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11 Abstract—General-purpose topic models have widespread industrial applications. Yet

12 high-quality topic modeling is becoming increasingly challenging because accurate

13 models require large amounts of training data typically owned bymultiple parties, who are

14 often unwilling to share their sensitive data for collaborative training without guarantees

15 on their data privacy. To enable effective privacy-preserving multiparty topic modeling,

16 we propose a novel federated general-purpose topic model named private and consistent

17 topic discovery (PC-TD). On the one hand, PC-TD seamlessly integrates differential privacy

18 in topic modeling to provide privacy guarantees on sensitive data of different parties. On

19 the other hand, PC-TD exploits multiple sources of semantic consistency information to

20 retain the accuracy of topic modeling while protecting data privacy. We verify the

21 effectiveness of PC-TD on real-life datasets. Experimental results demonstrate its

22 superiority over the state-of-the-art general-purpose topic models.

23 & n TOPIC MODELING is a powerful technique

24 for unsupervised analysis of large document

25 collections. It has been widely applied in tag

26recommendation, text categorization, opinion

27mining, and statistical language modeling. In fact,

28general-purpose topic models such as latent

29Dirichlet allocation (LDA)1 have become the de

30facto inmany industrial applications.2

31Despite its widespread adoption, topic model-

32ing faces a new challenge in the era of big data.
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33 Learning an accurate generic-purpose topicmodel

34 requires large amounts of training data, which is

35 typically owned bymultiple industrial parties. For

36 example, several hospitals need to categorize

37 their medical records by topic modeling. Since

38 these data may contain sensitive information,

39 data owners are usually reluctant to share their

40 data for collaborative topic model learning with-

41 out guarantees on their data privacy. The enforce-

42 ment of the General Data Protection Regulationy

43 further sharpens the need for privacy-preserving

44 multiparty topic modeling, since collaborative

45 modeling without privacy protection may now

46 even be considered illegal.

47 A conceptual solution to privacy-preserving

48 multiparty machine learning is federated learn-

49 ing,3–5 which aims to provide quantified privacy

50 guarantees such as differential privacy,6 while

51 still allowing effective collaborative model train-

52 ing among multiple parties. The principle to

53 ensure differential privacy is to add controlled

54 noise to the raw data, which may impair the

55 accuracy of model learning. Hence, remedies to

56 recover model accuracy are also necessary.

57 Despite the generic concept, it needs dedicated

58 technical design to realize federated learning of

59 topic models. This is because there are no uni-

60 versal data perturbation mechanism and model

61 accuracy recovery methods. Hence, new techni-

62 ques tailored for topic models are compulsory.

63 In this article, we propose Private and Consis-

64 tent Topic Discovery (PC-TD), a new federated

65 general-purpose topic model. To protect data pri-

66 vacy, we devise a data perturbation mechanism

67 that ensures differential privacy and can be seam-

68 lessly integrated into topic modeling. To retain

69 model accuracy, we rely on two observations.

70 First, general-purpose topic models discover

71 topics solely based onword co-occurrence in doc-

72 ument without considering other semantic rela-

73 tions of linguistic phenomena. Thus, wemodel the

74 linguistic phenomenon as semantic unit whose

75 content is generated by a single topic to incorpo-

76 rate the local semantic consistency into topic

77 modeling. Second, external knowledge base can

78 improve the topical coherency and interpretabil-

79 ity. Thus, a flexible mechanism is proposed to

80introduce anyword relation of external knowledge

81base into the procedure of topic modeling to

82ensure the global semantic consistency. The main

83contributions of this article are as follows.

84� We propose a novel federated general-pur-

85pose topic model named PC-TD, which effec-

86tively protects data privacy with proven

87guarantees.

88� We design techniques to retain the accuracy

89of topic modeling by considering global and

90local semantic consistency.

91� We conduct extensive experiments on real-

92world datasets to evaluate the proposed

93methods. The results demonstrate the valid-

94ity and superiority of PC-TD.

95Compared to our preliminary version, this arti-

96cle makes the following new contributions. 1) We

97study the federated scenario of topic modeling,

98where documents are owned by multiple indus-

99trial parties. 2) We extend the standalone topic

100modeling method to a federated framework. 3)We

101conduct new evaluations on real-world dataset.

102The rest of this article is organized as follows. In

103the “Related Work” section, we review the related

104work. Then, we elaborate the technical details of

105PC-TD in the “Private andConsistent Topic Discov-

106ery” section. We present the experimental evalua-

107tions in the “Experiments” section and, finally,

108conclude this article.

109RELATED WORK
110In this section, we briefly summarize the

111related work from the following three fields: fed-

112erated learning, topic modeling, and differential

113privacy.

114Federated Learning

115Federated learning is a privacy-preserving

116collaborative learning paradigm, which can co-

117construct the model with multiple participants.

118During the training process, the data privacy of

119participants can be held. Federated learning is pro-

120posed by Google7 for training models collabora-

121tively on Android mobile phones and extended by

122Yang et al. in 2019.3 Because of the reasonable pri-

123vacy preserving property, federated learning has

124been applied gradually to industrial applications

125such as languagemodeling ofmobile keyboards.y
https://gdpr-info.eu/
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126 Topic Modeling

127 Topicmodeling8 aims to find a series of abstract

128 “topics” in a set of documents. Within the topic

129 modeling framework, we can represent each docu-

130 ment by the topics and cluster these documents

131 according to their respective topic distributions.

132 Research on topic modeling dates back to the

133 latent semantic analysis (LSA)9 which is a model

134 for excavating the latent association between the

135 text and the words. To address the statistical

136 unsoundness of LSA, a generative latent-variable

137 model called probabilistic latent semantic analysis

138 (PLSA) is proposed,10 where the latent variables

139 are topics in documents. As an improvement of

140 PLSA, latent Dirichlet allocation (LDA)1 is a more

141 general Bayesian probabilistic topic model, which

142 models each document as a multimembership

143 mixture of K corpus-wide topics, and each topic

144 as a multimembership mixture of the terms in the

145 corpus vocabulary. By applying additional con-

146 straints on the basic LDA, more variants of LDA

147 such as Sentence LDA11 and Labeled LDA12 have

148 been proposed. These topic modeling methods

149 have been proved their applicability in industry

150 and have been successfully applied in collabora-

151 tive filtering for generating personalized recom-

152 mendations in Google News2 and real-time Q&A

153 systems in Baidu.13 However, with the popularity

154 of these two general-purpose topic models in

155 industry, little work has been done to further

156 enhance them by fixing the challenge that is dis-

157 cussed in the introduction.

158 Differential Privacy

159 Differential privacy6 is a formal definition of

160 the privacy properties of data analysis algo-

161 rithms. It is defined in terms of the application-

162 specific concept of adjacent databases. In this

163 article, the training dataset is a set of docu-

164 ments. Thus, we say that two of these datasets

165 are adjacent if they differ in a single entry, that

166 is, if one word is present in one document in the

167 first dataset and absent in the other.

168 Definition 1 (ð�; dÞ-differential privacy). A ran-

169 domized mechanism M : D ! R with domain

170 D and range R satisfies ð�; dÞ-differential privacy
171 if for any two adjacent inputs d; d0 2 D and for

172 any subset of outputs SzR it holds that

Pr½MðdÞ 2 S� � e�Pr½Mðd0Þ 2 S� þ d:
174174

175

176We use the variant of differential privacy

177introduced by Dwork6, which allows for the pos-

178sibility that plain �-differential privacy is broken

179with probability d. Intuitively, the definition

180states that the output probabilities must not

181change very much when a single individual’s

182data is modified, thereby limiting the amount of

183information that the algorithm reveals about any

184one individual.

185A common paradigm for approximating a

186deterministic real-valued function f : D ! R
187with a differentially private mechanism is via

188additive noise calibrated to f ’s sensitivity Sf ,

189which is defined as the maximum of the Euclid-

190ean norm jjfðdÞ � fðd0Þjj2 where d and d0 are adja-

191cent inputs. For instance, the Gaussian noise

192mechanism is defined by

MðdÞ , fðdÞ þ N ð0; S2
f � s2Þ (1)

194194

195where Nð0; S2
f � s2Þ is the normal distribution

196with mean 0 and standard deviation Sfs.

197PRIVATE AND CONSISTENT TOPIC
198DISCOVERY
199We propose a generative model to discover

200the topics of documents. As shown in Figure 1,

201to achieve the local semantic consistency, the

202PC-TD organizes the words of documents into

203semantic units. We use a federated framework to

204infer the latent parameters based on the seman-

205tic units and protect the data privacy of docu-

206ments with Gaussian noise. On the other hand,

207we introduce external knowledge base to help us

208improving the effectiveness of topic modeling.

209We get the word similarity matrix via the exter-

210nal knowledge base and integrate it into the M-

211step to ensure the global semantic consistency.

Figure 1. Federated framework of PC-TD.
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212 In this section, we first introduce the assump-

213 tions and definition of semantic units of ourmodel

214 in the “Model Assumptions” section. Then,wepro-

215 pose the federated inferencemethod of ourmodel

216 with differential privacy in the “Federated Infer-

217 ence Framework” section. Next, we consider the

218 global semantic consistency by introducing the

219 similarity of words in the “Global Semantic Consis-

220 tency” section. Finally, the analysis of privacy is

221 provided in the “Privacy Analysis” section.

222 Model Assumptions

223 We utilize d to denote a “document,” w a

224 “word,” and z a latent topic. Based on these nota-

225 tions, we introduce the following probabilities:

226 pðdiÞ is the probability of a particular document di ,

227 pðwjjzkÞ is the conditional probability of a specific

228 wordwj conditioned on the latent topic variable zk
229 and pðzkjdiÞ is a document-specific probability dis-

230 tribution over the latent topic zk. A subtle issue of

231 the assumption of PC-TD is that we need to con-

232 sider the local linguistic phenomena for the local

233 semantic consistency. Therefore, we introduce a

234 concept of semantic unit, whose contents are gener-

235 ated by a single topic. Based upon the application

236 scenarios, the semantic unit can be flexibly inter-

237 preted as n-gram, sentence, paragraph, etc. We

238 present the generative process of PC-TD as follows:

239 (1) Select a document di with probability pðdiÞ.
240 (2) For each semantic unit sij in di, pick a latent

241 topic zk with probability pðzkjdiÞ.
242 (3) For each position in sij, generate a word w

243 with probability pðwjzkÞ.

244 Translating the generative process into com-

245 plete data logarithm likelihood results in the fol-

246 lowing expression:

Lðd; s; zÞ ¼
XD
i¼1

XSi
j¼1

XZ
k¼1

log pðdi; sij; zkÞ

¼
XD
i¼1

XSi
j¼1

XZ
k¼1

log
�
pðdiÞpðzkjdiÞpðsijjzkÞ

�
(2)

248248

249 where D is the number of documents, Si is the

250 number of semantic units in the ith document,

251 and Z is the number of topics. Essentially, to

252 obtain (2) one has to sum over the possible

253choices of zk. Hence, the goal of our model is to

254identify conditional probability mass functions

255such that the document-specific word distribu-

256tions are as faithfully as possible approximated

257by convex combinations of these topics.

258Federated Inference Framework

259We now propose a federated EM algorithm to

260infer the latent parameters of PC-TD.

261E-step In the E-step, the posterior estimation of

262the latent topic zk of semantic unit sij in docu-

263ment di is straightforwardly obtained as follows:

pðzkjdi; sijÞ ¼ pðzkjdiÞpðsijjzkÞPZ
k0¼1 pðzk0 jdiÞpðsijjzk0 Þ

(3)

265265

266where pðsijjzkÞ ¼
QW

w¼1 pðwjzkÞNijw and Nijw is the

267number of w in sij.

268In this step, we will access the training data by

269counting the number ofNijw. Thus, perturbingNijw

270leads to perturbing the parameters of interest. To

271achieve this goal, we add a Gaussian noise toNijw

N̂ijw ¼ Nijw þV (4) 273273

274

275whereV � Nð0; ðDNÞ2s2Þ andDN is the sensitivity.

276Since we say two of these datasets are adja-

277cent if one word is present in one document in

278the first dataset and absent in the other, it is

279obviously that the sensitivity DN ¼ 1.

280After we add the noise to statistics Nijw, we

281can calculate the perturbed posterior estimation

r̂ijk ¼ p̂ðzkjdi; sijÞ

¼ pðzkjdiÞ
QW

w¼1 pðwjzkÞN̂ijwPZ
k0¼1 pðzk0 jdiÞ

QW
w0¼1 pðw0jz0kÞN̂ijw

: (5)
283283

284

285The E-step can be done in each party locally.

286M-step Next, we introduce the formulas of infer-

287ence in the M-step. In this step, we have to maxi-

288mize the expected logarithm likelihood, which is

289defined as follows:

Q ¼
XD
i¼1

XSi
j¼1

XZ
k¼1

r̂ijklog pðdi; sij; zkÞ

¼
XD
i¼1

XSi
j¼1

XZ
k¼1

r̂ijk

�
log pðzkjdiÞ

þlog pðsijjzkÞ þ log pðdiÞ
�
:

(6)

291291
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292 In order to take care of the normalization con-

293 straints, (6) has to be augmented by appropriate

294 Lagrange multipliers. Maximization of the aug-

295 mented Q with respect to the probability mass

296 functions leads to the following set of stationary

297 equations:

pðzkjdiÞ ¼
PSi

j¼1 r̂ijkPSi
j¼1
PZ

k0¼1 r̂ijk0
(7)

299299

300

pðwjzkÞ ¼
PD

i¼1
PSi

j¼1 Nijwr̂ijkPD
i¼1
PSi

j¼1 Nijr̂ijk
(8)

302302

303 where Nijw is the number of w in the semantic

304 unit sij and Nij is the number of words in the

305 semantic unit sij.

306 From (7), we can find that pðzkjdiÞ can also be

307 calculated in each party locally. All terms

308 needed in pðzkjdiÞ can be obtained in their own

309 party. Thus, we focus on the second formula,

310 pðwjzkÞ.
311 The same as E-step, we only access training

312 data by counting the number of words in the

313 semantic units of some documents. Thus, we

314 can use the same perturbing method as (4) in

315 this step and get the perturbed probability

316 p̂ðwjzkÞ

p̂ðwjzkÞ ¼
PD

i¼1
PSi

j¼1 N̂ijwr̂ijkPD
i¼1
PSi

j¼1 r̂ijk
PW

w¼1 N̂ijw

: (9)
318318

319

320 We can find that the calculation of p̂ðwjzkÞ will

321 use the statistics of all the documents. Thus, it

322 should be done by some communications of the

323 parties and the server.

324 Specifically, a party t should upload the fol-

325 lowing value:

Mtðw; zkÞ ¼
XD
i¼1

XSi
j¼1

N̂ijwr̂ijk: (10)
327327

328

329 For the server, after getting the statistics

330 from all the parties, it can calculate the distribu-

331 tion of topic to word as follows:

p̂ðwjzkÞ ¼
Pn

t¼1 Mtðw; zkÞPn
t0¼1

PW
w0¼1 Mt0 ðw0; zkÞ

(11)

333333

334 where n is the number of participants.

335Federated Framework The whole framework

336is summarized in Algorithm 1. As the initializa-

337tion, each party randomly generates pðzkjdiÞ and
338pðwjzkÞ (line 1). After that, for each iteration i,

339each party will first get r̂ijk in lines 4-7 (E-step).

340In lines 8-10, they will calculate MtðwjzkÞ and

341push it to server. The M-step will be finished on

342server by collecting MtðwjzkÞ and calculating

343p̂ðwjzkÞ (line 11). Finally, the server will push

344p̂ðwjzkÞ to every party in lines 12–13. Note that

345our algorithms will run for a prespecified num-

346ber of iterations T , and with a prespecified s;

347this ensures a certain level of ð�; dÞ guarantee in

348the released expected sufficient statistics from

349Algorithm 1.

350Algorithm 1. Federated Framework of PC-TD
3511: foreach party t do

3522: Initialize pðzkjdiÞ; pðwjzkÞ randomly;

3533: for i ¼ 1; 2; � � � ; T do

3544: foreach party t do

3555: Nijw the number of words w in each

356semantic units sij from D ;

3576: N̂ijw add Gaussian noiseNð0; s2Þ toNijw ;

3587: Get r̂ijk according to (5);

3598: Get pðzkjdiÞ according to (7);

3609: GetMtðwjzkÞ according to (10);

36110: pushMtðwjzkÞ to server;

36211: Merge MtðwjzkÞ from every party and get

363p̂ðwjzkÞ according to (11);

36412: foreach party t do

36513: push p̂ðwjzkÞ to party t;

366Global Semantic Consistency

367The previous sections illustrate the local

368semantic consistency and federated framework

369of PC-TD. In this section, we discuss how to

370ensure global semantic consistency in PC-TD

371and present an approach to adapt the federated

372inference framework presented in the previous

373section. We refer to global semantic consistency

374as word relations which can be obtained from

375external sources such as human-engineering

376ontology and automatically built knowledge

377base. In this article, we use the word embedding

378as an example to demonstrate how to obtain

379global semantic information.

380Word embedding is a technique of language

381modeling and feature learning in natural lan-

382guage processing where words or phrases from

383the vocabulary are mapped to vectors of real
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384 numbers. We can use a popular method, Word2-

385 vec,14 to get such a mapping. After we get the

386 vectors of words, the similarity of two words can

387 be calculated as follows.

388 We denote the similarity of two word vectors

389 va and vb as Rab. It can be calculated by cosine

390 similarity

Rab ¼ va � vb
jjvajj2jjvbjj2

: (12)392392

393

394 We proceed to discuss the strategy of utiliz-

395 ing R in PC-TD. We want the probability pðwjzkÞ
396 to be consistent with word relations stored in R.

397 Here, we use a quadratic-form influence term

398 with a tradeoff factor t. Formally, for a given R,

399 we adjust the topic-word distribution P ðwjzkÞ as
400 follows:

p0ðwjzkÞ  pðwjzkÞ þ t
pðwjzkÞ

PW
i¼1 RiwpðijzkÞ

P ð�jzkÞTRP ð�jzkÞ
:

(13)402402

403

404 In our federated framework, we can do this

405 optimization on server and push the p0ðwjzkÞ to
406 each party. After we get p0ðwjzkÞ, it should be nor-

407 malized to ensure that
P

w p0ðwjzkÞ ¼ 1. It is easy

408 to see that the adjusted p0ðwjzkÞ is influenced by

409 the other words related to w in R. In practice,

410 (13) is applied after each private EM iteration

411 until convergence is achieved. Since we are only

412 interested in relatively frequent words from the

413 vocabulary, R will be a sparse matrix and hence

414 computations of R are efficient in practice.

415 Privacy Analysis

416 In this section, we present the privacy analy-

417 sis of PC-TD. Since PC-TD uses EM algorithm to

418 infer the latent parameters, we use the Moments

419 Accountant (MA) composition method15 to

420 account the privacy loss incurred by successive

421 iterations of our EM algorithm.

422 The MA method provides tighter guarantees

423 than linear strong composition. InMAmethod, the

424 log-moments function of the privacy loss random

425 variable is introduced to track the privacy loss

426 incurred by applying mechanisms M1; � � � ;MT

427 successively to a datasetD.
428 Specifically, for two neighboring databases

429 D;D0, it defines the privacy loss of a mechanism

430 M on an outcome o 2 R as

LMðD;D0; wÞ ¼ log
Pr½MðD; wÞ ¼ o�
Pr½MðD0; wÞ ¼ o� : (14) 432432

433

434In PC-TD, each iteration can be regarded as a

435mechanism Mt and the log-moments function aMt

436of a mechanismMt is defined as

aMt ¼ supD;D0;wlogE½expð�LMtðD;D0; wÞÞ�:
(15)

438438

439

440Since each iteration of PC-TDM1;M2; � � � ;MT

441adds noise independently, the log moment gener-

442ating function has the following property accord-

443ing to15

aMð�Þ �
XT
t¼1

aMtð�Þ: (16)
445445

446

447Additionally, given a log moment function

448aM,15 shows that the corresponding mechanism

449M satisfies a range of privacy parameters ð�; dÞ
450with the following equation:

d ¼ min
�

expðaMð�Þ � ��Þ: (17) 452452

453

454These properties immediately suggest a pro-

455cedure for tracking privacy loss incurred by a

456combination of mechanisms ðM1; � � � ;MT Þ on a

457dataset.

458By using these two properties, we can get our

459main theorem.

460Theorem 1. For any � < QðT Þ, PC-TD is ð�; dÞ-dif-
461ferentially private for any d > 0 if we choose

s � Q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T log ð1=dÞp
�

�
: 463463

464

465Proof. From the lemma 3 in M. Abadi et al.,15 the

466log-moments function of the Gaussian mecha-

467nismM applied to a query with sensitivity D �
4681 is aMð�Þ � �ð�þ1Þ

2s2
. Thus, it can be bounded as

469follows að�Þ � T�2=s2. According the two prop-

470erties, to guarantee Algorithm1 tobe ð�:dÞ-differ-
471entially private, it suffices that

T�2=s2 � ��=2
473473

474

expð���=2Þ � d:
476476

477

478In addition, we need � � s2log ð1=sÞ.
479It is easy to verify that when � ¼ QðT Þ, we

480can satisfy all these conditions by setting

481s ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log ð1=dÞ
p

� Þ. tu
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482 EXPERIMENTS
483 In this section, we evaluate the performance of

484 PC-TD. In the “Experimental Setup” section, we

485 describe the experimental setup. In the “Privacy

486 Evaluation” section, we demonstrate the impact

487 of privacy. Finally, we demonstrate the effective-

488 ness of PC-TD with quantitative evaluation in the

489 “Performance Evaluation” section.

490 Experimental Setup
491 Dataset We evaluate our method on a corpus

492 collected from New York Times.z We sample 500

493 documents from the news of June 26–30, 2016 as

494 our training dataset. After removing the stop-

495 words, we get 18,286 unique words.

496 Metric We use the perplexity of documents

497 and average topic coherence to evaluate the per-

498 formance of topic models. Perplexity is an

499 information-theoretic measure of the predictive

500 performance of probabilistic models which is

501 commonly used in the context of language

502 modeling. The perplexity of a topic model on a

503 set of documents is defined as

perplexity ¼ exp � 1PD
i¼1 jdijXD

i¼1

X
w2di

ln
XZ
k¼1

pðwjzkÞpðzkjdiÞ
!!

:

505505

506 Topic coherence scores a single topic by measur-

507 ing the semantic similarity between high scoring

508 words in the topic. We use UMass metric to evalu-

509 ate the topic coherence, which is defined by

coherenceðZÞ ¼
X

ðwi;wjÞ2Z
log

Dðwi;wjÞ þ 1

DðwiÞ
511511

512 where Dðwi; wjÞ counts the number of docu-

513 ments containing words wi and wj, and DðwiÞ
514 counts the number of documents containing wi.

515 Implementation To simulate the federated

516 scenario, we assume there are three participants

517 t1; t2, and t3 and split the dataset into three parts

518 according to their release time. Specifically,

519 t1; t2, and t3 store 85, 165, and 252 documents,

520 respectively.

521For PC-TD, we split each document into sev-

522eral sentences. Then, we consider each three

523words in these sentences as a semantic unit. To

524achieve the global semantic consistency, we use

525a pretrained Word2vec by Google.14

526We tune the parameter t which serves as the

527weight parameter for global semantic consis-

528tency. When t increases from 0.1 to 0.5, the log

529likelihood of holdout data first increases and then

530falls. We observe that the best performance is

531achieved when t is set to 0.3, showing that 0.3

532strikes a good balance for the word co-occurrence

533and global semantic consistency. Hence, t is set to

5340.3 by default in our experiments. The relatively

535small value of t indicates that PC-TD primarily

536relies on the word co-occurrence information in

537the training data and the word relation informa-

538tion from other sources can achieve a slight

539improvement.

540We compare PC-TD with the typical general-

541purpose topic model LDA to verify its effective-

542ness. We use Markov chain Monte Carlo sam-

543pling method to train an LDA model, with

544parameter a ¼ Z=50;b ¼ 0:01.

545Privacy Evaluation

546We first demonstrate the impact of privacy.

547Figure 2 shows the tradeoff between � and per-

548word perplexity on our dataset for the different

549methods under a variety of conditions. As

550expected, the perplexity gradually decreases as

551the number of iterations increases in all cases.

552Besides, as the deviation of noise increases, PC-

553TD needs more iterations to converge. When

554s ¼ 0:25, PC-TD converges within 35 iterations

555on our data set. However, when s ¼ 0:3, the

Figure 2. Convergence curves of varying s.

z
https://www.kaggle.com/nzalake52/new-york-times-articles
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556 convergence is slower. It indicates that the

557 smaller the privacy budget is, the slower the

558 algorithm converges. When s ¼ 0:25, the con-

559 vergence of PC-TD and LDA are slightly differ-

560 ent. Notice that smaller deviation means larger

561 privacy budget and greater risk of privacy dis-

562 closure. Thus, we choose s ¼ 0:25 for our

563 method as a balance of privacy protection and

564 effectiveness.

565 Performance Evaluation

566 In this section, we evaluate the performance

567 of PC-TD by perplexity and topic coherence.

568 To verify the effectiveness of federated topic

569 discovery, we compare PC-TD trained by three

570 participants with those trained by a single par-

571 ticipant relying on its own data. The experimen-

572 tal result of perplexity is shown in Figure 3. We

573 observe that PC-TD achieves the lowest perplex-

574 ity by utilizing the documents from all partici-

575 pants. This observation demonstrates it is

576 meaningful to alleviate data scarcity with feder-

577 ated topic discovery and PC-TD is an effective

578 method.

579 As the amount of topics ranges from 10 to 50,

580 the experimental result of topic coherence is

581 shown in Figure 4. We can observe that the aver-

582 age topic coherence of all the three topic models

583 gradually increases. This phenomenon indicates

584 that a fairly large number of topics will provide

585 better fit of the data. Among the three compared

586 methods, PC-TD without perturbation performs

587 the best. As the amount of topics increases, the

588 perturbed PC-TD performs gradually better than

589 LDA. It further illustrates that the PC-TD can

590 achieve similar or even better performance than

591 LDA with privacy protection.

592CONCLUSION
593In this article, we propose a federated topic

594modeling approach named PC-TD to discover

595latent topics with semantic consistency and pri-

596vacy guarantee. PC-TD utilizes a federated infer-

597ence algorithm with differential privacy to ensure

598the privacy of sensitive documents for each party.

599We implement the global semantic consistency by

600the prior knowledge about word relations. Mean-

601while, in light of the existence of semantic units

602such as sentences, PC-TD seamlessly integrates

603such local semantic consistency during its genera-

604tion process. Experimental results on real data-

605sets show that our approach outperforms the

606conventional LDA in terms of both privacy and

607performance.
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