
An Efficient Approach for Cross-Silo Federated
Learning to Rank

Yansheng Wang, Yongxin Tong, Dingyuan Shi, Ke Xu
SKLSDE Lab, School of Computer Science and Engineering, BDBC and IRI, Beihang University, China

{arthur wang, yxtong, chnsdy, kexu}@buaa.edu.cn

Abstract—Traditional learning-to-rank (LTR) models are usu-
ally trained in a centralized approach based upon a large
amount of data. However, with the increasing awareness of
data privacy, it is harder to collect data from multiple owners
as before, and the resultant data isolation problem makes the
performance of learned LTR models severely compromised.
Inspired by the recent progress in federated learning, we propose
a novel framework named Cross-Silo Federated Learning-to-
Rank (CS-F-LTR), where the efficiency issue becomes the major
bottleneck. To deal with the challenge, we first devise a privacy-
preserving cross-party term frequency querying scheme based on
sketching algorithms and differential privacy. To further improve
the overall efficiency, we propose a new structure named reverse
top-K sketch (RTK-Sketch) which significantly accelerates the
feature generation process while holding theoretical guarantees
on accuracy loss. Extensive experiments conducted on public
datasets verify the effectiveness and efficiency of the proposed
approach.

I. INTRODUCTION

In the last decade, Learning-to-Rank (LTR) has witnessed

tremendous success in information retrieval (IR) systems [1]–

[3], especially commercial search engines such as Google and

Bing. Traditional LTR relies on massive data accumulated

from interactions between the search engine and millions of

web users. However, most companies except very few search

engine giants do not have the privileges of generating sufficient

training data by themselves. Even worse, with more data

regulations and laws like GDPR coming into force, it becomes

illegal for these companies to freely share or exchange data

with each other, resulting in the well-known data isolation

(i.e., data fragmentation) problem [4]. Hence, how to break

the barriers between data silos to train effective LTR models

for enterprise search is still an open problem.

In this paper, we propose a framework named Cross-

Silo Federated LTR (CS-F-LTR), which coordinates multiple

companies (i.e., silos or parties) to train a powerful LTR model

without exchanging raw training data between them. In CS-

F-LTR, both the documents and the queries necessary to train

the model are distributed among different parties. Each party

generates training instances in collaboration with the others

while the documents and queries of each party are only locally

stored for privacy protection. Unlike the generic federated

learning setting where data are either partitioned horizontally

or vertically [4], training data is cross-partitioned in our setting

(see Fig. 1). As each training instance in LTR is correlated

with a document and a query simultaneously, which may be

owned by different parties, the feature generation may require

Documents Queries Documents Queries Documents Queries

Training
Instances

Training
Instances

Training
Instances

LTR Model

Fig. 1: An illustration of cross-partitioned data in federated

LTR. Cross partition differs from horizontal and vertical

partition in that each instance in the training data is generated

by linking two components, queries and documents, which are

also distributed across parties (silos).

collaboration between any two parties in cross-partitioned data

settings.

Such unique data partition characteristics raise the major

bottleneck in federated LTR: the efficiency issue. For one

thing, encryption-based privacy-preserving schemes can be

very low in efficiency and flexibility, as the cross-partition

of data results in frequent interactions between parties. For

LTR tasks, large scale of secure indexes needs to be built

for document corpus, while the encrypted queries should be

executed very frequently, which may take extremely high

space and time cost. More practical ways are needed to

compromise data privacy for efficiency while the privacy loss

should still be controlled. For another, frequent interactions

between cross-partitioned data can still bring high computation

and communication cost even without encryption, which are

also intrinsic bottlenecks in generic federated learning. Naı̈ve

solutions without special data structure designs will enumer-

ate all the documents for a single party’s single query in

feature generation of federated LTR, which brings unaccept-

able querying time and communication overhead especially

when the number of documents is large. Therefore, designing

optimization techniques to improve the overall efficiency in

federated LTR is vital.

1128

2021 IEEE 37th International Conference on Data Engineering (ICDE)

2375-026X/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00102

In this paper, we focus on addressing the efficiency chal-

lenges above and our main contributions are summarized as

follows:

• We formally define the federated LTR problem that has

unique cross-partitioned data setting. We further identify

its primary challenge as the efficiency problem and pro-

pose a solution framework named CS-F-LTR.

• To achieve symmetrical privacy with high efficiency in

the feature generation of federated LTR, we propose a

general term frequency querying scheme with sketching

and differential privacy techniques, which has theoretical

guarantees on both privacy and accuracy loss.

• To further optimize the overall efficiency of the algorithm,

we propose a novel sketching structure named reverse

top-K sketch (RTK-sketch), which can reduce both the

querying times and communication cost while holding a

theoretical guarantee of approximation.

• We evaluate the performance of our methods on public

datasets and extensive experimental results validate the

effectiveness and efficiency of our solution.

The rest of this paper is organized as follows. We review

related work in Sec. II, formally define the problem in Sec. III,

and elaborate on the term frequency querying scheme and the

optimization approach in Sec. IV and Sec. V, respectively. The

experimental results are presented in Sec. VI and we conclude

this paper in Sec. VII.

II. RELATED WORK

Our work is related to the following categories of research.

Privacy-Aware Information Retrieval. Information retrieval

systems usually involve large scale data both from client side

and server side that can support well-performed LTR models.

The client-side browser query logs contain clickthrough of

users that can reflect their daily online behaviors. Therefore

privacy issues often occur, such as the famous privacy leak of

AOL data [5]. Most existing privacy-aware LTR researches

focus on protecting the client-side privacy from malicious

servers. An early ideal model, private information retrieval

(PIR) which aims to protect query privacy can be found in

[6] but its requirement of duplicating the database makes it

impractical in real scenarios. Some more practical approaches

choose to obfuscate the queries by forging queries [7], gen-

erating cover queries [8] or injecting noise under differen-

tial privacy [9]. Symmetrically-private information retrieval

(SPIR) was first defined in [10], where server-side data privacy

is also considered. The most widely recognized methods are

the secure keyword search schemes like searchable symmetric

encryption (SSE) [11] and order preserving encryption (OPE)

[12]. In [13], the authors also consider the data sharing

scenario for multiple data owners and propose an OPE-based

solution. However, these approaches only work for simple

keyword searching rather than LTR. A few works consider

privacy-aware LTR but is restricted to specific classifiers

(like tree ensembles [14]). Different from previous work, in

federated LTR, we consider protecting privacy among different

parties during the collaborative learning process. A symmetri-

cal privacy should be achieved for any two parties where the

query privacy and document privacy are both important. In

such a scenario, the prevailing encryption-based methods can

be very low in efficiency.

Federated Learning. Federated learning (FL) [15], [16] was

first proposed by Google for privacy-aware collaborative learn-

ing among android users and the definitions are generalized

in [4]. It can be divided into cross-silo and cross-device

federated learning [17]. The cross-silo setting naturally fits

the business-to-business (B2B) scenarios where each silo can

be a company or organization while the cross-device setting

corresponds to the business-to-customer (B2C) mode. In both

settings, privacy protection often becomes the core issue and

encryption-based methods like secret sharing [18] and noisy-

based methods like differential privacy [19]–[21] have been

applied. The difference is that cross-device FL often involves

huge number of users thus the communication cost can be a

bottleneck while cross-silo FL only has a few parties (usually

less than 10). Our paper is based on the cross-silo setting, as

we assume each party to be an enterprise that hopes to build

a global ranking model for certain specialized web search.

In such a setting, the computation cost should be taken care

of because each party as an enterprise has much more data

than personal devices and encryption-based solutions can be

very time-consuming. The unique feature of our problem is

the cross partition of raw data, which has never been studied

in FL before. A recent work [22] considering FL in online

LTR framework is also relevant to our work. But it considers

the cross-device FL and the data is horizontally partitioned,

which makes existing solution frameworks of FL applicable.

Sketching Algorithms. To improve efficiency and to protect

privacy, we propose an approach based on the sketch [23],

which is a data structure for approximate statistical estimation

in large scale streaming data. Count sketch [24] and Count-

Min (CM) sketch [25] are two commonly used sketches for

point queries like frequency estimation of a single term in

a data stream. Many efforts have been made to optimize

the efficiency and accuracy by proposing new data sketches

[26]–[28]. The structure has also been applied to many areas,

such as gradient compression in large scale machine learning

[29] and heavy hitter discovery [30]. Sometimes it can also

work with differential privacy (DP) [31], which aims to

protect individual’s privacy by injecting noise to aggregation

results. In [32], the authors prove that Count sketch without

additional noise can satisfy the notion of DP under strong

assumptions. In this paper, we first modify the traditional

sketching algorithms with new DP notions to realize privacy-

preserving feature generation in federated LTR. Afterwards

we devise a novel sketch to optimize the computation and

communication efficiency.

III. PROBLEM STATEMENT

In this section, we formally define the problem setting of

cross-silo federated LTR. Then we will define the reverse

1129

top-K document query, which is fundamental to solving the

problem.

A. Cross-Silo Federated LTR Setting

We first briefly explain the cross-silo setting in the context

of learning to rank (LTR).

Suppose a federation F consists of N parties (enterprises),

F = {P1, P2, · · · , PN}. Each party Pi holds a collection

of documents Di = {di,1, di,2, · · · , di,|Di|} as well as a

collection of queries Qi = {qi,1, qi,2, · · · , qi,|Qi|}. Hence

D =
⋃n

i=1Di and Q =
⋃n

i=1Qi. For each document d and

query q, a relevant score R(d, q) can be calculated, indicating

the relevance between them. Note that each party only has

access to relevance scores between its own documents and

queries, though a query from party Pi can still be relevant to

a document from party Pj .

As with other machine learning problems, to learn a ranking

model, training data (X,Y) need to be generated, where X
are features extracted from raw data D and Q, and Y are

mapped from the relevance scores. In our work, we assume a

feature extractor Φ : D × Q �→ R
s is given, which generates

an s-dimensional feature vector x = (x1, x2, · · · , xs) from

a query q and its associated document d. Of our particular

interest are features that involve both q and d, such as term

frequency (TF), BM25 [33] and LMIR [34]. The labels are

drawn from 0, 1 and 2, representing “irrelevant”, “relevant”

and “highly relevant”. We say that a sample is positive if the

label is 1 or 2 otherwise negative.

Without federated learning, party Pi builds its own training

data Xi,Y i from its own raw data Qi, Di. The training data

can further be transformed to fit different ranking models, e.g.,,
pair-wise or list-wise models. For simplification, we consider

(Xi,Y i) as the final input of ranking model Mi(θ,x).
Then the learning process can be a standard empirical risk

minimization problem, i.e.,

θopt = argmin
θ

E(x,y)∈(Xi,Y i)[L(Mi(θ,x),y)] (1)

where L is the loss function. In the cross-silo federated

learning setting, the locally generated data (especially positive

instances) are insufficient thus each party needs to generate

new feature vectors X ′
i with other parties’ collaboration.

For ease of coordination among parties, we assume a

centralized server in the learning process. We also assume

the server and each party are honest-but-curious (or semi-

honest), i.e., they will follow the protocol honestly and will

not tamper with intermediate data, but will try to infer any

sensitive information about each party from the available data.

The objective of cross-silo federated learning is to efficiently

train an effective global model from the data partitioned

across parties while preserving data privacy during interactions

among parties and the server.

Based on the generic setting above, we now formulate our

problem of federated LTR as follows.

Definition 1 (Federated LTR Problem). Given a federation F
with N parties, the purpose of federated LTR is to learn a

global ranking model M collaboratively among all parties,
where each party Pi generates an augmented dataset X ′

i

besides its own training set (Xi,Y i), meanwhile the following
conditions should be satisfied:

• Privacy: During the interactions between any two parties
or between the server and any party, the privacy leakage
of each Di and Qi is controlled.

• Effectiveness: The collaboratively trained model M
has better generalization than each individually trained
model Mi.

Note that the privacy and effectiveness conditions are

aligned with those in generic cross-silo federated learning.

However, due to the cross partition of data in this problem,

no existing FL methods can be directly applied. Next, we will

show that a fundamental querying operation that we called

the reverse top-K document query is the key to solving the

federated LTR problem.

B. The Reverse Top-K Document Query

As we can see, the cross-partitioned data in federated LTR

makes the feature generation much more challenging than

standard learning tasks. Thus the key to effectively train

LTR models is to effectively generate sufficient and high-

quality training data with raw data from different parties. To

generate useful and widely recognized features in LTR such

as BM25 [33] and LMIR [34], the term frequency (TF) query

is necessary. We formally define the cross-party TF as below.

Definition 2 (Cross-party TF). Suppose Pi, Pj ∈ F , d ∈ Dj ,
q ∈ Qi, and t1, t2, · · · , tM are M terms in query q. Without
loss of generality, we assume each document has L terms.
The Cross-party Term Frequency of term tk in document d
is TFi,j(tk, d) =

TCi,j(tk,d)
L , where TCi,j(tk, d) the count of

term tk in document d.

We assume the length of document is non-private, thus can

be directly shared. So it is equal to calculating cross-party term

counts TC. With the help of cross-party term frequency query,

all the features can be generated for specific documents and

queries. For example, the inverse document frequency (IDF)

can be represented by

IDFi(tk) = log

∑n
j=1 |Dj |∑n

j=1

∑
d∈Dj

I(TFi,j(tk, d) > 0)

The BM25 score can also be written as

BM25i,j(d, q) =

M∑
k=1

IDFi(tk) · TFi,j(tk, d) · (k1 + 1)

TFi,j(tk, d) + k1

where k1 is a parameter.

In Sec. IV, we will discuss in detail how to realize the

privacy-preserving cross-party TF.

However, calculating the cross-party TF is not enough to

solve the problem. We can see that the generated feature matrix

X ′
i has no labels. If we generate samples for every possible

document-query pairs between any two parties, there will be

too much noisy data. In generic LTR the positive samples and

1130

negative samples are highly skewed and positive samples are

much more valuable data. Therefore we would like to find as

many relevant documents for each query as possible and to

exclude the irrelevant ones. Thus we define a new problem

based on the TF query as below.

Definition 3 (Reverse Top-K Document Query). Suppose Pi

has a single query term t. Suppose the document owner Pj

has n documents D = (d1, d2, · · · , dn) and each document dp
has m terms (tp,1, tp,2, · · · , tp,m). Let TC(t, dp) denote the
term count of t in document dp. The reverse top-K document
query problem is to find K documents in D which has the K
largest TC(t, dp).

Here we use term counts for simple calculation of relevance,

and it can be replaced by any other TC-based metrics like

BM25. A naive solution is to enumerate all the documents

for the query term and rank their relevance scores to get the

top-K relevant ones. But with a large number of parties and

documents, such solution can be very low in efficiency. In

Sec. V, we will concentrate on designing novel optimization

techniques to improve both the computation and communica-

tion efficiency.

After the reverse top-K document query, each party will

obtain the augmented data with positive labels. Combined

with their local data, it will become a normal horizontal

federated learning problem and we will apply a simple round-

robin distributed SGD to train the LTR model while other

sophisticated methods are also compatible. Note that the main

challenges of federated LTR lie in the feature generation

process. After we address the challenges, existing general

FL methods can be simply applied which will not be our

focus. Therefore, in the rest of our paper, we will concentrate

on realizing privacy-preserving and efficient reverse top-K

document query.

IV. PRIVACY-PRESERVING CROSS-PARTY TERM

FREQUENCY QUERY

This section introduces our sketch and differential privacy-

based scheme to realize privacy-preserving cross-party term

frequency query, which is basic to reverse top-K document

query. The objective is to calculate cross-party TF while the

privacy of both parties (i.e., document-side and query-side

privacy) is protected. In such a multi-party scenario, where

every two parties have to query each other’s documents for

many times, tradition encryption-based methods will be low in

efficiency and flexibility. Therefore, we devise a sketch-based

scheme, considering that the data structure has the following

advantages. First, it is reusable after construction. Adding new

parties will not take extra cost for other parties. Second, it

is efficient both in memory and computation. The space cost

can be linearly reduced meanwhile answering each query takes

constant time. Third, it can hide information naturally, as hash

functions are used to encode the data. With some further

modifications, strong privacy guarantees can be met. Besides,

only the sketches instead of the whole dataset of documents

need to involve in the interactions in the learning process

which can be safe and convenient for companies whose raw

data cannot even be accessed by APIs of federated learning.

We will first introduce some preliminaries before elaborat-

ing on the details of our approach.

A. Preliminaries

We first introduce the sketch and the privacy requirements

in the context of cross-party TF query.

The sketch is a certain class of streaming summaries, where

a stream can be represented by a multiset d (like document)

with terms t (like words) from T (i.e., the dictionary). The

sketch in our paper specifically refers to linear sketches that are

data structures which can be represented as a linear transform

of the input multiset. They are also defined for particular set

of queries.

We use the classical Count Sketch [24] as a standard sketch

in our paper. It can also be replaced by other sketches like

Count-Min (CM) Sketch [25] or other state-of-the-arts. The

Count Sketch is designed for point query of term frequency

and can be represented by a z ·w table. The encoding process

requires two sets of hash functions, H = {h1, h2, · · · , hz}
and G = {g1, g2, · · · , gz} randomly sampled from pairwise

independent hash function families with hi : T → [1, w](w �
|T |) and gi : T → {+1,−1}. The encoding of each term t ∈ d
follows ∀1 ≤ a ≤ z,,

Cd(a, ha(t))← Cd(a, ha(t)) + ga(t) (2)

After the encoding of document d, we will get a table Cd(·, ·)
with size z · w. The point query of term frequency t follows:

f̂t = fC(d, t) = medianCd(a, ha(t)) (3)

As the querying process in sketch requires multiple hash

functions, we can simply obfuscate some of them to preserve

the query-side privacy. To further preserve the document-

side privacy from adversarial queriers we can define the ε-
Differential Privacy (ε-DP) for point queries, which depends

on sketch and can be a bit different from the general ε-DP

definition.

Definition 4 (ε-Differential Privacy (ε-DP)). A random algo-
rithm A satisfies ε-DP, if ∀ neighboring documents d, d′ that
differ from one term, ∀ point queries with term t and possible
outputs o of A,

Pr[A(fC(d′, t)) = o] ≤ eεPr[A(fC(d, t)) = o]

Our goal is to make the point query results satisfy ε-DP

so that no privacy information from the documents will be

inferred.

B. Method

Next we present our cross-party TF query scheme in detail.

Suppose party Pi has a term t (which can be a term from

one of its queries) and it wants to find the term frequency of

t in document d owned by party Pj . The querying process

operates in three steps.

1131

• Step 1: Sketch Construction. First, party Pj constructs

the sketch for document d. The sketch construction is

conducted before any interaction among parties. Each

party uses the same hash functions for sketch construction

so that it can support the queries from any other parties.

The hash functions can be keyed where the private keys

are securely generated (e.g., with Diffie-Hellman key

agreement) so that they can be hidden from the server.

We build the Count Sketch for each document d following

(2), where the terms are words from the vocabulary set

|T | and we will get a table of z ·w slots. The document

d has L terms in total and it takes O(z · L) times of

hashing to construct the sketch. The sketches of each

document from each party are stored privately and can

only be accessed by queries on the frequency of specific

terms.

• Step 2: Hashing With Obfuscation. After sketch con-

struction, party Pi has to hash its term t with the z hash

functions from H in order to query its TC. To protect the

privacy of the terms, we will not calculate ha(t) for every

1 ≤ a ≤ z as the normal Count sketch does. Instead, we

randomly pick z1 hash functions from H and calculate

their hashes on t. For the other z − z1 functions, the

input is randomly sampled from T . Formally, after this

hashing and obfuscating process, party Pi will get a z-

dimensional vector (h
(i)
a (t))1≤a≤z encoded by a private

index set with length z1, i.e.,

h(i)
a (t) =

⎧⎨
⎩

ha(t), a ∈ PVi

∀1 ≤ a ≤ z
ha(t

′), a /∈ PVi, t
′ ∼ T

(4)

where PVi is the set containing the first z1 values from

a random permutation of {1, 2, · · · , z}, which stands for

the hash indexes of the real querying terms. A smaller

fraction of z1
z will result in stronger protection of the

querying terms. There is also a trade-off between privacy

and accuracy loss as we can set smaller z1 to achieve

higher privacy level while the confidence of the querying

results will be reduced. After finishing the hashing, Pi

will send the obfuscated hash vector to the server, and

the server will send it to Pj for further processing.

• Step 3: Result Perturbation. In this step, Pj will receive

the z-dimensional vector from the server. Afterwards, it

will conduct the query on Count sketch with each h
(i)
a (t)

and get Cd.H(a, h
(i)
a (t)) for 1 ≤ a ≤ z. A direct release

of such results can also be risky, as an adversarial querier

will send some sensitive terms to infer their distribution

in other party’s documents. Therefore, we hope to design

ε-DP mechanism to perturb the results so that the privacy

of documents can be preserved. Following the Laplace

Mechanism [31], our perturbing method is rather simple

as below,

C̃d(a, h
(i)
a (t)) = Cd(a, h

(i)
a (t)) + Ñ (5)

where Ñ ∼ Lap(1ε) and ε is the privacy budget. We

Algorithm 1: Cross-party TF: Querier

input : t: the term for frequency query

H : {ha(·)|1 ≤ a ≤ z}, the agreed hash

functions

output: f̂t: the estimated frequency of t
1 Q← Empty vector;

2 PV ← Randomly generated z1 hash indexes;

3 for 1 ≤ a ≤ z do
4 Generate hash according to 4;

5 Q.append(hash);

6 Send Q to server;

7 Receive querying results F̃Q from server;

8 F̃Q,real ← {fa ∈ F̃Q|a ∈ PV };
9 f̂t ← Estimator(F̃Q,real);

10 return f̂t

ଷ−1−1ݐ −2
04

4
2

3
2

3 0

Query
Hash

2432321

222
−1−24

Obfuscate

Perturb 035
Recover

3
+ ෩ܰ = 1 035

Median

Query SideDocument Side

Fig. 2: The TC query of term t3 from the sketch, where both

query-side and document-side privacy are preserved.

only sample one Ñ for all z hashing results and we will

later prove that the mechanism satisfies ε-DP. Then Pj

will send the perturbed sketch results to Pi through the

server. After receiving the corresponding results of the

hashed values, party Pi only needs to recover the correct

ones with its private key PVi. The final query results of

TC of t will be

f̂t = median
a∈PVi

C̃d(a, ha(t)) (6)

Although the frequencies of items are not precise due

to the noise brought by the sketch, without the DP

noise, a malicious querier can still infer the approximated

frequency distribution of words of a document which

can result in privacy leaks. We parameterize the privacy

protection level by injecting a Laplacien noise with

variance 1
ε so that any intention of inferring a word’s

frequency of a document can be obfuscated by ε-DP.

Algorithm 1 and Algorithm 2 illustrate the operations at

the querier (i.e., Pi) and the document owner (i.e., Pj),

respectively. Next we will make analysis on the privacy and

accuracy loss.

1132

Algorithm 2: Cross-party TF: Document Owner

input : d: the document containing ld terms

Q: hash values of querying term t
H : {ha(·)|1 ≤ a ≤ z}, the agreed hash

functions

ε: privacy budget

output: None

1 C ← Constructor(d,H);
2 Receive querying vector Q from server;

3 F̃Q ← Empty vector;

4 Sample Ñ ∼ Lap(1ε);
5 for 1 ≤ a ≤ z do
6 fa ← C.find(Q[a]) + Ñ ;

7 F̃Q.append(fa);

8 Send F̃Q to server;

9 return None

C. Theoretical Analysis on Privacy and Accuracy Loss

We make analysis on the privacy and accuracy loss of our

cross-party term frequency querying scheme.

1) Guarantees on Privacy:

Theorem 1. The estimator in Eq.(5) satisfies ε-DP for any
point queries.

Proof. Suppose the length of document d′ is L′ = L + 1.

Document d and d′ coincide in the first L terms and d′ has an

additional term t′. According to the pairwise independence of

hashing families, we have

Pr[ha(t) = ha(t
′)] ≤ 1

range(ha)
=

1

w
, ∀t
= t′

Then, with fixed i and PVi, we have ∀ querying terms t
= t′

and ∀a ∈ PVi,

Cd′(a, ha(t)) = Cd(a, ha(t)) +RXa · ga(t)
where each RXa is i.i.d drawn from a Bernoulli distribution

with Pr[RXa = 1] ≤ 1
w . So we have

fC(d
′, t) = median

a∈PVi

Cd′(a, ha(t)) = median
a∈PVi

(Cd(a, ha(t)) +

RXa · ga(t)) = median
a∈PVi

(Cd(a, ha(t))+RY = fC(d, t)+RY ,

where RY ∈ {+1, 0,−1}.

With a0 = argmediana∈PVi
(Cd(a, ha(t)), we have

Pr[RY = 1 ∨ RY = −1] = Pr[fC(d
′, t) = ha0

(t) + 1 ∨
fC(d

′, t) = ha0
(t)−1] ≤ Pr[RXa0

= 1] ≤ 1
w . After injecting

the Laplacian noise Ñ ∼ Lap(1ε), i.e.,

A(fC(d, t)) = fC(d, t) + Ñ , we have

Pr[A(fC(d′, t)) = o]

Pr[A(fC(d, t)) = o]
=

Pr[Ñ = o− fC(d, t)−RY]

Pr[Ñ = o− fC(d, t)]

= Pr[RY = 0] + Pr[RY = 1] · Pr[Ñ = o− fC(d, t)− 1]

Pr[Ñ = o− fC(d, t)]

+ Pr[RY = −1] · Pr[Ñ = o− fC(d, t) + 1]

Pr[Ñ = o− fC(d, t)]

≤ 1− 1

w
+

1

w
· eε ≤ eε

Otherwise, for t = t′, we have ∀a ∈ PVi, Cd′(a, ha(t)) =
Cd(a, ha(t)) + 1. Therefore, fC(d

′, t) = fC(d, t) + 1, and

we can simply have
Pr[A(fC(d′,t))=o]
Pr[A(fC(d,t))=o] ≤ eε, and the theorem

follows.

2) Guarantees on Accuracy Loss: The frequency estimator

of Count sketch [24] gives unbiased results with a variance of
F2

w where F2 =
∑

1≤k≤ld
f2
tk

. To further decrease the utility

loss, we can consider the skewness of data. The frequency of

words in the documents often follow the Zipf’s law 1, and by

following [35], we can reduce F2 to FRes
2 =

∑
r≤k≤ld

f2
tk
≤

c2z(r−1)1−2ζ

2ζ−1 where fi = cz
iζ

is the frequency of the ith most

frequent item under Zipf’s law. Then the error bound of the

TC estimation of the single term is as below.

Theorem 2. For a single term t, if z1 is set to O(log(1δ)), then
with probability at least 1− δ, we have the TC estimation of
the term has a error bounded by

|f̂t − ft| ≤
√

16

ε2
+

64

w
· FRes

2

Proof. According to (5), We have

Ca(t) = ft +
∑

t′:ga(t′)=ga(t)

ga(t)ga(t
′)ft′ + Lap(

1

ε
)

According to the expectation and variance of count sketch

estimator and laplacian variable, we have E[Ca(t)] = ft and

V ar[Ca(t)] =
∑

t′:ga(t′)=ga(t)
f2
t′+

2
ε2 . By assuming the Zipf’s

distribution of term frequency, with constant probability 7
8 over

the choice of hash functions, none of the r = w
8 heaviest items

collide with t in any given row. Thus E[
∑

k>r f
2
tk
] =

FRes
2

w .

By Markov inequality, Pr[
∑

k>r f
2
tk
≤ 8FRes

2

w] ≥ 7
8 . Thus we

have

Pr[V ar[Ca(t) ≤
8FRes

2

w
+

2

ε2
]] ≥ 7

8
(7)

By Chebyshev inequality,

Pr[|Ca(t)− ft| ≥
√

64FRes
2

w
+

16

ε2
] ≤ 1

8
· V ar[Ca(t)]

8FRes
2 /w + 2/ε2

(8)

1https://en.wikipedia.org/wiki/Zipf%27s law

1133

By combining (7) and (8), we have

Pr[|Ca(t)− ft| ≤
√

64FRes
2

w
+

16

ε2
] ≥ 1− 1

8
− 1

8
− 1

8
=

5

8

Since the hashes are independent, by Chernoff bounds, we

finally have

Pr[|f̂t − ft| ≥
√

64FRes
2

w
+

16

ε2
] ≤ e−O(z1)

For a query q with l terms, we use the following TC es-

timator f̂q = median
a∈PVi

∑
1≤k≤l C̃d(a, ha(tk)). The error bound

is below.

Theorem 3. For a query q with length l, if we set z1 =
O(log(1δ)), then with probability at least 1 − δ, we have the
TC estimation of the query has a error bounded by

|f̂q − fq| ≤
√

16l

ε2
+

64l

w
· FRes

2

Proof. We first prove that for any two terms t1 and t2 and

any a ∈ PV , Ca(t1) and Ca(t2) are independent. We have

Ca(t1) = ft1 +
∑

t′:ga(t′)=ga(t1)
ga(t1)ga(t

′)f ′
t1 +Lap(1ε) and

Ca(t2) = ft2 +
∑

t′:ga(t′)=ga(t2)
ga(t2)ga(t

′)f ′
t2 + Lap(1ε).

Then we have

E[(Ca(t1)− ft1)(Ca(t2)− ft2)]

=E[
∑

ga(t′)=ga(t1)

ga(t1)ga(t
′)ft′ ·

∑
ga(t′′)=ga(t2)

ga(t2)ga(t
′′)ft′]

=E[
∑
i′,i′′

ga(t1)ga(t
′)ga(t2)ga(t′′)ft′

2
] = 0

Therefore, we have E[
∑

1≤k≤l Ca(tk)] =∑
1≤k≤l E[Ca(tk)] =

∑
1≤k≤l ftk and

V ar[
∑

1≤k≤l Ca(tk)] =
∑

t′,k:ga(t′)=ga(tk)
f2
t′ + 2p

ε2 .

Following the proof of Theorem 2, we have

Pr[|f̂q − fq| ≥
√

16l

ε2
+

64l

w
· FRes

2] ≤ e−O(z1)

V. EFFICIENT REVERSE TOP-K DOCUMENT QUERY

Based on the privacy-preserving term frequency query in

Sec. IV, we will further study the reverse top-K document

query in this section, which is essential to federated LTR. First,

we will propose a NAIVE solution based on the TF query. We

will find that it is low in efficiency and then will devise a new

data structure named reverse top-K sketch (RTK-Sketch) to

improve the efficiency. As computation and communication

efficiency have always been bottlenecks for generic federated

learning, our proposed solution will be meaningful to real

applications.

A. NAIVE solution

The NAIVE solution is shown in Algorithm 3. It only works

for the querier side as the document owner side does not

Algorithm 3: NAIVE

input : Query term t, parameter K
output: K tuples of document id and term count

1 Res← ∅ ;

2 for document d1, d2, · · · , dn ∈ document owner do
3 ci ← Query(di, t) according to Algorithm 1;

4 Res← Res ∪ {i : ci};
5 Res← TopK(Res);
6 return Res

Algorithm 4: RTK-Sketch: Update

input : A document d with index id, parameter α
output: None

1 T ← Build a standard sketch on d according to

Algorithm 2;

2 for i = 1, 2, · · · , z do
3 for j = 1, 2, · · · , w do
4 S[i][j].Insert({id : T [i][j]});
5 if |S[i][j]| > αK then
6 S[i][j].DeleteMin();

need to do extra computation. Obviously, it is not efficient

enough. To find the top-K relevant documents for a querying

term, it has to enumerate all the documents in a party, which

leads to n times of sketch queries. The time complexity is

O(zn) for a single querying term. Meanwhile, the server

has to transmit the perturbed sketching results for all the

n documents, which brings high communication overhead.

With the increase of documents, the total computation and

communication cost will become unacceptable. Next, we will

introduce our optimization techniques.

B. RTK-Sketch

In this part, we focus on using optimization techniques

to reduce the query times and transmission data from O(n)
to O(K) for a single term. The idea is to carry out more

computation locally before the querying starts. We design

a novel sketch-based data structure named reverse top-K

sketch (RTK-Sketch). It maintains the top-O(K) counts and

document indexes in each cell of a standard sketch and uses

intersection of the hashed cells to query a specific term.

Besides higher efficiency, the structure is also flexible to

use. If some party wants to update new documents or delete

old documents, they only have to do incremental updates

instead of re-constructing the whole sketch. Although the

sketch returns the approximated top-K results, we will prove

theoretically that it can still cover a constant ratio of true top-K

documents. The details of the algorithm are as below.

Initialize. The initialization happens in the document owner

side and the RTK-Sketch will replace the former n sketches

for all the documents. It is also initialized by an array with

z rows and w columns, indicating that we need z pairwise

1134

Algorithm 5: RTK-Sketch: Query

input : Sketch S, query term t, parameter β
output: k tuples of document id and term count

1 Cand← ∅ ;

2 D ← dict();
3 for i = 1, 2, · · · , z do
4 Hi ← List(S[i][hi(t)]);
5 for (id, count) in Hi do
6 D[id].Append(count);

7 for id in D do
8 if |D[id]| ≥ βz then
9 count← Query(D[id]) according to

Algorithm 1;

10 Cand← Cand ∪ {id : count};

11 Res← TopK(Cand);
12 return Res

independent hash functions with range w for them. Different

from Count Sketch where each grid in the sketch table is an

integer representing the count after hashing, in RTK-Sketch a

table cell is a list of document indexes and their counts. To

realize faster deletion of minimal elements, we initialize each

cell with a Min-Heap.

Update. The update algorithm is also for the document owner

side, where each document is considered as streaming input to

update the sketch. The details are shown in Algorithm 4. To

update a new document d with index id in the RTK-Sketch S,

we first apply the normal sketching algorithms such as Count

Sketch following Algorithm 2 for each terms in d. We will

get a table T with exactly the same number of rows and

columns as S, while each element in T is an integer. Then

we will insert the pair of {id : T [·][·]} into S meanwhile we

ensure that each Min-Heap has at most αK elements. The

insertion and deletion take at most O(logαK) time, thus the

time complexity of updation becomes O(wz logαK).

Delete. To delete a document with index id in the sketch, the

document owner has to enumerate every grid of the sketch

S and to remove the document in each Min-Heap. It takes

O(αK) to find an element and O(logαK) to delete it in

a heap with size αK thus the time complexity of deletion

becomes O(wzαK).

Query. The querier has to execute the reverse top-K document

query for term t on the RTK-Sketch. The algorithm is shown

in Algorithm 5. In the querying algorithm, we first enumerate

every Min-Heap in the cells that t can be hashed to then every

element in those Min-Heaps to build a dictionary that maps

a document index to a list of its corresponding counts with

different hash functions. We will filter out the documents that

appear less than βz times. The rests are the top-αK documents

for at least βz hash functions. We will put them into a

candidate set and their corresponding counts come from the

sketch querying operator following Algorithm 1 (e.g., median

ܿ: 4ܽ: 5 ݀: 7
݂: 10 ܾ: 17

݁: 5݀: 6 ܿ: 7
݂: 12 ܾ: 16

RTK-Sketch

Min-Heap with
(doc-id: count)

…

Query term ݐ
hashing

ሩSoft intersection

݂: {9,10,12,12}ܾ: {15,16,16,17}݀: {5,6,6,7} ܿ: {4,5,7,7}
Sketch Query :ܾ݊ܽ݅݀݁ܯ 16݂: 11݀: 6ܿ: 6

ܶ ܭ ܾ: 16݂: ܭ11 = 2
Fig. 3: An example of querying in RTK-Sketch. Each cell

in the sketch table is a Min-Heap with document id and its

corresponding count as elements. The soft intersection refers

to that a document appears at least β fraction times among all

the Min-Heaps.

for Count Sketch). Finally the querying results are the top-K

documents of the candidate set. The time complexity of one

query is O(zαK). An example is illustrated in Fig. 3.

C. Theoretical Analysis on Accuracy Loss

In this part, we will make theoretical analysis on the

accuracy loss of top-K results. The accuracy loss on counts

remains the same as in Sec. IV and we will abuse z1 by z for

simplification.

Theorem 4. For a fixed query term t, suppose K ′ is the
number of documents that appear both in the real top-k
querying results and the results that Algorithm 5 returns. The
expectation of cover rate ECR = E[K′]

K will hold a constant

lower bound if z ≥ (1 − 1
η2)

−O(n) and β <
√

1
z with

η = (α−1)
√
Lw

2αkq .

Proof. We fix the query term t and rank the term counts of t
for all the n documents, where each document has L terms.

Suppose the ranking result is c1 ≥ c2 ≥ · · · ≥ cK ≥ · · · ≥

1135

cn with document indexes from 1 to n. Then the real top-k

document querying result is {1, 2, · · · ,K}. If we take all the

counts with document index i from sketch S, we will get z
integers (though some of them might be removed by the heap)

denoted by ci,1, ci,2, · · · , ci,z . Each count can be seen as the

sum of the real count ci and a random variable Δi which

is the noise brought by sketching. And we have E(Δi) = 0
and V ar(Δi) = σ2 = O(1

wFRes
2) ≈ O(Lw) (assuming the

residue of O(L) terms are no larger than 1). By assuming the

counts ci satisfies Zipf’s law with c1 = L
q where q > 1 is a

constant parameter, we get ci =
L
iq . For the lth hash function,

by Chebyshev’s inequality we have

Pr[cαK,l ≤ cK,l]

≥ Pr[ΔK ≥ −ησ] · Pr[ΔαK ≤ cK − cαK − ησ]

≥ (1− 1

1 + η2
) · (1− σ2

((α−1)L
αKq − ησ)2

) ≥ (1− 1

η2
)2

where η = (α−1)
√
Lw

2αKq .

Thus, the probability that ith(i ≤ K) document is in the top-

αK ranking list after sketching is pi = Πn
j=αK+1Pr[cαK,l ≤

cj,l] ≥ Pr[cαK,l ≤ cK,l]
n−αK . Suppose event Ei represents

that ith(i ≤ K) document appears no larger than βz times

among z sets H1, H2, · · · , Hz . And with the tail bound of

cumulative binomial distribution, we have

Pr[Ei] =

βz∑
j=1

(
z

j

)
pji (1− pi)

z−j ≤ e−2z(pi−β)2(β < pi)

If pi = Ω(
√

1
z) holds, Pr[Ei] can be bounded by a constant.

Therefore by ensuring that z ≥ (1 − 1
η2)

−4(n−αK) and β <√
1
z , the expectation of cover rate ECR =

∑k
i=1 Pr[Ei]

K will

have a constant lower bound.

Remarks. When n is very large, the condition of the

theorem will make z unreasonably large. Nevertheless, in our

experiments with a large n and relatively small z the cover

ratio still remains constant. The reason is that the data may

be much more skewed than we assume. There may be many

zeros in the residual terms of ci and the probability that the

counts of our top-K documents are larger than the residual

terms after sketching can approach very closely to 1 (our lower

bound will appear to be too loose for the residues). Then the

exponential term O(n) can be reduced to much smaller values,

or even constants. In that case, the condition of z and β can

be largely loosed.

VI. EXPERIMENTAL EVALUATIONS

In this part, we will report our experimental results to verify

the effectiveness and efficiency of proposed methods.

A. Dataset and Settings

Most existing benchmark datasets like LETOR 4.0 [36]

only contain extracted features rather than raw documents and

queries, thus can not be used in our experiments. So we choose

the MS MARCO Ranking dataset 2 and sample some subsets

for our experiments. We assume the number of parties N = 4,

and each party only has limited labeled querying results. Note

that 4 parties are sufficient in cross-silo FL settings as each

party can be an enterprise. We sample 4 subsets from MS

MACRO, each contains 200 queries and 36,400 documents.

Each document has about 1000 terms. We use the top100

ranking as the ground-truth in our dataset. The top10 doc-

uments are labeled by “highly relevant” (relevance score = 2)

while top11-100 are “relevant” (relevance score = 1). The

others are considered as “irrelevant” (relevance score = 0).

For each party, we generate about 28,000 training instances.

We also simulate an external test set with 32,000 instances by

extracting 8,000 other instances from each party. Note that in

real scenarios the evaluation process does not require data or

model sharing among parties as each party holds a local model.

The features we use include length, TF, IDF, TF-IDF, BM25,

LMIR.ABS, LMIR.DIR and LMIR.JM of each document’s

body and title, which form a 16-dimensional vector for each

instance. We generate 29,000 cross-party instances for each

party. We use a simple linear classification for training a point-

wise ranking model. As we focus on proposing a general

LTR framework, we do not use more complicated features like

PageRank, which can be considered as the intrinsic features

of documents and do not require further privacy protection

techniques. More complicated models like pair-wise ranking

with tree models are also compatible as long as they need

to conduct frequency queries on different documents. But we

may not support the deep Seq2Seq models which directly

generate feature vectors from raw data without frequency

queries. Evaluation metrics used in our experiments include

ERR, nDCG and nDCG@10.

We compare our approach, CS-F-LTR, with the following

methods:

• Local: each party trains a local model only with its own

dataset.

• Local+: each party trains a local model with both local

and augmented data that are generated by cross-party

queries between itself and others.

• Global: each party collaboratively train a global model

only with their local data, like the horizontally federated

learning does. However, we do not use any privacy

protection techniques so the results are lossless.

To evaluate our optimization technique, i.e., the RTK-

Sketch, we compare its time and space costs with the NAIVE

solution. We also show its overall performance varying the

parameters, where the default parameter setting is α = 5, β =
0.1, w = 200, z = 30,K = 150, ε = 0.5. The hash function

we used in the sketch is the MD5 algorithm. We implement

the learning algorithms with MindSpore 3.

2https://www.msmarco.org/dataset.aspx
3https://www.mindspore.cn/

1136

1 2 5 8

co
ve

r r
at

e

0.7

0.8

0.9

RTK-Sketch

(a) Cover rate varying α

0.05 0.1 0.2 0.5 0.8

co
ve

r r
at

e

0.7

0.8

0.9

RTK-Sketch

(b) Cover rate varying β

K
100 150 200 250

co
ve

r r
at

e

0.8

0.85

0.9

0.95
RTK-Sketch

(c) Cover rate varying K

w
100 150 200 250

co
ve

r r
at

e

0.84

0.86

0.88

0.9

0.92
RTK-Sketch

(d) Cover rate varying w

z
10 20 30 50 70

co
ve

r r
at

e

0.84

0.86

0.88

0.9

0.92

0.94 RTK-Sketch

(e) Cover rate varying z

1 2 5 8

tim
e/

se
c

0.01

0.02

0.03

0.04
RTK-Sketch

(f) Time varying α

0.05 0.1 0.2 0.5 0.8

tim
e/

se
c

0.014

0.016

0.018

0.02

0.022

0.024 RTK-Sketch

(g) Time varying β

K
100 150 200 250

tim
e/

se
c

0.015
0.02

0.025
0.03

0.035
0.04

RTK-Sketch

(h) Time varying K

w
100 150 200 250

tim
e/

m
s

1

10

102

103

104
RTK-Sketch
NAIVE

(i) Time varying w

z
10 20 30 50 70

tim
e/

m
s

1

10

102
103
104

RTK-Sketch
NAIVE

(j) Time varying z

1 2 5 8

sp
ac

e/
M

20

40

60

80
RTK-Sketch

(k) Space varying α

0.05 0.1 0.2 0.5 0.8

sp
ac

e/
M

47

47.5

48

48.5
RTK-Sketch

(l) Space varying β

K
100 150 200 250

sp
ac

e/
M

30

40

50

60

70

80
RTK-Sketch

(m) Space varying K

w
100 150 200 250

sp
ac

e/
M

50

100

150

200

250
RTK-Sketch
NAIVE

(n) Space varying w

z
10 20 30 50 70

sp
ac

e/
M

0

100

200

300

400

500 RTK-Sketch
NAIVE

(o) Space varying z

Fig. 4: Performance evaluation of RTK-Sketch.

TABLE I: Performance of LTR Model

ERR nDCG@10 nDCG

Local

Party A 0.596 0.757 0.807

Party B 0.620 0.746 0.807

Party C 0.514 0.645 0.750

Party D 0.554 0.754 0.796

Average 0.571 0.725 0.790

Local+

Party A 0.609 0.763 0.811

Party B 0.570 0.757 0.794

Party C 0.538 0.713 0.781

Party D 0.548 0.717 0.793

Average 0.566 0.738 0.795

Global 0.555 0.738 0.790

CS-F-LTR 0.580 0.756 0.798

B. Evaluation of RTK-Sketch

Impact of Parameter α, β and K. The impact of α is shown

in the first column of Fig. 4. We can find that with the increase

of α the cover rate also increases fast. With a relatively large

α, like α = 5, the cover rate will approach to 1 and its

growth will be slower. The results can guide us to choose

an appropriate but not too large α, as the time and space costs

will also increase linearly. The second column of Fig. 4 shows

the impact of β. We observe that the cover rate decreases with

larger β and setting β ≤ 0.2 would be a reasonable choice.

The time cost also decreases with larger β but the degree is not

obvious while the space cost remains the same. The impact of

K is in the third column of Fig. 4. We find that RTK-Sketch

tends to have better approximation with larger K. And the

time and space costs also increase linearly with K, which is

consistent with our complexity analysis.

Impact of Sketch Size. The impact of sketch size w and z
can be found in the last two columns of Fig. 4. About the

cover rate, we find that larger size of sketch can perform

better in finding the top-K relevant documents but there also

exists exception when z increases from 50 to 70. The possible

reason is that z controls the confidence of sketch results and

when it is large enough the randomness will take control. We

also compare RTK-Sketch with the NAIVE solution in time

and space costs. We can find that the acceleration of RTK-

Sketch is significant, from over 100 seconds to less than 10 ms

even for a single query. The space cost also decreases roughly

to 1/5 of the NAIVE solution. The results verify both the

effectiveness and efficiency of RTK-Sketch. We can conclude

that by choosing some appropriate parameters, the utility loss

brought by RTK-Sketch can be negligible.

Visualization of Sketch in LTR. We visualize different

strategies of sketches and the results are shown in Fig. 5. We

randomly sample 400 positive and negative instances in total,

and apply different sketches to evaluate the influence. To show

1137

-3 -1 1 3
-3

-1

1

3

(a) Without sketch

-3 -1 1 3

-3

-1

1

3

(b) Count sketch w=120, z1=10

-3 -1 1 3
-3

-1

1

3

(c) Count sketch w=60, z1=10

-3 -1 1 3
-3

-1

1

3

(d) Count sketch w=10, z1=10

-3 -1 1 3

-3

-1

1

3

(e) CM sketch w=120, z1=10

-3 -1 1 3

-3

-1

1

3

(f) Count sketch w=120, z1=5

-3 -1 1 3
-3

-1

1

3

(g) Count sketch w=120, z1=3

-3 -1 1 3
-3

-1

1

3

(h) Count sketch w=120, z1=1

Fig. 5: Visualization of different sketch strategies. We sample in total 400 positive (red circles, score = 1 or 2) and negative

(blue stars, score = 0) samples and embed them to 2D vectors.

the results more clearly, we embed the points into 2D plane

with TSNE. Fig. 5a shows the results without sketch and Fig.

5b corresponds to the strategy in CS-F-LTR. We can see that

the boundary is still discernible after applying Count sketch.

We also try the CM sketch with same parameter setting and the

results in Fig. 5e show similar performance to Count sketch.

With the decrease of hash range w, we observe from Fig. 5c

and 5d that the noise increases, indicating that the accuracy is

sensitive to the hash range. With a smaller hash range, more

terms will collide with each other, which results in inaccurate

TF and other features. However, with the decrease of number

of hash functions z1, we find that the results are more robust.

Even when z1 = 5 (Fig. 5f) or z1 = 3 (Fig. 5g), there is

still a clear boundary. The boundary becomes unclear until

z1 decreases to 1 (Fig. 5h). It verifies that with a fixed z, a

smaller z1 can still produce accurate features while the privacy

can be better preserved with more obfuscated terms. Overall,

it shows that the utility loss brought by sketching algorithms

to the conditional distribution in the classification task can be

negligible with relatively large w and z1.

C. Evaluation of CS-F-LTR

Main Results. In Table I, we record the results of Local,

Local+, Global and CS-F-LTR with 3 evaluation metrics. We

observe that CS-F-LTR outperforms Global and the averages

of Local and Local+ on all the 3 measurements. However,

we also find that it cannot always be beneficial to all the

parties. As we can see from the table that party A and B have

trained better local models than party C and D, which indicates

that the data quality of A and B are higher. In this case,

the improvement of performance for parties with low-quality

data is significant. But for parties with high-quality data there

is not always improvement, sometimes it even decreases the

performance. It reveals a paradox from cross-silo federated

0 0.5 0.01 0.001

m
et

ric

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
ERR
nDCG@10
nDCG
MAP

(a) Impact of privacy budget

Number of parties
1 2 3 4 5

m
et

ric

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 ERR
nDCG@10
nDCG
MAP

(b) Impact of number of parties

Fig. 6: Evaluation of privacy budget and number of parties.

learning, i.e., when the data quality is highly biased among

different parties, FL can be more beneficial to the parties with

low-quality data while even be harmful to the parties with

high-quality data. The challenge is unique in cross-silo settings

as in a cross-device setting each mobile user only has a small

amount of data (i.e., low-quality data) and the global model

can always be the best. How to address such fairness problem

in FL remains an open question.

Impact of Privacy Budget. The impact of privacy budget

is shown in Fig. 6a. We abuse ε = 0 to represent the case

that DP is not applied. We find surprisingly that with a small

noise injected to features (ε = 0.5), the performance can even

be better. The possible reason is that the noise is added only to

data with uncertain labels. Adding small noise can prevent the

model from overfitting and improve the generalization ability.

With the increase of noise, the performance starts to get worse,

but it can still be controlled.

Impact of Number of Parties. The impact of number of

parties can be found in Fig. 6b. We can see that nearly all

1138

the evaluation metrics increase with larger number of parties.

The nDCG@10 has an increase of 8% from single party to

5 parties, which verifies the effectiveness of CS-F-LTR. The

increase of nDCG is not significant due to that there are many

irrelevant documents for each query in test set. The ERR

decreases at first, and increases by 5% finally. The possible

reason is the imbalance of data which may influences some

specific metrics when the number of parties is small.

D. Summary

We find that RTK-Sketch is both effective and efficient. It

can decrease the querying time from over 100s to less than

10ms for a single query comparing with NAIVE solutions. We

can also see that CS-F-LTR has advantages over horizontally

FL (i.e., Global) and local training (i.e., the average of Local

and Local+). Although it can bring large improvement for

parties with low-quality data, it may be harmful to the parties

with high-quality data, especially when the divergence of

data quality among parties is large. The non-IID and fairness

problems will remain open questions for FL in the future.

VII. CONCLUSION

In this paper, we study learning to rank (LTR) in a cross-silo

federated learning (FL) setting and propose an FL framework,

CS-F-LTR, which can help enterprises build specialized doc-

ument retrieval systems collaboratively when each one only

has limited data. To address the efficiency issues, we first

propose a sketch and differential privacy based term frequency

querying approach which has guarantees on both privacy and

accuracy loss. Then we devise a new structure named RTK-

Sketch which can significantly improve the overall efficiency

of our algorithm. Finally, experiments on open dataset verify

the efficiency and effectiveness of our solution.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable sug-

gestions and comments. This work was partially supported

by the National Key Research and Development Program of

China under Grant No. 2018AAA0101100, the National Sci-

ence Foundation of China (NSFC) under Grant No. 61822201

and U1811463, the CAAI-Huawei MindSpore Open Funding

No. CAAIXSJLJJ-2020-020A, and the State Key Laboratory

of Software Development Environment Open Funding No.

SKLSDE-2020ZX-07. Yongxin Tong is the corresponding

author in this paper.

REFERENCES

[1] C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamil-
ton, and G. N. Hullender, “Learning to rank using gradient descent,” in
ICML, 2005, pp. 89–96.

[2] T. Liu, Learning to Rank for Information Retrieval. Springer, 2011.
[3] O. Chapelle and Y. Chang, “Yahoo! learning to rank challenge overview,”

in ICML, 2011, pp. 1–24.
[4] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:

Concept and applications,” ACM TIST, vol. 10, no. 2, pp. 12:1–12:19,
2019.

[5] M. Barbaro, T. Zeller, and S. Hansell, “A face is exposed for aol searcher
no. 4417749.” New York Times, 2006.

[6] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in FOCS, 1995, pp. 41–50.

[7] H. Pang, X. Ding, and X. Xiao, “Embellishing text search queries to
protect user privacy,” PVLDB, vol. 3, no. 1, pp. 598–607, 2010.

[8] M. Murugesan and C. Clifton, “Providing privacy through plausibly
deniable search,” in SDM, 2009, pp. 768–779.

[9] M. Gaboardi, E. J. G. Arias, J. Hsu, A. Roth, and Z. S. Wu, “Dual
query: Practical private query release for high dimensional data,” in
ICML, 2014, pp. 1170–1178.

[10] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting data
privacy in private information retrieval schemes,” J. Comput. Syst. Sci.,
vol. 60, no. 3, pp. 592–629, 2000.

[11] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[12] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order-preserving
encryption for numeric data,” in SIGMOD, 2004, pp. 563–574.

[13] W. Zhang, Y. Lin, S. Xiao, J. Wu, and S. Zhou, “Privacy preserving
ranked multi-keyword search for multiple data owners in cloud comput-
ing,” IEEE Trans. Computers, vol. 65, no. 5, pp. 1566–1577, 2016.

[14] S. Ji, J. Shao, D. Agun, and T. Yang, “Privacy-aware ranking with tree
ensembles on the cloud,” in SIGIR, 2018, pp. 315–324.

[15] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” CoRR, vol. abs/1610.05492, 2016.

[16] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017, pp. 1273–1282.

[17] P. Kairouz, H. B. McMahan, B. Avent et al., “Advances and open
problems in federated learning,” CoRR, vol. abs/1912.04977, 2019.

[18] K. Bonawitz, V. Ivanov, B. Kreuter et al., “Practical secure aggregation
for privacy-preserving machine learning,” in CCS, 2017, pp. 1175–1191.

[19] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private recurrent language models,” in ICLR, 2018.

[20] D. Jiang, Y. Song, Y. Tong, X. Wu, W. Zhao, Q. Xu, and Q. Yang,
“Federated topic modeling,” in CIKM, 2019, pp. 1071–1080.

[21] Y. Wang, Y. Tong, and D. Shi, “Federated latent dirichlet allocation: A
local differential privacy based framework,” in AAAI, 2020, pp. 6283–
6290.

[22] E. Kharitonov, “Federated online learning to rank with evolution strate-
gies,” in WSDM, 2019, pp. 249–257.

[23] S. Muthukrishnan, “Data streams: Algorithms and applications,” Foun-
dations and Trends in Theoretical Computer Science, vol. 1, no. 2, 2005.

[24] M. Charikar, K. C. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” Theor. Comput. Sci., vol. 312, no. 1, pp. 3–15, 2004.

[25] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[26] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: a sketch
framework for frequency estimation of data streams,” VLDB, vol. 10,
no. 11, pp. 1442–1453, 2017.

[27] C. Masson, J. E. Rim, and H. K. Lee, “Ddsketch: A fast and fully-
mergeable quantile sketch with relative-error guarantees,” VLDB, vol. 12,
no. 12, pp. 2195–2205, 2019.

[28] J. Li, Z. Li, Y. Xu, S. Jiang, T. Yang, B. Cui, Y. Dai, and G. Zhang,
“Wavingsketch: An unbiased and generic sketch for finding top-k items
in data streams,” in KDD, 2020, pp. 1574–1584.

[29] J. Jiang, F. Fu, T. Yang, and B. Cui, “Sketchml: Accelerating distributed
machine learning with data sketches,” in SIGMOD, 2018, pp. 1269–
1284.

[30] W. Zhu, P. Kairouz, H. Sun, B. McMahan, and W. Li, “Federated heavy
hitters discovery with differential privacy,” CoRR, vol. abs/1902.08534,
2019.

[31] C. Dwork, “Differential privacy,” in ICALP, 2006, pp. 1–12.
[32] T. Li, Z. Liu, V. Sekar, and V. Smith, “Privacy for free: Communication-

efficient learning with differential privacy using sketches,” CoRR, vol.
abs/1911.00972, 2019.

[33] S. E. Robertson, “Overview of the okapi projects,” Journal of Docu-
mentation, vol. 53, no. 1, pp. 3–7, 1997.

[34] J. M. Ponte and W. B. Croft, “A language modeling approach to
information retrieval,” in SIGIR, 1998, pp. 275–281.

[35] G. Cormode and S. Muthukrishnan, “Summarizing and mining skewed
data streams,” in SDM, 2005, pp. 44–55.

[36] T. Qin and T. Liu, “Introducing LETOR 4.0 datasets,” CoRR, vol.
abs/1306.2597, 2013.

1139

