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Abstract— In this paper, the adaptive secure control problem
for a class of second-order nonlinear systems with p-normal
form and uncertain time-varying parameters against sensor
and actuator deception attacks is investigated. Multiplicative
type of attacks are considered. A novel adaptive backstepping
based resilient control scheme is constructed by employing
the power integrator Lyapunov function technique and a
special Nussbaum function. It is shown that all the closed-loop
signals remain uniformly bounded despite the occurrence of
the attacks. Simulation results on an illustrative example are
provided to illustrate the effectiveness of the proposed control
scheme.

I. INTRODUCTION

In recent years, networked control systems (NCSs), which
realized the integration of the cyber space with the physical
space, are ubiquitous for the potential engineering appli-
cation in various fields. In such systems, communication
network is usually set up to achieve information transmission
between different components. Since it is usually public, the
exchanged data may be influenced by malicious intruders,
which can be regard as cyber attacks and may pose a great
threat to normal operation of NCSs. Therefore, the safety
issue of NCSs has gained much attention in control field.

In general, there are two kinds of cyber attacks which
have been mainly recognized and concerned, i.e. deception
attacks [1]–[9] and denial-of-service (DoS) attacks [10]–[12].
In the absence of control system information, the attackers
often attempt to launch DoS attacks to block information
exchange among different control components. By contrast,
when the attackers are smart enough to illegally access the
transmitted data, they are more likely to launch deception
attacks to inject the modified data to that received by
the controller and actuators, which may cause devastating
damage to the entire system. Thus, it is necessary to develop
secure control approaches to assure an accepted level of the
system performance under deception attacks. Considering
that these attacks often bring about uncertainties and the
fact that adaptive control [1]–[6], [8], [9], [13], [14] is an
effective way to ensure the desired performance of systems
with various uncertainties, some seminal results have been
reported on adaptive control to resist deception attacks. In
[1], the sensor deception attack in linear cyber systems are
treated by developing an adaptive secure control scheme. In
[2], an adaptive controller with the learning framework is
proposed for linear networked vehicles suffering from both
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sensor and actuator attacks. By introducing Nussbaum func-
tion technique, the problem with unknown sign of control
coefficient caused by the deception attacks is treated by
an adaptive resilient control method for a class of NCSs
in [3]. Note that these methods are merely proposed for
linear systems, hence they cannot be directly applied to
nonlinear NCSs. In fact, most of actual physical systems
inevitably contain some nonlinear components. Therefore,
it is more imperative and meaningful to study the adaptive
secure control of nonlinear NCSs under deception attacks. In
[4] and [5], the stability of nonlinear strict-feedback system
is guaranteed under data injection attacks by introducing
novel coordinate transformations and Lyapunov functions in
backstepping protocol establishing procedure, respectively.
In [6], neural network is adopted in adaptive backstepping
control to compensate for the attack-induced uncertainties
for switched systems. In [9], the adaptive consensus control
for a class of uncertain multi-agents systems under deception
attacks are developed.

Note that the system models considered in all of the
results mentioned above are standard strict-feedback non-
linear systems of triangular form. It means that the orders
of the (i + 1)th state (xi+1) or the control input involved
in the time derivative of the ith state (ẋi) are limit to
one. However, in practice, many controlled plants can be
modeled as uncertain nonlinear systems with p-normal form
in which the mentioned orders may be arbitrary, such as
complicated mechanical systems connected by high order
nonlinear springs [15], [16]. The aforementioned control
schemes are not applicable to such systems. Over the past
decades, a series of results on adaptive control of uncertain
p-normal systems have been published [15]–[18]. However,
there are rare results available to solve the security problem
of deception attacks.

Motivated by these observations, we study the problem of
adaptive secure control for a class of second-order NCSs with
p-normal form and uncertain time-varying parameters under
both sensor and actuator attacks. A novel adaptive resilient
control scheme is proposed by utilizing the backstepping
technique. The main challenges and the contributions of this
paper can be summarized as follows.
• As far as we are aware, this is the first work to manage

the secure control of nonlinear systems with p-normal
form against deception attacks. Compared with the
existing results [4]–[6], [9], the aforementioned orders
of the (i + 1)th state and the control input in the
system model considered in this paper are allowed to
be any positive odd rational number rather than one.
For these systems, the quadratic Lyapunov function
cannot be used in the second step of the backstepping
design. To overcome this difficulty, the power integrator
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Lyapunov function [15], [16] is introduced such that the
backstepping controller design can be established.

• The main difficulty in this paper is that the actual control
direction of the virtual control signal designed in each
recursive step of backstepping design may become un-
known and distinct under the deception attacks. Similar
issues are treated in [3], [9] by introducing the Nuss-
baum function technique. However, both the general
Nussbaum functions developed for single system as in
[3], [7], [14] or most of the existing multiple Nussbaum
function techniques as in [9], [19], [20] cannot be
adopted to stabilize the the considered system, which
will be discussed in detail later. To settle this problem,
a special type of Nussbaum functions are introduced
in this paper such that the closed-loop stability of the
entire system can be guaranteed.

The remainder of this paper is organized as follows.
In Section II, the models of the considered system and
deception attacks and the control objective are introduced.
In Section III, the purposed secure control scheme are
provided and the stability analysis are given. Simulation
results and conclusion are given in Section IV and Section
V, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. System Model

In this paper, a class of second-order NCSs with p-normal
form are considered as follows.

ẋ1 = θ1(t)Tϕ1(x1) + b1(x1)xp12 + d1(t)

ẋ2 = θ2(t)Tϕ2(x̄2) + b2(x̄2)ũp2 + d2(t) (1)

where x̄2 = [x1, x2]T ∈ R2, ũ ∈ R are the measurable states
and the input signal received from actuators, respectively.
θi(t) ∈ Rqi , i = 1, 2 denotes a vector of the uncertain
time-varying system parameters. ϕi(·) denotes a vector of
known smooth functions. di(t), i = 1, 2 denotes the external
disturbance. bi(·) ∈ R, i = 1, 2 denotes a smooth nonlinear
function and b2(·) represents the control coefficient. The
order pi ≥ 1 is a positive odd rational number whose
numerators and denominators are all positive odd integers.
In this paper, y = xp is identical with y = sign(x)|x|p.

B. Deception attacks model

In the considered NCSs, both sensor-to-controller and
controller-to-actuator communication channels are subjected
to the adversaries, as depicted in Fig. 1.

The considered deception attacks are modeled as

x̃i(t) = λis(t)xi(t), i = 1, 2 (2)
ũ(t) = λa(t)u(t) (3)

where x̃i(t) is the compromised state which can be applied
for feedback, u(t) is the actual control signal to be de-
signed. λis(t) and λa(t) are unknown time-varying attack
weights. It implies that under the cyber-attacks injected to
both communication channels, x̃i(t) and ũ(t) received by
controller and actuator may be modified and different from
the actual measured state xi(t) and input u(t). It is clear that
if neither communication channel suffers from these attacks,
λis(t) = 1 and λa(t) = 1.

Fig. 1. Closed-loop framework of the system under attacks.

Consequently, defining ¯̃x2 = [x̃1, x̃2]T , system (1) under
deception attacks can be rewritten as follows

ẋ1 = θ1(t)Tϕ1(x1) + b1(x1)λ−p12s (t)x̃p12 + d1(t)

ẋ2 = θ2(t)Tϕ2(x̄2) + b2(x̄2)λp2a (t)u(¯̃x2)p2 + d2(t) (4)

where u(¯̃x2) indicates that only the compromised states
signals are available for control design.

Remark 1: Compared with the existing results [4]–[6],
[9], the weights λis(t) multiplied by different states may
be distinct in this paper. The actuator attack model (3) is a
multiplicative manner instead of an additive one with injected
state information (i.e. ũ = u+ wT (t)ψ(x)) as in [2]–[6]. It
is reasonable because the adversaries may directly use the
stolen control information as the deception data. Besides, the
sign of each bi(·) is allowed to be unknown in this paper.
In fact, from (4), the actual coefficients of x̃2 and u under
attacks are b1λ

−p1
2s and b2λp2a . Since the signs of all the attack

weights are unknown, the signs of b1λ
−p1
2s and b2λ

p2
a are

uncertain which may be different from that of b1 and b2,
respectively. In this case, the predesigned negative feedback
control signal may become positive feedback, which may
cause devastating damage to most of the closed-loop control
systems. Such an issue constitutes as the major difference
between secure control and fault-tolerant control problems,
as seen from [21], [22] and references therein, where the
loss-of-effectiveness type of faults ū(t) = ρ(t)u(t) with
0 < ρ(t) < 1 are concerned.

C. Control Objective
The control objective in this paper is to design an adaptive

controller such that all the signals in the closed-loop system
are uniformly bounded despite the occurrence of deception
attacks.

To achieve the control objective, the following assump-
tions are firstly imposed.

Assumption 1: The uncertain parameters θi(t) and the
disturbance di(t) lie on two compact sets, respectively, i.e.
θi(t) ∈ Ωθi = {||θi(t)|| ≤ Mi} and di(t) ∈ Ωdi =
{|di(t)| ≤ εi}, where Mi and εi are unknown positive
constant.

Assumption 2: There exist two constants bm and bM such
that 0 < bm ≤ |bi| ≤ bM .

Assumption 3: The continuous attack weights satisfy
λis(t) 6= 0 and λa(t) 6= 0. Furthermore, there exist some
unknown positive constants λ̄is, λis, µis, λ̄a, λa such that the
following inequalities hold

λis ≤ |λis(t)| ≤ λ̄is, |λ̇is(t)| ≤ µis, λa ≤ |λa(t)| ≤ λ̄a
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Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:41:50 UTC from IEEE Xplore.  Restrictions apply. 



Remark 2: If λis(t) = 0 and λa(t) = 0, the states are
totally canceled and any input signals cannot be received
by actuators. Then the system may become uncontrollable.
Assumption 3 is included to exclude this case. Moreover,
since the energy provided for launching the attacks is usually
limited, the boundedness of |λis(t)|, |λ̇is(t)| and |λa(t)| is
reasonable. It follows that |λ−1is (t)| ≤ λ−1is , εis,

The following lemmas are introduced as preliminary re-
sults for convenience of the control design.

Lemma 1: [16] If f(x, y) is a continuous real-value
function for x ∈ Rm and y ∈ Rn, there exist two smooth
functions A(x) ≥ 0 and B(y) ≥ 0 such that

|f(x, y)| ≤ A(x)B(y)

Lemma 2: [15] If 0 < η = η1
η2
< 1, where η1 and η2 are

positive odd integers, then the following inequation holds

|xη − yη| ≤ 21−η|x− y|η,∀x, y ∈ R
To handle the issue of unknown control coefficients as

discussed in Remark 1, a special type of Nussbaum functions
are introduced as follows.

Definition 1: [4] If N (s): R 7−→ R is a continue function
satisfying the following equalities:

lim inf
k→∞

k −
∫ k
0
N−(s)ds∫ k

0
N+(s)ds

= 0

lim inf
k→∞

k +
∫ k
0
N+(s)ds

−
∫ k
0
N−(s)ds

= 0

with the positive and negative truncated functions N+(s) =
max{0,N (s)}, N−(s) = min{0,N (s)}, then it is called as
N function which can be expressed as N (s) ∈ N .

Then Lemma 3 is given as follows.
Lemma 3: [4] Define two smooth functions V (t) and

χi(t) on [0,+∞) (i = 1, . . . , N ) with V (t) ≥ 0. Let the
time-varying functions gi(t) ∈ [g−i , g

+
i ] for two constants

g−i and g+i satisfying g−i g
+
i > 0 (0 /∈ [g−i , g

+
i ]). If there

exist two positive constant β and C satisfy

V̇ (t) ≤ −βV (t) + C +
N∑
i=1

[gi(t)N (χi(t)) + 1] χ̇i(t) (5)

χ̇i(t) ≥ 0 (6)

then V (t) and χi(t) are bounded over [0,+∞).

III. DESIGN OF ADAPTIVE RESILIENT CONTROLLERS

In this section, an adaptive backstepping resilient control
scheme will be presented. Firstly, we define the following
error variables.

z1 = x̃1

z2 = x̃p12 − α
p1
1 (7)

α1 is the first virtual control signal, which will be determined
later.
Step 1: From (4) and (7), we can compute the time derivative
of z1 as

ż1 = λ1sẋ1 + λ̇1sx1

= λ1sθ
T
1 (t)ϕ1(x1) + λ1sb1λ

−p1
2s x̃p12 (8)

+ λ1sd1(t) + λ̇1sx1

Then we choose the following Lyapunov function candidate
V 0
1

V 0
1 =

1

2
z21 (9)

From (8) and (9), the time derivative of V 0
1 can be obtained

as

V̇ 0
1 =z1

(
λ1sθ

T
1 ϕ1(x1) + λ1sb1λ

−p1
2s x̃p12 + λ1sd1 + λ̇1sx1

)
=z1

(
λ1sθ

T
1 ϕ1+λ1sb1λ

−p1
2s z2+λ1sb1λ

−p1
2s αp11 (10)

+λ1sd1+λ̇1sx1

)
We shall analyze the upper bound of each terms involved in
the second equation of (10). According to Assumption 3 and
Lemma 1, there exists a smooth function A1(·), an unknown
positive constant ς̄1 and a known positive smooth function
φ1(x̃1) such that

||ϕ1(x1)||2 = ||ϕ1(λ−11s x̃1)||2

≤ A1(λ−11s )φ1(x̃1) ≤ ς̄1φ1(x̃1) (11)

According to Assumptions 1-3, (11) and Young’s inequality
|ab| ≤ a2 + 1

4b
2, we have

z1λ1sθ
T
1 ϕ1 ≤ λ̄21sM2

1 ς̄1z
2
1φ1(x̃1) +

1

4
(12)

z1λ1sb1λ
−p1
2s z2 ≤ λ̄21sb2M ε

p1
2sz

2
1 +

1

4
z22 (13)

z1λ1sd1 ≤ λ̄21sε21z21 +
1

4
(14)

z1λ̇1sx1 ≤ µ1sε1sz
2
1 (15)

Combining (10) and (12)-(15), there is

V̇ 0
1 ≤ z1

(
Θ1z1F1 (x̃1) + λ1sb1λ

−p1
2s αp11

)
+

1

4
z22 +

1

2
(16)

where Θ1 is an unknown positive constant and F1(x̃1) is a
smooth function, which are defined as follows.

Θ1 = max(λ̄21sM
2
1 ς̄1, λ̄

2
1sb

2
M ε

p1
2s + λ̄21sε

2
1 + µ1sε1s) (17)

F1(x̃1) = φ1(x1) + 1 (18)

By adopting the N function N (s) in Lemma 3, the virtual
control αp11 is designed as

αp11 = N (χ1)
(
c1 + Θ̂1F1(x̃1)

)
z1 (19)

χ̇1 =
(
c1 + Θ̂1F1(x̃1)

)
z21 (20)

where χ1 is an auxiliary variable, c1 > 0 is a design
parameter, Θ̂1 is the estimate of Θ1. Defining Θ̃1 as the
parameter estimation error, i.e. Θ̃1 = Θ1−Θ̂1, the Lyapunov
function (9) can be augmented as

V1 = V 0
1 +

1

2γ1
Θ̃2

1 (21)

where γ1 is a positive constant. Then it is shown that

V̇1 ≤− c1z21 + λ1sb1λ
−p1
2s N (χ1)χ̇1 + χ̇1
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+
1

γ1
Θ̃1(γ1z

2
1F1 − ˙̂

Θ1) +
1

4
z22 +

1

2
(22)

Design the adaptive law ˙̂
Θ1 as

˙̂
Θ1 = γ1z

2
1F1 − σ1Θ̂1, Θ̂1(0) ≥ 0 (23)

where σ1 is a positive constant. Define b′1 = λ1sb1λ
−p1
2s , then

it is shown that

V̇1≤− c1z21−
σ1
2γ1

Θ̃2
1+(b′1N (χ1)+1)χ̇1

+
1

4
z22+

1

2
+
σ1
2γ1

Θ2
1 (24)

Step 2: It can be observed from (18)-(20) that αp11 is a smooth
function of x̃1, Θ̂1 and χ1. Then as inspired by [15], [16],
we introduce the following power integrator as the Lyapunov
function candidate

W (x̃2, α1) =

∫ x̃2

α1

(sp1 − αp11 )2−
1
p1 ds (25)

From Lemma 2, W (x̃2, α1) satisfies that

W ≤ |x̃2 − α1||x̃p12 − α
p1
1 |

2− 1
p1

≤ 21−
1
p1 |z2|2−

1
p1 |x̃p12 − α

p1
1 |

1
p1 ≤ 2z22 (26)

W ≥ 2(1−p1)(2−
1
p1

)
∫ x̃2

α1

(s− α1)2p1−1ds

= a(x̃2 − α1)2p1 (27)

where a = 2
(1−p1)(2− 1

p1
)

2p1
. Thus, W is positive definite with

respect to z2. According to [15], from (4), the time derivative
of W is derived as

Ẇ = z
2− 1

p1
2

(
λ2sθ

T
2 ϕ2 + λ2sb2λ

p2
a u

p2 + λ2sd2 + λ̇2sx2

)
+ L

(
∂αp11
∂x̃1

(
λ1sθ

T
1 ϕ1+λ1sb1λ

−p1
2s x̃p12 +λ1sd1+λ̇1sx1

)
+
∂αp11
∂Θ̂1

˙̂
Θ1 +

∂αp11
∂χ1

χ̇1

)
(28)

where

L = −(2− 1

p1
)

∫ x̃2

α1

(sp1 − αp11 )1−
1
p1 ds (29)

Similar to (26), it is shown that |L| ≤ 4|z2|. Then similar
to (11), there exists an unknown positive constant ς̄2 and a
known smooth function φ2(¯̃x2) such that

||ϕ2(x̄2)||2 ≤ ς̄2φ2(¯̃x2) (30)

Then a generic notation Q(v) is introduced to denote a C∞
upper bound of |v|. For example, Q(v) can be defined as
Q(v) =

√
∆ + v2, where ∆ is a positive constant. According

to Assumptions 1-3, (28), (30) and Young’s inequality, we
can obtain that

z
2− 1

p1
2 λ2sθ

T
2 ϕ2 ≤ λ̄2sM2|z2|Q(z2)1−

1
p1 ||ϕ2||

≤ λ̄22sM2
2 ς̄2z

2
2Q(z2)2−

2
p1 φ2+

1

4
(31)

z
2− 1

p1
2 λ2sd2 ≤ λ̄22sε22z22Q(z2)2−

2
p1 +

1

4
(32)

z
2− 1

p1
2 λ̇2sx2 ≤ µ2

2sε
2
2sz

2
2Q(z2)2−

2
p1 x̃22 +

1

4
(33)

L
∂αp11
∂x̃1

λ1sθ
T
1 ϕ1 ≤ 16λ̄21sM

2
1 ς̄1z

2
2(
∂αp11
∂x̃1

)2φ1+
1

4
(34)

L
∂αp11
∂x̃1

λ1sd1 ≤ 16λ̄21sε
2
1z

2
2(
∂αp11
∂x̃1

)2 +
1

4
(35)

L
∂αp11
∂x̃1

λ̇1sx1 ≤ 16µ2
1sε

2
1sz

2
2(
∂αp11
∂x̃1

)2x̃21 +
1

4
(36)

L
∂αp11
∂Θ̂1

˙̂
Θ1 ≤ 16z22(

∂αp11
∂Θ̂1

)2(
˙̂
Θ1)2 +

1

4
(37)

L
∂αp11
∂χ1

χ̇1 ≤ 16z22(
∂αp11
∂χ1

)2(χ̇1)2 +
1

4
(38)

L
∂αp11
∂x̃1

λ1sb1λ
−p1
2s x̃p12 ≤16λ̄21sb

2
M ε

2p1
2s z

2
2(
∂αp11
∂x̃1

)2Q(x̃2)2p1

+
1

4
(39)

Combining (28) and (31)-(39), there is

Ẇ ≤ z
2− 1

p1
2 (Θ2z

1
p1
2 F2 + λ2sb2λ

p2
a u

p2) +
9

4
(40)

where Θ2 is an unknown positive constant and
F2(¯̃x2, Θ̂1, χ1) is a smooth function, which are defined as
follows.

Θ2 = max(λ̄22sM
2
2 ς̄2, λ̄

2
2sε

2
2, µ

2
2sε

2
2s, 16λ̄21sM

2
1 ς̄1,

16λ̄21sb
2
M ε

2p1
2s , 16λ̄21sε

2
1, 16µ2

1sε
2
1s, 16) (41)

F2 = Q(z2)2−
2
p1 (φ2+x̃22+1)+(

∂αp11
∂x̃1

)2
(
φ1+1+x̃21

+Q(x̃2)2p1
)

+ (
∂αp11
∂Θ̂1

)2(
˙̂
Θ1)2 + (

∂αp11
∂χ1

)2(χ̇1)2 (42)

By adopting the N function N (s) in Lemma 3, the control
signal u is designed as

up2 = N (χ2)

(
c2 +

1

4
+ Θ̂2F2

)
z

1
p1
2 (43)

χ̇2 =

(
c2 +

1

4
+ Θ̂2F2

)
z22 (44)

where χ2 is an designed auxiliary variable, c2 > 0 is a
design parameter, Θ̂2 is the estimate of Θ2. Defining Θ̃2

as the parameter estimation error, i.e. Θ̃2 = Θ2 − Θ̂2, the
Lyapunov function (25) can be augmented as

V2 = W +
1

2γ2
Θ̃2

2 (45)

where γ2 > 0. Taking the derivative of V2, yields that

V̇2 ≤− c2z22 −
1

4
z22 + λ2sb2λ

p2
a N (χ2)χ̇2 + χ̇2

+
1

γ2
Θ̃2(γ2z

2
2F2 − ˙̂

Θ2) +
9

4
(46)

Design the adaptive law ˙̂
Θ2 as

˙̂
Θ2 = γ2z

2
2F2 − σ2Θ̂2, Θ̂2(0) ≥ 0 (47)
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Fig. 2. Trajectory of x1

Fig. 3. Trajectory of x2

where σ2 > 0. Define b′2 = λ2sb2λ
p2
a , then it is shown that

V̇2≤− c2z22−
1

4
z22 −

σ2
2γ2

Θ̃2
2

+ (b′2N (χ2)+1)χ̇2+
9

4
+
σ2
2γ2

Θ2
2 (48)

A. Stability Analysis

Now, we formally state the stability analysis results with
the designed backstepping based adaptive secure control
scheme in the following theorem.

Theorem 1: Consider the uncertain nonlinear time-varying
systems (1) with p-normal form suffering from deception
attacks (2), (3) under the constraints of Assumptions 1-
3. Then, the designed adaptive secure controller (43) with
parameter estimators (23), (47) can guarantee the closed-loop
system signals uniformly bounded.

Proof: Define the Lyapunov function for the entire
closed-loop system as

V = V1 + V2 =
1

2
z21 +W +

1

2γ1
Θ̃2

1 +
1

2γ2
Θ̃2

2 (49)

Combining (24),(26) and (48), we can obtain that

V̇ ≤ −ωV +R+

2∑
i=1

(b′iN (χi) + 1) χ̇i (50)

where ω = min(2c1,
c2
2 , σ1, σ2), R = 11

4 + σ1

2γ1
Θ2

1 + σ2

2γ2
Θ2

2.
Then from (18), (23), (42) and (47), it follows that

Θ̂i(t)= e−σitΘ̂i(0)+

∫ t

0

γie
−σi(t−s)z2i (s)Fi(s)ds≥ 0 (51)

Then from (20) and (44), it is clear that χ̇i ≥ 0. From (50)
and Lemma 3, it can be concluded that V (t) and χi(t)(i =
1, 2) are bounded, which implies that z1, W , Θ̂1 and Θ̂2 are

Fig. 4. Trajectories of Θ̂1 and Θ̂2

Fig. 5. Trajectories of χ1 and χ2

bounded. From (19), α1 is bounded. From (27), it is shown
that x̃2−α1 is bounded, hence x̃2 and z2 are also bounded.
Since xi = λ−1is x̃i(i = 1, 2), it indicates that real state signal
xi is bounded. From (42) and (43), it is clear that the control
signal u is bounded. Thus, all the closed-loop signals remain
uniformly bounded.

Remark 3: From (16) and (40), under the deception at-
tacks (2), (3), the actual control coefficients of α1 and u
are b′1 = λ1sb1λ

−p1
2s and b′2 = λ2sb2λ

p2
a , respectively, which

are non-identically unknown, so the Nussbaum function is
necessary for the control design. However, consider the
case that the sum of multiple Nussbaum functions including
different control direction may appear on the right side of
the single inequality (50), traditional Nussbaum functions
such as N(χ) = χ2cos(χ) in [3] and [14] cannot be
adopted to guarantee the boundedness of V because they
may cancel one another, as pointed out in [19]. On the other
hands, although the multiple Nussbaum function technique is
effective to deal with this case, most of the current multiple
Nussbaum functions such as Ni(χi) = cosh(αχi) sin(χi

βi )

[19] and N ′i(χi) = 2N−iχie
χ2
i sin(2i−1χi) [20] cannot be

adopted, either. The reason is that the inequalities (12)-
(14) and (31)-(39) inevitably lead to an constant R on the
right side of (50). If these multiple Nussbaum functions
are adopted, the unbounded term Rt will appear in the
upper bound of V (t) by integrating both sides of (50), the
boundedness of the closed-loop system cannot be assured.
To handle this problem, a special class of N functions
are adopted in this paper. By introducing the Lemma 3,
the boundedness of V (t) can be shown under the designed
controller.

Remark 4: There are two points that can be
further studied for the problem concerned in this
paper. First, if we integrate both sides of (50),
it can be obtained that V (t) ≤ e−ωtV (0)+R

ω +
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Fig. 6. Trajectory of control input u∑2
i=1

∫ t
0
e−ω(t−s) (b′iN (χi(s)) + 1) χ̇i(s)ds. The upper

bound of the term
∑2
i=1

∫ t
0
e−ω(t−s)(b′iN (χi(s)) + 1)χ̇i(s)

ds is unknown. Thus the proposed adaptive control scheme
can only guarantee that the closed-loop system signals are
uniformly bounded, whereas the upper bound of V (t) is
unknown. It is worthy of further investigation to limit the
upper bound of the states. Second, It will be interesting to
extend current results to more general high-order uncertain
nonlinear systems.

IV. SIMULATION EXAMPLE

In this section, a numerical example is chosen to verify
the effectiveness of the proposed control scheme. The system
model is given as follows:

ẋ1 = θ1(t)Tx1 sin(x1) + b1x
7
5
2

ẋ2 = θ2(t)Tx1x2 + b2ũ
3 + d(t) (52)

where the parameters are set as θ1(t) = 0.1 sin(t),
θ2(t) = cos(t), b1 = 1 − 0.2 sin(x1), b2 = 1 and
d(t) = 0.2 sin(4t). The attack weights are set as
λ1s(t) = 1 + 0.2 sin(t), λ2s(t) = −1 + 0.4 cos(t) and
λa(t) = 0.8 + 0.2 sin(t). The N function is chosen as
N (s) = e0.4s

2

sin(s) as in [4]. The control parameters
are given as c1 = 1, c2 = 0.75, γ1 = 0.2, γ2 = 0.1,
σ1 = σ2 = 2. The initial value of states are set as
[x1(0), x2(0), Θ̂1(0), Θ̂2(0), χ1(0), χ2(0)]=[2,−1, 0, 0, 0, 0].

The performance of state signals under deception attacks
are shown in Fig. 2 and Fig. 3. The trajectory of parameter
estimates Θ̂i(i = 1, 2) is given in Fig. 4. Then the per-
formance of designed auxiliary variables χi(i = 1, 2) is
shown in Fig. 5. The control input u is plot in Fig. 6. It
is clear that all the closed-loop signals are bounded despite
the occurrence of deception attacks.

V. CONCLUSION

In this paper, a novel adaptive secure control method is
proposed for a class of uncertain nonlinear second-order
networked control systems with p-normal form under sensor
and actuator deception attacks. A special class of Nussbaum
function is intruduced to settle the issue that the actual
sign of control coefficient of the virtual control signals
designed in each recursive step may become non-identically
unknown under the considered attacks. Based on the adaptive
backstepping technique and the power integrator Lyapunov
function theory, the closed-loop stability of the entire system
can be established despite the possible occurrence of the
deception attacks.
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