustworthy query answering with spatial crowdsourcing, in
Proceedings of the 21st acm sigspatial international confer-
ence on advances in geographic information systems, ACM,
2013, pp. 314–323.

[28] J. KE, F. XIAO, H. YANG, AND J. YE, Optimizing online
matching for ride-sourcing services with multi-agent deep
reinforcement learning, arXiv preprint arXiv:1902.06228,
(2019).

[29] S. KHULLER, S. G. MITCHELL, AND V. V. VAZIRANI,
On-line algorithms for weighted bipartite matching and sta-
ble marriages, Theoretical Computer Science, 127 (1994),
pp. 255–267.

[30] L. LI, J. FANG, B. DU, AND W. LV, Spatial bottleneck
minimum task assignment with time-delay, in International
Conference on Database Systems for Advanced Applications,
Springer, 2019, pp. 387–391.

[31] M. LI, Z. QIN, Y. JIAO, Y. YANG, J. WANG, C. WANG,
G. WU, AND J. YE, Efficient ridesharing order dispatching
with mean field multi-agent reinforcement learning, in The
World Wide Web Conference, 2019, pp. 983–994.

[32] C. LONG, R. C.-W. WONG, P. S. YU, AND M. JIANG,
On optimal worst-case matching, in Proceedings of the 2013
ACM SIGMOD International Conference on Management of
Data, ACM, 2013, pp. 845–856.

[33] V. MNIH, K. KAVUKCUOGLU, D. SILVER, A. A. RUSU,
J. VENESS, M. G. BELLEMARE, A. GRAVES, M. RIED-
MILLER, A. K. FIDJELAND, G. OSTROVSKI, ET AL.,
Human-level control through deep reinforcement learning,
Nature, 518 (2015), p. 529.

[34] M. L. PUTERMAN, Markov decision processes: discrete
stochastic dynamic programming, John Wiley & Sons, 2014.

[35] C. SHAN, N. MAMOULIS, R. CHENG, G. LI, X. LI,
AND Y. QIAN, An end-to-end deep rl framework for task
arrangement in crowdsourcing platforms, in 2020 IEEE 36th
International Conference on Data Engineering (ICDE), IEEE,
2020, pp. 49–60.

[36] M. Z. SPIVEY AND W. B. POWELL, The dynamic assignment
problem, Transportation Science, 38 (2004), pp. 399–419.

[37] H. TO, C. SHAHABI, AND L. KAZEMI, A server-assigned
spatial crowdsourcing framework, ACM Transactions on Spa-
tial Algorithms and Systems, 1 (2015), p. 2.

[38] Y. TONG, J. SHE, B. DING, L. CHEN, T. WO, AND K. XU,
Online minimum matching in real-time spatial data: experi-
ments and analysis, Proceedings of the VLDB Endowment, 9
(2016), pp. 1053–1064.

[39] Y. TONG, J. SHE, B. DING, L. WANG, AND L. CHEN, On-
line mobile micro-task allocation in spatial crowdsourcing, in
2016 IEEE 32Nd international conference on data engineer-
ing (ICDE), IEEE, 2016, pp. 49–60.

[40] Y. TONG, L. WANG, Z. ZHOU, B. DING, L. CHEN, J. YE,
AND K. XU, Flexible online task assignment in real-time spa-
tial data, Proceedings of the VLDB Endowment, 10 (2017),
pp. 1334–1345.

[41] K. WANG, C. LONG, Y. TONG, J. ZHANG, AND Y. XU,
Adaptive holding for online bottleneck matching with delays
(technical report). https://personal.ntu.edu.sg/c.long/paper/
bottleneck-technical.pdf , 2021.

[42] Y. WANG, Y. TONG, C. LONG, P. XU, K. XU, AND W. LV,
Adaptive dynamic bipartite graph matching: A reinforcement
learning approach, in 2019 IEEE 35th International Confer-
ence on Data Engineering (ICDE), IEEE, 2019, pp. 1478–
1489.

[43] Z. WANG, Z. QIN, X. TANG, J. YE, AND H. ZHU, Deep re-
inforcement learning with knowledge transfer for online rides
order dispatching, in 2018 IEEE International Conference on
Data Mining (ICDM), IEEE, 2018, pp. 617–626.

[44] C. J. WATKINS AND P. DAYAN, Q-learning, Machine learn-
ing, 8 (1992), pp. 279–292.

[45] Y. ZENG, Y. TONG, AND L. CHEN, Last-mile delivery made
practical: An efficient route planning framework with theo-
retical guarantees, Proceedings of the VLDB Endowment, 13
(2019), pp. 320–333.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited243

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 2

02
.1

12
.1

29
.2

31
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

http://www.ncbi.nlm.nih.gov/core/assets/cbb/files/Firehouse.pdf
http://www.ncbi.nlm.nih.gov/core/assets/cbb/files/Firehouse.pdf
https://personal.ntu.edu.sg/c.long/paper/bottleneck-technical.pdf
https://personal.ntu.edu.sg/c.long/paper/bottleneck-technical.pdf

	Introduction
	Problem and Preliminaries
	Problem Definition
	Theoretical Results

	Reinforcement Learning Approach
	The OBM-D Problem Modeled as a MDP
	States
	Actions
	Transitions
	Rewards

	Policy Learning on the MDP
	The Adaptive-H Algorithm

	Experiments
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion

