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Abstract. Federated learning is a new learning paradigm that jointly
trains a model from multiple data sources without sharing raw data.
For the practical deployment of federated learning, data source selec-
tion is compulsory due to the limited communication cost and budget in
real-world applications. The necessity of data source selection is further
amplified in presence of data heterogeneity among clients. Prior solutions
are either low in efficiency with exponential time cost or lack theoretical
guarantees. Inspired by the diminishing marginal accuracy phenomenon
in federated learning, we study the problem from the perspective of sub-
modular optimization. In this paper, we aim at efficient data source se-
lection with theoretical guarantees. We prove that data source selection
in federated learning is a monotone submodular maximization problem
and propose FDSS, an efficient algorithm with a constant approximate
ratio. Furthermore, we extend FDSS to FDSS-d for dynamic data source
selection. Extensive experiments on CIFAR10 and CIFAR100 validate
the efficiency and effectiveness of our algorithms.
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1 Introduction

Federated learning (FL) [3, 13] is an emerging distributed learning paradigm
among multiple data sources, where a global model is trained collaboratively
without sharing their raw local data. It has been applied in various applications
such as cross-hospital medical image classification [13], next-word prediction on
smartphones [3,7], information retrieval [10,11], etc. In practice, federated learn-
ing often relies on a selective subset of data sources rather than the entire feder-
ation. Data source selection, also known as client selection [1], is compulsory due
to the massive communication overhead between the data owners (i.e. clients)
and the server, or simply the budget limit to cover all data sources [2, 3, 13].
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The necessity of data source selection also arises from the heterogeneity of data,
whose partition may significantly vary in label distribution and data quality [5].

Prior data source selection methods in federated learning fall into two cate-
gories. The first category focuses on evaluating every data source from a theoret-
ical perspective such as the Shapley value [5, 8]. These schemes ensure optimal
selection, yet at the cost of exponential time complexity, which is prohibitive
for practical deployment. The second category exploits heuristics or back-box
optimization for selection, which tend to be more efficient, but are prone to low
accuracy in case of data heterogeneity. For example, the naive FedAvg [3] adopts
a simple random sampling strategy. Others utilize local gradient information [1,2]
to approximate the contributions of participants. These solutions lack theoretical
guarantees and incur severe performance degradation on heterogeneous data.

In this paper, we aim at efficient data source selection with theoretical guar-
antees. Our solution is motivated by the empirical observation that the accuracy
of deep learning models tends to increase logarithmically with the amount of
training samples [9]. Such phenomena inspire us to analyze the data source se-
lection problem in the lens of monotone submodular maximization [6]. Our main
contributions and results are summarized as follows.

– We theoretically prove that data source selection in federated learning aiming
at generalization error minimization can be converted to monotone submod-
ular maximization. To the best of our knowledge, this is the first submodu-
larity analysis directly on the generalization error in federated learning.

– We design an efficient data source selection algorithm called FDSS with
an approximate ratio of 1 − 1

e , which can make a better trade-off between
accuracy and efficiency. We further propose an extension FDSS-d for data
source selection with dynamic participants availability.

– Extensive evaluations on real datasets show that our proposed algorithms
outperform the state-of-the-arts [2,5] in terms of test accuracy and commu-
nication rounds on heterogeneous data.

2 Problem Statement

2.1 Data Source Selection in Federated Learning

We consider federated learning of model ω over a federation F = {P1, P2, · · · , PN}
of N data sources, where Pi denotes the i-th data source. Pi holds a set of ni data
samples Xi = {xi,1, xi,2, · · · , xi,ni}. Each Xi is independently and identically
drawn from a prior distribution πi. A common objective of federated learning
is to minimize the expected generalization error Lg(π, ω) = E[Lπ(ω) − LP (ω)]

on the joint distribution π =
∏N

i=1 πi. LP (ω) =
∑N

i=1
ni

n LPi
(ω) represents the

overall empirical error and LPi(ω) is the local empirical error of data source Pi.
We are interested in selecting a subset F ⊂ F for federated learning due to

the limited budget to recruit all data sources in real-world applications [1–3,8].
We quantify the contribution of a subset F by the evaluation function below.

g(F ) = Lg(π, ω0)− Lg(π, ωF ) (1)
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where ωF =
∑

Pi∈F
ni

n ωi is the aggregated model parameter from F , and ω0 is
the initial model parameter i.e. when F = ∅. Given the evaluation function, we
now define the data source selection problem in federated learning.

Definition 1. Given a federation F , an evaluation function g, and a cardinality
constraint c, we define the static data source selection problem as:

max
F⊂F

g(F ) s.t.|F | ≤ c (2)

Further assume a time sequence t = 1, 2, · · · , T . Let the available data sources
at time t be the subset Ft ⊂ F . We can define the dynamic data source selection
problem as

max
∑

Ft⊂Ft

g(Ft) s.t.|Ft| ≤ c,∀t = t0, t1, · · · , T (3)

where Ft represents the selected subset at t.

2.2 Submodularity Analysis of Data Source Selection

To analyze the submodularity of the function g, the key idea is to harness the
information-theoretic bound [12] for the expected generalization error in feder-
ated learning. Our main claim is the following.

Theorem 1. If for each data source Pi, ni = n, πi = N (ν, σ2
i Id) and σ

2
i −σ2

j ≤
1
2σ

2
j for all i ̸= j, then the evaluation function g(F ) in Eq. (1) is both monotone

and submodular.

Proof. We first estimate the generalization error using the bounds in [12]:

1

n

∑
Pi∈F

ni∑
j=1

ψ∗−1
i+ (I(xi,j ;ωF )) ≤ Lg(π, ωF ) ≤

1

n

∑
Pi∈F

ni∑
j=1

ψ∗−1
i− (I(xi,j ;ωF )) (4)

where I(xi,j ;ωF ) refers to the mutual information of model parameter wF and
local data xi,j , ψ+ : [0, b+) → R and ψ− : [0, b−) → R are convex functions.
Based on the assumptions of ni = n and πi = N (ν, σ2

i Id), we can get Lg(π, ωF ) =∑
Pi∈F

2dσ2
i

k2n . Next, we prove g(F ) is monotone. Let F be a subset of F and
|F | = k (k > 1), for any Pj such that Pj ̸∈ F :

g(F ∪ Pj)− g(F ) ≥ 2d(2k + 1)σ2
min − 2dkσ2

max

k(k + 1)2n
≥ 2d(k + 2)σ2

max

3k(k + 1)2n
≥ 0 (5)

where σmax(σmin) denotes the maximum(minimum) across all variances. The
third inequality results from the bounded data variance of different data sources.
Finally, we prove the submodularity of g(F ). Let ∆j

F = g(F ∪ Pj) − g(F ) and
F ′ = F − Pk(Pk ∈ F ),

∆j
F ′ −∆j

F = (
∑

Pi∈F ′

2d(2k − 1)σ2
i

k2(k − 1)2n
−

2dσ2
j

k2n
)− (

∑
Pi∈F

2d(2k + 1)σ2
i

k2(k + 1)2n
−

2dσ2
j

(k + 1)2n
)

≥ 2d(6k2 − 2)σ2
min

k2(k − 1)(k + 1)2n
− 2d(4k + 2)σ2

max

k2(k + 1)2n
≥

2k + 2
3

k2(k − 1)(k + 1)2n
2dσ2

max ≥ 0

By the arbitrariness of Pk, we can derive the submodularity of g(F ).
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Fig. 1. Illustration of federated learning with data source selection.

3 Data Source Selection Algorithms

Inspired by the submodularity analysis in Sec. 2.2, we devise two greedy data
source selection algorithms with constant approximation ratio. The data source
selection algorithms can be seamlessly integrated into mainstream federated
learning algorithms (see Fig. 1). For ease of presentation, we explain our data
source selection algorithms on top of FedAvg [3], but they also function with
more advanced federated learning algorithms.

3.1 Static Data Source Selection

As previously mentioned, the monotone submodular maximization nature of the
problem ensures a constant approximation ratio by greedy selection. To further
accelerate the selection process, we also exploit lazy evaluation and approximate
the aggregated model. We would like to highlight three aspects of our proposed
static algorithm FDSS.

– Greedy Selection. The server first initializes ρ as a descending list, and
sets the global model and selected federation F to ω0 and ∅. Then the algo-
rithm iteratively adds data sources to the federation until c data sources are
selected. Let the marginal benefit of g be ∆(Pj |F ) = g(F ∪ Pj) − g(F ). In
each round, the server computes ∆(Pj |F ) and selects the data source that
maximizes it, i.e., F = F ∪ {argmaxPi ̸∈F ∆(Pi|F )}. Afterwards, the server
adds the data source to the federation and aggregates global model.

– Lazy Evaluation. We use lazy evaluation [4] to accelerate computing the
marginal benefit ∆(Pj |F ). Note that the marginal benefit of any data source
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Pj is monotonically non-increasing during iteration. Hence, we maintain an
upper bound list ρ of ∆(Pj |F ) sorted in descending order. In each iteration,
we extract the maximal element Pl from the list ρ and update its benefit.
If the updated value is the largest in the current list ρ, submodularity will
ensure that the marginal benefits of other data sources are lower than Pj .

– Approximation of Aggregated Model. Note that computing ∆(Pj |F )
in each iteration requires calculating g(Fk ∪ Pj) for every Pj ̸∈ F . However,
training a new federated model is time-consuming. For further acceleration,
we approximate the federated model by aggregating the trained local model
and calculating the accuracy on the global validation set V .

Approximation Ratio and Time Complexity. Assume F ∗ = argmax
|F |≤c

g(F )

and Fc is the final set in our selection algorithm. According to [6], the greedy
selection incurs g(Fc) ≤ (1− 1

e )g(F
∗) theoretically. Let the size of global valida-

tion set is m. Then the total time complexity of FDSS without lazy evaluation
is m(N +N − 1+ · · ·+N − c+1) = c 2N−c+1

2 = O(N2) if c = O(N). Therefore,
the worst-case time complexity of FDSS with the accelerations is O(N2).

3.2 Dynamic Data Source Selection

Now we extend our FDSS algorithm to the dynamic setting. That is, data source
selection is performed in a time sequence t = 1, 2, · · · , T . A naive solution is to
repeated perform the static data source selection algorithm i.e. FDSS in each
round. However, this solution can be inefficient because multiple selections would
bring more time cost, especially in scenarios with a large T . And the selected
data sources in adjacent rounds are often identical, therefore reselecting data
sources is not always necessary. In response, we propose a more efficient dynamic
data source selection algorithm FDSS-d. Compared with the naive extension, our
FDSS-d algorithm makes the following improvements.

– Each time before calling FDSS, a fast verification is conducted to check
whether the global model’s accuracy is improving. If the model accuracy is
still increasing, there is no need to re-select data sources. In this case, the
next selection is postponed till the model converges.

– We divide the entire training into T
s stages and identify the data sources who

will participate in the next stage at round ks, where k is a positive integer
and s is the selection interval. Note that in the dynamic setting, data sources
may be unavailable in each round. Thus we only execute the FDSS algorithm
for current online data sources to save bandwidth.

Approximation Ratio and Time Complexity. The FDSS-d algorithm se-
lects data sources dynamically. For each selection, the algorithm guarantees a
constant approximation ratio. In the worst case, s selections are executed in to-
tal. Hence, the time complexity of FDSS-d is O(TsN

2). Note that the selection
is only performed when the model has converged. Thus the actual running time
of FDSS-d is much less than the worst case.
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Table 1. Accuracy(%) on CIFAR10. The best performance is marked in bold.

methods
settings

Noise 20% Noise 30% Noise 40% Noise 50% Noise 60%

SFedAvg 26.23± 0.96 29.98± 0.33 25.86± 0.23 33.44± 0.29 32.97± 0.75
SS-Fed 46.57± 0.55 34.94± 0.21 28.98± 0.82 24.00± 0.48 15.60± 0.37
FDSS 51.01± 0.41 53.54± 0.83 52.85± 0.63 44.97± 0.20 50.78± 0.90

FedAvg 46.10± 1.05 44.46± 1.37 41.62± 0.82 24.37± 0.54 23.38± 0.59
Oort 39.32± 4.13 34.00± 1.66 36.09± 2.64 15.53± 1.00 34.10± 1.86

FDSS-d 51.38± 0.38 47.98± 0.32 52.52± 0.45 48.60± 0.45 45.70± 0.43

Table 2. Accuracy(%) on CIFAR100. The best performance is marked in bold.

methods
settings

Noise 20% Noise 30% Noise 40% Noise 50% Noise 60%

SFedAvg 35.91± 0.05 34.82± 0.03 35.25± 0.05 29.27± 0.08 30.66± 0.04
SS-Fed 36.67± 0.01 35.44± 0.06 34.87± 0.05 29.45± 0.04 31.15± 0.06
FDSS 37.32± 0.01 36.32± 0.05 37.38± 0.05 38.44± 0.06 36.35± 0.08

FedAvg 40.56± 0.06 37.69± 0.21 35.52± 0.23 35.16± 0.12 31.95± 0.73
Oort 39.29± 0.23 36.97± 0.24 36.06± 0.50 33.14± 0.90 32.40± 1.43

FDSS-d 40.27± 0.07 39.99± 0.07 38.22± 0.11 39.18± 0.10 37.47± 0.31

4 Evaluation

4.1 Experiment Settings

Datasets and Models. We compare the performance of different methods on
CIFAR10 and CIFAR100. The total number of data sources N is set to 20 and
constrained cardinality c is 10. For CIFAR10, We simulate label heterogeneity
by allocating data sources with images of different label distributions. The whole
dataset has 60,000 images for ten classes. Every data source owns data from two
classes randomly. Furthermore, we randomly choose 10 data sources as low data
quality enterprises and remap their labels for some training samples [8]. The
percentage of noisy data can be used to measure the data quality heterogene-
ity. For CIFAR100, we make different data sources owning data from the same
superclass but different subclasses. We use a two-layer CNN model to recognize
images with learning rates 0.02 and 0.01 for CIFAR10 and CIFAR100.

Experimental Environment and Evaluation Metrics. The experiments
are conducted on five Intel(R)Xeon(R) Platinum 8269CY 3.10GHz CPUs each
with 4 cores. We use test accuracy and training time as evaluation metrics to
evaluate model effectiveness and efficiency.

Baselines. We compare our proposed algorithms with the following methods:
(1) FedAvg [3], the vanilla Federated Averaging algorithm; (2) SFedAvg, the
static version of FedAvg. It randomly selects data sources to participant in FL
at the first round; (3) SS-Fed [5,8], the static version of Shapley-based method.
It selects data sources based on Shapley value at the first round; (4) Oort [2],
the adaptive selection method based on multi-arm bandit.
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Fig. 2. Efficiency evaluation

4.2 Experimental Results

Results on CIFAR10. The results on CIFAR10 are shown in Tab. 1. We
evaluate our proposed FDSS and FDSS-d with baselines in five settings, which
20%, 30%, 40%, 50%, 60% of training samples are remapped respectively. The
static setting results are shown on the first three rows in Tab. 1. The final
accuracy of SFedAvg is rather unstable since it randomly selects data sources at
the beginning. We can see that FDSS outperforms baselines in all scenarios. The
fourth row shows the accuracy of FedAvg decreases with the increase of noisy
data. Compared with FedAvg and Oort, FDSS-d outperforms in all settings and
has a minimum accuracy of 45%, which is much larger than baselines.

Results on CIFAR100. The results on CIFAR100 are shown on Tab. 2. For
the static version, FDSS performs best as on CIFAR10. The difference is that
SFedavg and SS-Fed have a smaller gap with FDSS. The reason may be that
each data source has data from all superclasses. Thus the impact of data quality
heterogeneity dominates model accuracy. For the dynamical version, FDSS-d
outperforms the others in most cases. The only exception is when applying 20%
noise, but the difference between FDSS-d and the optimal result is only 0.3%.
The results match the previous results and indicate the utility of the proposed
algorithm in various heterogeneous scenarios.

Efficiency Evaluation. Fig. 2 shows our efficiency experiments on two datasets.
The dynamical algorithms can be seen as calling on static versions repeatedly,
so we only show the results of the static algorithms. From Fig. 2a, SS-Fed takes
the most time because c! permutations need to compute. Note that the selection
is conducted once in the static setting, the efficiency of SS-Fed can be lower for
multiple selections. The time cost of FDSS is much less than SS-Fed and close
to SFedAvg. We observe from Fig. 2b and Fig. 2c that FDSS has the smallest
minimal rounds under all settings.

5 Conclusion

In this paper, we explore data source selection in FL from a submodular opti-
mization perspective. We formalize the data source selection problem in both
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the static and dynamic settings and prove that the problem can be converted
into a monotone submodular maximization problem. Our theoretical analysis
inspires us to devise two greedy-based data source selection algorithms with a
constant approximate ratio. Extensive experiments on two real datasets validate
the efficiency and effectiveness of our methods.
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