
p-Meta: Towards On-device Deep Model Adaptation
Zhongnan Qu
ETH Zurich

Zurich, Switzerland
quz@ethz.ch

Zimu Zhou
Singapore Management University

Singapore, Singapore
zimuzhou@smu.edu.sg

Yongxin Tong
Beihang University

Beijing, China
yxtong@buaa.edu.cn

Lothar Thiele
ETH Zurich

Zurich, Switzerland
thiele@ethz.ch

ABSTRACT
Data collected by IoT devices are often private and have a large
diversity across users. Therefore, learning requires pre-training a
model with available representative data samples, deploying the
pre-trained model on IoT devices, and adapting the deployed model
on the device with local data. Such an on-device adaption for deep
learning empowered applications demands data and memory effi-
ciency. However, existing gradient-based meta learning schemes
fail to support memory-efficient adaptation. To this end, we propose
p-Meta, a new meta learning method that enforces structure-wise
partial parameter updates while ensuring fast generalization to
unseen tasks. Evaluations on few-shot image classification and re-
inforcement learning tasks show that p-Meta not only improves the
accuracy but also substantially reduces the peak dynamic memory
by a factor of 2.5 on average compared to state-of-the-art few-shot
adaptation methods.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
deep neural networks; meta learning; memory-efficient training

ACM Reference Format:
Zhongnan Qu, Zimu Zhou, Yongxin Tong, and Lothar Thiele. 2022. p-Meta:
Towards On-device Deep Model Adaptation. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’22), August 14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3534678.3539293

1 INTRODUCTION
Adaption to unseen environments, users, and tasks is crucial for
deep learning empowered IoT applications to deliver consistent
performance and customized services. Data collected by IoT devices

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539293

FSL on IoT DeviceMeta-Train on Cloud

Task 3
 2F w

 metaF w

Task 2

Task 1

Unseen Task
 newF w

 1F w

 3F w

 F w

Figure 1: Meta learning and few-shot learning (FSL) in the
context of on-device adaptation. The backbone 𝐹 (𝒘) is meta-
trained into 𝐹 (𝒘meta) on the cloud and is deployed to IoT
devices to adapt to unseen tasks as 𝐹 (𝒘new) via FSL.

are often private and have a large diversity across users. For in-
stance, activity recognition with smartphone sensors should adapt
to countless walking patterns and sensor orientation [13]. Human
motion prediction with home robots needs fast learning of unseen
poses for seamless human-robot interaction [19]. In these applica-
tions, the new data collected for model adaptation tend to relate to
personal habits and lifestyle. Hence, on-device model adaptation is
preferred over uploading the data to cloud servers for retraining.

Yet on-device adaption of a deep neural network (DNN) demands
data efficiency andmemory efficiency. The excellent accuracy of con-
temporary DNNs is attributed to training with high-performance
computers on large-scale datasets [14]. For example, it takes 29
hours to complete a 90-epoch ResNet50 [21] training on ImageNet
(1.2 million training images) [31] with 8 NVIDIA Tesla P100 GPUs
[16]. For on-device adaptation, however, neither abundant data nor
resources are available. A personal voice assistant, for example, may
learn to adapt to users’ accent and dialect within a few sentences,
while a home robot should learn to recognize new object categories
with few labelled images to navigate in new environments. Further-
more, such adaptation is expected to be conducted on low-resource
platforms such as smart portable devices, home hubs, and other IoT
devices, with only several 𝐾𝐵 to𝑀𝐵 memory.

For data-efficient DNN adaptation, we resort to meta learning, a
paradigm that learns to fast generalize to unseen tasks [22]. Of our
particular interest is gradient-based meta learning [1, 10, 26, 28] for
its wide applicability in classification, regression and reinforcement
learning, as well as the availability of gradient-based training frame-
works for low-resource devices, e.g., TensorFlow Lite [36]. Fig. 1
explains major terminologies in the context of on-device adaptation.
Given a backbone, its weights are meta-trained on many tasks, to

 

1441

https://doi.org/10.1145/3534678.3539293
https://doi.org/10.1145/3534678.3539293


KDD ’22, August 14–18, 2022, Washington, DC, USA ZhongnanQu et al.

output a model that is expected to fast adapt to new unseen tasks.
The process of adaptation is also known as few-shot learning, where
the meta-trained model is further retrained by standard stochastic
gradient decent (SGD) on few new samples only.

However, existing gradient-based meta learning schemes [1, 10,
26, 28] fail to support memory-efficient adaptation. Although meta
training is conducted in the cloud, few-shot learning (adaptation) of
the meta-trained model is performed on IoT devices. Consider to
retrain a common backbone ResNet12 in a 5-way (5 new classes)
5-shot (5 samples per class) scenario. One round of SGD consumes
370.44MB peak dynamic memory, since the inputs of all layers
must be stored to compute the gradients of these layers’ weights in
the backward path. In comparison, inference only needs 3.61MB.
The necessary dynamic memory is a key bottleneck for on-device
adaptation due to cost and power constraints, even though the
meta-trained model only needs to be retrained with a few data.

Prior efficient DNN training solutions mainly focus on parallel
and distributed training on data centers [3, 4, 17, 18, 29]. On-device
training has been explored for vanilla supervised training [15, 24,
25], where training and testing are performed on the same task. A
pioneer study [2] investigated on-device adaptation to new tasks
via memory-efficient transfer learning. Yet transfer learning is prone
to overfitting when only a few samples are available [10].

In this paper, we propose p-Meta, a new meta learning method
for data- and memory-efficient DNN adaptation. The key idea is to
enforce structured partial parameter updateswhile ensuring fast gen-
eralization to unseen tasks. The idea is inspired by recent advances
in understanding gradient-based meta learning [26, 28]. Empirical
evidence shows that only the head (the last output layer) of a DNN
needs to be updated to achieve reasonable few-shot classification
accuracy [28] whereas the body (the layers closed to the input)
needs to be updated for cross-domain few-shot classification [26].
These studies imply that certain weights are more important than
others when generalizing to unseen tasks. Hence, we propose to
automatically identify these adaptation-critical weights to minimize
the memory demand in few-shot learning.

Particularly, the critical weights are determined in two structured
dimensionalities as, (i) layer-wise: we meta-train a layer-by-layer
learning rate that enables a static selection of critical layers for
updating; (ii) channel-wise: we introduce meta attention modules
in each layer to select critical channels dynamically, i.e., depending
on samples from new tasks. Partial updating of weights means that
(structurally) sparse gradients are generated, reducing memory re-
quirements to those for computing nonzero gradients. In addition,
the computation demand for calculating zero gradients can be also
saved. To further reduce the memory, we utilize gradient accumula-
tion in few-shot learning and group normalization in the backbone.
Although weight importance metrics and SGD with sparse gra-
dients have been explored in vanilla training [8, 15, 20, 29], it is
unknown (i) how to identify adaptation-critical weights and (ii)
whether meta learning is robust to sparse gradients, where the
objective is fast adaptation to unseen tasks.

Our main contributions are summarized as follows.

• We design p-Meta, a new meta learning method for data-
and memory-efficient DNN adaptation to unseen tasks. p-
Meta automatically identifies adaptation-critical weights

both layer-wise and channel-wise for low-memory adap-
tation. The hierarchical approach combines static identifica-
tion of layers and dynamic identification of channels whose
weights are critical for few-shot adaptation. To the best of
our knowledge, p-Meta is the first meta learning method
designed for on-device few-shot learning.
• Evaluations on few-shot image classification and reinforce-
ment learning show that, p-Meta not only improves the
accuracy but also reduces the peak dynamic memory by a
factor of 2.5 on average over the state-of-the-art few-shot
adaptation methods. p-Meta can also simultaneously reduce
the computation by a factor of 1.7 on average.

In the rest of this paper, we introduce the preliminaries and
challenges in Sec. 2, elaborate on the design of p-Meta in Sec. 3,
present its evaluations in Sec. 4, review related work in Sec. 5, and
conclude in Sec. 6.

2 PRELIMINARIES AND CHALLENGES
In this section, we provide the basics on meta learning for fast adap-
tation and highlight the challenges to enable on-device adaptation.
Meta Learning for Fast Adaptation.Meta learning is a prevail-
ing solution to adapt a DNN to unseen tasks with limited training
samples, i.e., few-shot learning [22]. We ground our work on model-
agnostic meta learning (MAML) [10], a generic meta learning frame-
work which supports classification, regression and reinforcement
learning. Given the datasetD = {S,Q} of an unseen few-shot task,
where S (support set) and Q (query set) are for training and test-
ing, MAML trains a model 𝐹 (𝒘) with weights𝒘 such that it yields
high accuracy on Q even when S only contains a few samples.
This is enabled by simulating the few-shot learning experiences
over abundant few-shot tasks sampled from a task distribution
𝑝 (T). Specifically, it meta-trains a backbone 𝐹 over few-shot tasks
T𝑖 ∼ 𝑝 (T), where each T𝑖 has dataset D𝑖 = {S𝑖 ,Q𝑖 }, and then
generates 𝐹 (𝒘meta), an initialization for the unseen few-shot task
Tnew with dataset Dnew = {Snew,Qnew}. Training from 𝐹 (𝒘meta)
over Snew is expected to achieve a high test accuracy on Qnew.

MAML achieves fast adaptation via two-tier optimization. In the
inner loop, a task T𝑖 and its dataset D𝑖 are sampled. The weights
𝒘 are updated to𝒘𝑖 on support dataset S𝑖 via 𝐾 gradient descent
steps, where 𝐾 is usually small, compared to vanilla training:

𝒘𝑖,𝑘 = 𝒘𝑖,𝑘−1 − 𝛼∇𝒘 ℓ

(
𝒘𝑖,𝑘−1; S𝑖

)
for 𝑘 = 1 · · ·𝐾 (1)

where𝒘𝑖,𝑘 are the weights at step 𝑘 in the inner loop, and 𝛼 is the
inner step size. Note that𝒘𝑖,0 = 𝒘 and𝒘𝑖 = 𝒘𝑖,𝐾 . ℓ (𝒘 ;D) is the loss
function on dataset D. In the outer loop, the weights are optimized
to minimize the sum of loss at𝒘𝑖 on query dataset Q𝑖 across tasks.
The gradients to update weights in the outer loop are calculated
w.r.t. the starting point𝒘 of the inner loop.

𝒘 ← 𝒘 − 𝛽∇𝒘
∑︁
𝑖

ℓ
(
𝒘𝑖 ; Q𝑖

)
(2)

where 𝛽 is the outer step size.
The meta-trained weights𝒘meta are then used as initialization

for few-shot learning into𝒘new by 𝐾 gradient descent steps over
Snew. Finally we assess the accuracy of 𝐹 (𝒘new) on Qnew.

 

1442



p-Meta: Towards On-device Deep Model Adaptation KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 1: The static memory, the peak dynamic memory, and the total computation (GMACs = 109MACs) of inference and
adaptation for sample applications. For image classification we use batch size = 25. For robot locomotion we use rollouts = 20,
horizon = 200; each sample corresponds to a rollouted episode, and the case for an observation is reported in brackets. The
calculation is based on Appendix A.

Application Model / Benchmark Static Memory (MB) Peak Dynamic Memory (MB) GMACs

Model Sample Inference Adaptation Inference Adaptation

Image Classification 4Conv [10] / MiniImageNet [39] 0.13 0.53 0.90 48.33 0.72 1.96
Image Classification ResNet12 [27] / MiniImageNet [39] 32.0 0.53 3.61 370.44 62.08 185.42
Robot Locomotion MLP [10] / MuJoCo [37] 0.05 0.016(0.00008) 0.08(0.0004) 3.72 0.05 0.15

Figure 2: A typical layer 𝑙 in DNNs. 𝒙𝑙−1 is the input tensor;
𝒙𝑙 is the output tensor, also the input tensor of layer 𝑙 + 1; 𝒚𝑙
is the intermediate tensor;𝒘𝑙 is the weight tensor.

Memory Bottleneck of On-device Adaptation. As mentioned
above, the meta-trained model 𝐹 (𝒘meta) can adapt to unseen tasks
via 𝐾 gradient descent steps. Each step is the same as the inner loop
of meta-training Eq.(1), but on dataset Snew.

𝒘new,𝑘 = 𝒘new,𝑘−1 − 𝛼∇𝒘new ℓ
(
𝒘new,𝑘−1; Snew

)
(3)

where 𝒘new,0 = 𝒘meta. For brevity, we omit the superscripts of
model adaption in Eq.(3) and use 𝒈(·) as the loss gradients w.r.t. the
given tensor. Hence, without ambiguity, we simplify the notations
of Eq.(3) as follows:

𝒘 ← 𝒘 − 𝛼𝒈 (𝒘 ) (4)
Let us now understand where the main memory cost for iterat-

ing Eq.(4) comes from. For the sake of clarity, we focus on a feed
forward DNNs that consist of 𝐿 convolutional (conv) layers or fully-
connected (fc) layers. A typical layer (see Fig. 2) consists of two
operations: (i) a linear operation with trainable parameters, e.g.,
convolution or affine; (ii) a parameter-free non-linear operation
(may not exist in certain layers), where we consider max-pooling or
ReLU-styled (ReLU, LeakyReLU) activation functions in this paper.

Take a network consisting of conv layers only as an example. The
memory requirements for storing the activations 𝒙𝑙 ∈ R𝐶𝑙×𝐻𝑙×𝑊𝑙

as well as the convolution weights𝒘𝑙 ∈ R𝐶𝑙×𝐶𝑙−1×𝑆𝑙×𝑆𝑙 of layer 𝑙
in words can be determined as

𝑚 (𝒙𝑙 ) = 𝐶𝑙𝐻𝑙𝑊𝑙 , 𝑚 (𝒘𝑙 ) = 𝐶𝑙𝐶𝑙−1𝑆
2
𝑙

where 𝐶𝑙−1, 𝐶𝑙 , 𝐻𝑙 , and𝑊𝑙 stand for input channel number, out-
put channel number, height and width of layer 𝑙 , respectively; 𝑆𝑙
stands for the kernel size. The detailed memory and computation
demand analysis as provided in Appendix A reveals that the by far
largest memory requirement is neither attributed to determining
the activations 𝒙𝑙 in the forward path nor to determining the gra-
dients of the activations 𝒈(𝒙𝑙 ) in the backward path. Instead, the
memory bottleneck lies in the computation of the weight gradients
𝒈(𝒘𝑙 ), which requires the availability of the activations 𝒙𝑙−1 from
the forward path. Following Eq.(17) in Appendix A, the necessary
memory in words is ∑︁

1≤𝑙≤𝐿
𝑚 (𝒙𝑙−1 ) (5)

Tab. 1 summarizes the memory consumption and the total com-
putation of the commonly used few-shot learning backbone models
[10, 27]. The requirements are based on the detailed analysis in
Appendix A. We can draw two intermediate conclusions.
• The total computation of adaptation (training) is approxi-
mately 2.7× to 3× larger compared to inference. Yet the peak
dynamic memory of training is far larger, 47× to 103× over
inference. The peak dynamic memory consumption of train-
ing is also also significantly higher than the static memory
consumption from the model and the training samples in
few-shot learning.
• To enable adaptation for memory-constrained IoT devices,
we need to find someway of getting rid of the major dynamic
memory contribution in Eq.(5).

3 METHOD
This section presents p-Meta, a new meta learning scheme that
enables memory-efficient few-shot learning on unseen tasks.

3.1 p-Meta Overview
We first provide an overview of p-Meta and introduce its main
concepts, namely selecting critical gradients, using a hierarchical
approach to determine adaption-critical layers and channels, and
using a mixture of static and dynamic selection mechanisms.
Principles.We impose structured sparsity on the gradients 𝒈(𝒘𝑙 )
such that the corresponding tensor dimensions of 𝒙𝑙 do not need to
be saved. There are other options to reduce the dominant memory
demand in Eq.(5). They are inapplicable for the reasons below.
• Onemay trade-off computation andmemory by recomputing
activations 𝒙𝑙−1 when needed for determining 𝒘𝑙 , see for
example [4, 18]. Due to the limited processing abilities of IoT
devices, we exclude this option.
• It is also possible to prune activations 𝒙𝑙−1. Yet based on
our experiments in Appendix B.3, imposing sparsity on 𝒙𝑙−1
hugely degrades few-shot learning accuracy as this causes
error accumulation along the propagation, see also [29].
• Note that unstructured sparsity, as proposed in [11, 40], does
not in general lead to memory savings, since there is a very
small probability that all weight gradients for which an ele-
ment of 𝒙𝑙−1 is necessary have been pruned.

We impose sparsity on the gradients in a hierarchical manner.
• Selecting adaption-critical layers. We first impose layer-
by-layer sparsity on 𝒈(𝒘𝑙 ). It is motivated by previous results
showing that manual freezing of certain layers does no harm

 

1443



KDD ’22, August 14–18, 2022, Washington, DC, USA ZhongnanQu et al.

to few-shot learning accuracy [26, 28]. Layer-wise sparsity
reduces the number of layers whose weights need to be
updated. We determine the adaptation-critical layers from
the meta-trained layer-wise sparse learning rates.
• Selecting adaption-critical channels.We further reduce
the memory demand by imposing sparsity on 𝒈(𝒘𝑙 ) within
each layer. Noting that calculating 𝒈(𝒘𝑙 ) needs both the in-
put channels 𝒙𝑙−1 and the output channels 𝒈(𝒚𝑙 ), we enforce
sparsity on both of them. Input channel sparsity decreases
memory and computation overhead, whereas output channel
sparsity improves few-shot learning accuracy and reduces
computation. We design a novel meta attention mechanism
to dynamically determine adaptation-critical channels. They
take as inputs 𝒙𝑙−1 and 𝒈(𝒚𝑙 ) and determine adaptation-
critical channels during few-shot learning, based on the
given few data samples from new unseen tasks. Dynamic
channel-wise learning rates as determined by meta attention
yield a significant higher accuracy than static channel-wise
learning rate (see Sec. 4.4).

Memory Reduction. The reduced memory demand due to our
hierarchical approach can be seen in Eq.(17) in Appendix A:∑︁

1≤𝑙≤𝐿
𝛼𝑙 𝜇

fw
𝑙
𝑚 (𝒙𝑙−1 )

where 𝛼𝑙 ∈ {0, 1} is the mask from the static selection of critical
layers and 0 ≤ 𝜇fw

𝑙
≤ 1 denotes the relative amount of dynamically

chosen input channels.
Next, we explain how p-Meta selects adaptation-critical layers

(Sec. 3.2) and channels within layers (Sec. 3.3) as well as the deploy-
ment optimizations (Sec. 3.5) for memory-efficient adaptation.

3.2 Selecting Adaption-Critical Layers by
Learning Sparse Inner Step Sizes

This subsection introduces how p-Meta meta-learns adaptation-
critical layers to reduce the number of updated layers during few-
shot learning. Particularly, instead of manual configuration as in
[26, 28], we propose to automate the layer selection process. During
meta training, we identify adaptation-critical layers by learning
layer-wise sparse inner step sizes (Sec. 3.2.1). Only these critical
layers with nonzero step sizes will be updated during on-device
adaptation to new tasks (Sec. 3.2.2).

3.2.1 Learning Sparse Inner Step Sizes in Meta Training. Prior work
[1] suggests that instead of a global fixed inner step size 𝛼 , learning
the inner step sizes 𝜶 for each layer and each gradient descent step
improves the generalization of meta learning, where 𝜶 = 𝛼1:𝐾1:𝐿 ⪰ 0.
We utilize such learned inner step sizes to infer layer importance
for adaptation. We learn the inner step sizes 𝜶 in the outer loop of
meta-training while fixing them in the inner loop.
Learning Layer-wise Inner Step Sizes.We change the inner loop
of Eq.(1) to incorporate the per-layer inner step sizes:

𝒘𝑖,𝑘

𝑙
= 𝒘𝑖,𝑘−1

𝑙
− 𝛼𝑘

𝑙
∇𝒘𝑙

ℓ

(
𝒘𝑖,𝑘−1

1:𝐿 ; S𝑖
)

(6)

where 𝒘𝑖,𝑘
𝑙

is the weights of layer 𝑙 at step 𝑘 optimized on task 𝑖
(dataset S𝑖 ). In the outer loop, weights𝒘 are still optimized as

𝒘 ← 𝒘 − 𝛽∇𝒘
∑︁
𝑖

ℓ
(
𝒘𝑖 ; Q𝑖

)
(7)

where 𝒘𝑖 = 𝒘𝑖,𝐾 = 𝒘𝑖,𝐾1:𝐿 , which is a function of 𝜶 . The inner step
sizes 𝜶 are then optimized as

𝜶 ← 𝜶 − 𝛽∇𝜶
∑︁
𝑖

ℓ
(
𝒘𝑖 ; Q𝑖

)
(8)

Imposing Sparsity on Inner Step Sizes. To facilitate layer selec-
tion, we enforce sparsity in 𝜶 , i.e., encouraging a subset of layers to
be selected for updating. Specifically, we add a Lasso regularization
term in the loss function of Eq.(8) when optimizing 𝜶 . Hence, the
final optimization of 𝜶 in the outer loop is formulated as

𝜶 ← 𝜶 − 𝛽∇𝜶 (
∑︁
𝑖

ℓ
(
𝒘𝑖 ; Q𝑖

)
+ 𝜆

∑︁
𝑙,𝑘

𝑚 (𝒙𝑙−1 ) · |𝛼𝑘𝑙 | ) (9)

where 𝜆 is a positive scalar to control the ratio between two terms in
the loss function. We empirically set 𝜆 = 0.001. |𝛼𝑘

𝑙
| is re-weighted

by𝑚(𝒙𝑙−1), which denotes the necessary memory in Eq.(5) if only
updating the weights in layer 𝑙 .

3.2.2 Exploiting Sparse Inner Step Sizes for On-device Adaptation.
We now explain how to apply the learned 𝜶 to save memory during
on-device adaptation. After deploying themeta-trainedmodel to IoT
devices for adaptation, at updating step𝑘 , for layers with𝛼𝑘

𝑙
= 0, the

activations (i.e., their inputs) 𝒙𝑙−1 need not be stored, see Eq.(16) and
Eq.(17) in Appendix A. In addition, we do not need to calculate the
corresponding weight gradients 𝒈(𝒘𝑙 ), which saves computation,
see Eq.(18) in Appendix A.

3.3 Selecting Adaption-Critical Channels within
Layers via Sparse Meta Attention

This subsection explains how p-Meta learns a novel meta attention
mechanism in each layer to dynamically select adaptation-critical
channels for further memory saving in few-shot learning. Despite
the widespread adoption of channel-wise attention for inference [5,
23], we make the first attempt to use attention for memory-efficient
training (few-shot learning in our case). For each layer, its meta
attention outputs a dynamic channel-wise sparse attention score
based on the samples from new tasks. The sparse attention score is
used to re-weight (also sparsify) the weight gradients. Therefore, by
calculating only the nonzero gradients of critical weights within a
layer, we can save both memory and computation. We first present
our meta attention mechanism during meta training (Sec. 3.3.1) and
then show its usage for on-device model adaptation (Sec. 3.3.2).

3.3.1 Learning Sparse Meta Attention in Meta Training. Since main-
stream backbones in meta learning use small kernel sizes (1 or
3), we design the meta attention mechanism channel-wise. Fig. 3
illustrates the attention design during meta-training.
Learning Meta Attention. The attention mechanism is as follows.
• We assign an attention score to the weight gradients of layer
𝑙 in the inner loop of meta training. The attention scores are
expected to indicate which weights/channels are important
and thus should be updated in layer 𝑙 .
• The attention score is obtained from two attention modules:
one taking 𝒙𝑙−1 as input in the forward pass, and the other
taking 𝒈(𝒚𝑙 ) as input during the backward pass. We use 𝒙𝑙−1
and 𝒈(𝒚𝑙 ) to calculate the attention scores because they are
used to compute the weight gradients 𝒈(𝒘𝑙 ).

 

1444



p-Meta: Towards On-device Deep Model Adaptation KDD ’22, August 14–18, 2022, Washington, DC, USA

𝒙ିଵ 𝒚

𝒈ሺ𝒙ିଵሻ 𝒈ሺ𝒚ሻ

𝜸𝒍𝐟𝐰

𝜸𝒍𝐛𝐰

𝒈ሺ𝒘ሻ 𝜸𝒍 ⋅ 𝒈ሺ𝒘ሻ

global avg. 
pooling𝒙 fc fc softmax

𝐵 ൈ 𝐶 ൈ 𝐻 ൈ𝑊 𝐵 ൈ 𝐶 ൈ 1 ൈ 1

𝐵 ൈ 4 ൈ 1 ൈ 1

𝐵 ൈ 𝐶 ൈ 1 ൈ 1

clip and 
normalize  𝜸

𝐶 ൈ 1 ൈ 1 𝐶 ൈ 1 ൈ 1

avg

𝐶 ൈ 1 ൈ 1

Forward

Backward  ∗

ℎሺ𝒘
୵;⋅ሻ

𝑓ሺ𝒘𝒍;⋅ሻ

𝑓ሺ𝒘𝒍;⋅ሻ

ℎሺ𝒘
ୠ୵;⋅ሻ

Figure 3: Meta attention of layer 𝑙 during meta-training. The
blue blocks correspond to tensors; the orange blocks corre-
spond to computation units with parameters, and the green
ones without. Each column of a tensor corresponds to one
channel. The input tensor 𝒙𝑙−1 has 4 channels; the output
tensor 𝒚𝑙 has 6 channels. The other dimensions (e.g., height,
width and batch) are omitted here. The green block with
∗ stands for the operations involved to compute 𝒈(𝒘𝑙 ). In
order to compute the gradients of the parameters in meta
attention, i.e.,𝒘fw

𝑙
and𝒘bw

𝑙
, the full dense gradients 𝒈(𝒘𝑙 ) are

computed during meta-training, and then are masked by 𝜸𝑙 .
An example meta attention module for a conv layer is shown
in the upper part. 𝐵 denotes the batch size. The newly added
blocks related to the inference attention in [5] are marked
with solid lines.

Concretely, we define the forward and backward attention scores
for a conv layer as,

𝜸 fw
𝑙

= ℎ (𝒘fw
𝑙
;𝒙𝑙−1 ) ∈ R𝐶𝑙−1×1×1 (10)

𝜸bw
𝑙

= ℎ (𝒘bw
𝑙

;𝒈 (𝒚𝑙 ) ) ∈ R𝐶𝑙 ×1×1 (11)

where ℎ(·; ·) stands for the meta attention module, and 𝒘fw
𝑙

and
𝒘bw
𝑙

are the parameters of the meta attention modules. The overall
(sparse) attention scores 𝜸𝑙 ∈ R𝐶𝑙×𝐶𝑙−1×1×1 and is computed as,

𝛾𝑙,𝑏𝑎11 = 𝛾
fw
𝑙,𝑎11 · 𝛾

bw
𝑙,𝑏11 (12)

In the inner loop, for layer 𝑙 , step 𝑘 and task 𝑖 , 𝜸𝑙 is (broadcasting)
multiplied with the dense weight gradients to get the sparse ones,

𝜸𝑖,𝑘

𝑙
⊙ ∇𝒘𝑙

ℓ

(
𝒘𝑖,𝑘−1

1:𝐿 ; S𝑖
)

(13)

The weights are then updated by,

𝒘𝑖,𝑘

𝑙
= 𝒘𝑖,𝑘−1

𝑙
− 𝛼𝑘

𝑙
(𝜸𝑖,𝑘

𝑙
⊙ ∇𝒘𝑙

ℓ

(
𝒘𝑖,𝑘−1

1:𝐿 ; S𝑖
)
) (14)

Let all attention parameters be𝒘atten = {𝒘fw
𝑙
,𝒘bw
𝑙
}𝐿
𝑙=1. The atten-

tion parameters𝒘atten are optimized in the outer loop as,

𝒘atten ← 𝒘atten − 𝛽∇𝒘atten
∑︁
𝑖

ℓ
(
𝒘𝑖 ; Q𝑖

)
(15)

Note that we use a dense forward path and a dense backward path
in both meta-training and on-device adaptation, as shown in Fig. 3.

Algorithm 1: Clip and normalization

Input: softmax output (normalized) 𝝅 ∈ R𝐶 , clip ratio 𝜌
Output: sparse 𝜸

1 Sort 𝝅 in ascending order and get sorted indices 𝑑1:𝐶 ;
2 Find the smallest 𝑐 such that

∑𝑐
𝑖=1 𝜋𝑑𝑖 ≥ 𝜌 ;

3 Set 𝜋𝑑1:𝑑𝑐 as 0 ; // if 𝜌 = 0, do nothing

4 Normalize 𝜸 = 𝝅/∑𝝅 ;
5 Re-scale 𝜸 = 𝜸 ·𝐶 ; // keeping step sizes’ magnitude

Algorithm 2: p-Meta
Input: meta-training task distribution 𝑝 (T), backbone 𝐹

with initial weights𝒘 , meta attention parameters
𝒘atten, inner step sizes 𝜶 , outer step sizes 𝛽

Output: meta-trained weights𝒘 , meta-trained meta
attention parameters𝒘atten, meta-trained sparse
inner step sizes 𝜶

1 while not done do
2 Sample a batch of 𝐼 tasks T𝑖 ∼ 𝑝 (T);
3 for 𝑖 ← 1 to 𝐼 do
4 Update𝒘𝑖 in 𝐾 gradient descent steps with (14);
5 Update𝒘 with (7);
6 Update inner step sizes 𝜶 with (9);
7 Update attention parameters𝒘atten with Eq.(15);

That is, the attention scores𝜸 fw
𝑙

and𝜸bw
𝑙

are only calculated locally
and will not affect𝒚𝑙 during forward and 𝒈(𝒙𝑙−1) during backward.
Meta Attention Module Design. Fig. 3 (upper part) shows an
example meta attention module. We adapt the inference attention
modules used in [5, 23], yet with the following modifications.
• Unlike inference attention that applies to a single sample,
training may calculate the averaged loss gradients based
on a batch of samples. Since 𝒈(𝒘𝑙 ) does not have a batch
dimension, the input to softmax function is first averaged
over the batch data, see in Fig. 3.
• We enforce sparsity on the meta attention scores such that
they can be utilized to save memory and computation in
few-shot learning. The original attention in [5, 23] outputs
normalized scales in [0, 1] from softmax. We clip the output
with a clip ratio 𝜌 ∈ [0, 1] to create zeros in 𝜸 . This way,
our meta attention modules yield batch-averaged sparse at-
tention scores 𝜸 fw

𝑙
and 𝜸bw

𝑙
. Alg. 1 shows this clipping and

re-normalization process. Note that Alg. 1 is not differen-
tiable. Hence we use the straight-through-estimator for its
backward propagation in meta training.

3.3.2 Exploiting Meta Attention for On-device Adaptation. We now
explain how to apply the meta attention to save memory during
on-device few-shot learning. Note that the parameters in the meta
attention modules are fixed during few-shot learning. Assume that
at step 𝑘 , layer 𝑙 has a nonzero step size 𝛼𝑘

𝑙
. In the forward pass, we

only store a sparse tensor𝜸 fw
𝑙
·𝒙𝑙−1, i.e., its channels are stored only

if they correspond to nonzero entries in 𝜸 fw
𝑙

. This reduces memory

 

1445



KDD ’22, August 14–18, 2022, Washington, DC, USA ZhongnanQu et al.

𝒙ିଵ

𝒈ሺ𝒚𝒍ሻ

ℎ୵
𝜸𝒍𝐟𝐰

𝜸𝒍𝐛𝐰

𝜸𝒍 ⋅ 𝒈ሺ𝒘ሻ

 ∗
ℎୠ୵

𝜸𝒍𝐛𝐰 ⋅ 𝒈ሺ𝒚ሻ

𝜸𝒍𝐟𝐰 ⋅ 𝒙ିଵ

Figure 4: Meta attention of layer 𝑙 during on-device few-shot
learning. Note that “Forward” part and “Backward” part are
the same as Fig. 3, which are omitted for simplicity. Meta
attention modules are not optimized during few-shot learn-
ing, thus are expressed as parameter-free functions ℎfw and
ℎbw. The input 𝒙𝑙−1 stored during forward path is a sparse
re-weighted tensor.

consumption as shown in Eq.(17) in Appendix A. Similarly, in the
backward pass, we get a channel-wise sparse tensor 𝜸bw

𝑙
· 𝒈(𝒚𝑙 ).

Since both sparse tensors are used to calculate the corresponding
nonzero gradients in 𝒈(𝒘𝑙 ), the computation cost is also reduced,
see Eq.(18) in Appendix A. We plot the meta attention during on-
device adaptation in Fig. 4.

3.4 Summary of p-Meta
Alg. 2 shows the overall process of p-Meta during meta-training.
The final meta-trained weights𝒘 from Alg. 2 are assigned to𝒘meta,
see Sec. 2. The meta-trained backbone model 𝐹 (𝒘meta), the sparse
inner step sizes 𝜶 , and the meta attention modules will be then
deployed on edge devices and used to conduct a memory-efficient
few-shot learning.

3.5 Deployment Optimization
To further reduce thememory during few-shot learning, we propose
gradient accumulation during backpropagation and replace batch
normalization in the backbone with group normalization.

3.5.1 Gradient Accumulation. In standard few-shot learning, all
the new samples (e.g., 25 for 5-way 5-shot) are fed into the model
as one batch. To reduce the peak memory due to large batch sizes,
we conduct few-shot learning with gradient accumulation (GA).

GA is a technique that (i) breaks a large batch into smaller partial
batches; (ii) sequentially forward/backward propagates each partial
batches through the model; (iii) accumulates the loss gradients
of each partial batch and get the final averaged gradients of the
full batch. Note that GA does not increase computation, which
is desired for low-resource platforms. We evaluate the impact of
different sample batch sizes in GA in Appendix B.2.

3.5.2 Group Normalization. Mainstream backbones in meta learn-
ing typically adopt batch normalization layers. Batch normalization
layers compute the statistical information in each batch, which is
dependent on the sample batch size. When using GA with differ-
ent sample batch sizes, the inaccurate batch statistics can degrade
the training performance (see Appendix B.1). As a remedy, we use
group normalization [43], which does not rely on batch statistics
(i.e., independent of the sample batch size). We also apply meta at-
tention on group normalization layers when updating their weights.

The only difference w.r.t. conv and fc layers is that the stored input
tensor (also the one used for the meta attention) is not 𝒙𝑙−1, but its
normalized version.

4 EVALUATION
This section presents the evaluations of p-Meta on standard few-
shot image classification and reinforcement learning benchmarks.

4.1 General Experimental Settings
Compared Methods. We test the meta learning algorithms below.
• MAML [10]: the original model-agnostic meta learning.
• ANIL [28]: update the last layer only in few-shot learning.
• BOIL [26]: update the body except the last layer.
• MAML++ [1]: learn a per-step per-layer step sizes 𝜶 .
• p-Meta (3.2): can be regarded as a sparse version of MAML++,
since it learns a sparse 𝜶 with our methods in Sec. 3.2.
• p-Meta (3.2+3.3): the full version of our methods which in-
clude the meta attention modules in Sec. 3.3.

For fair comparison, all the algorithms are re-implemented with
the deployment optimization in Sec. 3.5.
Implementation. The experiments are conducted with tools pro-
vided by TorchMeta [6, 7]. Particularly, the backbone ismeta-trained
with full sample batch size (e.g., 25 for 5-way 5-shot) on meta train-
ing dataset. After each meta training epoch, the model is tested (i.e.,
few-shot learned) on meta validation dataset. The model with the
highest validation performance is used to report the final few-shot
learning results on meta test dataset. We follow the same process
as TorchMeta [6, 7] to build the dataset. During few-shot learning,
we adopt a sample batch size of 1 to verify the model performance
under the most strict memory constraints.

In p-Meta, meta attention is applied to all conv, fc, and group
normalization layers, expect the last output layer, because (i) we
find modifying the last layer’s gradients may decrease accuracy;
(ii) the final output is often rather small in size, resulting in little
memory saving even if imposing sparsity on the last layer. Without
further notations, we set 𝜌 = 0.3 in forward attention, and 𝜌 = 0 in
backward attention across all layers, as the sparsity of 𝜸bw

𝑙
almost

has no effect on the memory saving.
Metrics. We compare the peak memory and MACs of different
algorithms. Note that the reported peak memory and MACs for
p-Meta also include the consumption frommeta attention, although
they are rather small related to the backward propagation.

4.2 Performance on Image Classification
Settings.We test on standard few-shot image classification tasks
(both in-domain and cross-domain). We adopt two common back-
bones, “4Conv” [10] which has 4 conv blocks with 32 channels in
each block, and “ResNet12” [27] which contains 4 residual blocks
with {64, 128, 256, 512} channels in each block respectively. We
replace the batch normalization layers with group normalization
layers, as discussed in Sec. 3.5.2. We experiment in both 5-way
1-shot and 5-way 5-shot settings. We train the model on MiniIma-
geNet [39] (both meta training and meta validation dataset) with
100 meta epochs. In each meta epoch, 1000 random tasks are drawn
from the task distribution. The task batch size is set to 4 in general,

 

1446



p-Meta: Towards On-device Deep Model Adaptation KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 2: Few-shot image classification results on 4Conv and ResNet12. All methods are meta-trained on MiniImageNet, and are
few-shot learned on the reported datasets: MiniImageNet, TieredImageNet, and CUB (denoted by Mini, Tiered, and CUB in
the table). The total computation (# GMACs) and the peak memory (MB) during few-shot learning are reported based on the
theoretical analysis in Appendix A.

Benchmarks 5-way 1-shot 5-way 5-shot

Mini Tiered CUB Mini Mini Mini Tiered CUB Mini Mini
Accuracy GMAC Memory Accuracy GMAC Memory

4Conv

MAML [10] 46.2% 51.4% 39.7% 0.39 2.06 61.4% 66.5% 55.6% 1.96 2.06
ANIL [28] 46.4% 51.5% 39.2% 0.14 0.92 60.6% 64.5% 54.2% 0.72 0.92
BOIL [26] 44.7% 51.3% 42.3% 0.39 2.05 60.5% 65.3% 58.3% 1.96 2.05
MAML++ [1] 48.2% 53.2% 43.2% 0.39 2.06 63.7% 68.5% 59.1% 1.96 2.06
p-Meta (3.2) 47.1% 52.3% 41.8% 0.16 1.00 62.9% 68.3% 59.3% 1.34 1.09
p-Meta (3.2+3.3) 48.8% 53.9% 42.6% 0.15 0.99 65.0% 68.5% 60.2% 1.11 1.04

ResNet12

MAML [10] 51.7% 57.4% 41.3% 37.08 54.69 64.7% 69.6% 53.8% 185.42 54.69
ANIL [28] 50.3% 56.7% 40.6% 12.42 3.62 62.3% 68.7% 54.0% 62.08 3.62
BOIL [26] 42.7% 47.7% 44.2% 37.08 54.69 53.6% 59.8% 53.7% 185.42 54.69
MAML++ [1] 53.1% 58.6% 45.1% 37.08 54.69 68.6% 73.4% 63.9% 185.42 54.69
p-Meta (3.2) 51.8% 58.3% 40.6% 25.84 17.66 68.8% 72.6% 65.9% 124.15 18.95
p-Meta (3.2+3.3) 53.6% 59.4% 45.4% 24.02 16.01 69.7% 73.3% 66.6% 116.79 17.17

Table 3: Few-shot reinforcement learning results on 2D navi-
gation and robot locomotion (larger return means better). A
MLP with two hidden layers of size 100 is used as the policy
model. The total computation (# GMACs) and the peak mem-
ory (MB) during few-shot learning are reported based on the
theoretical analysis in Appendix A.

Benchmarks 20 Rollouts 20 Rollouts

Half-Cheetah Velocity 2D Navigation
Return GMAC Memory Return GMAC Memory

MAML [10] -82.2 0.15 0.24 -13.3 0.12 0.21
ANIL [28] -78.8 0.06 0.09 -13.8 0.04 0.08
BOIL [26] -76.4 0.15 0.23 -12.4 0.12 0.21
MAML++ [1] -69.6 0.15 0.24 -17.6 0.12 0.21
p-Meta (3.2) -65.5 0.11 0.12 -11.2 0.09 0.09
p-Meta (3.2+3.3) -64.0 0.11 0.11 -11.8 0.09 0.09

except for ResNet12 under 5-way 5-shot settings where we use 2.
The model is updated with 5 gradient steps (i.e., 𝐾 = 5) in both
inner loop of meta-training and few-shot learning. We use Adam
optimizer with cosine learning rate scheduling as [1] for all outer
loop updating. The (initial) inner step size 𝜶 is set to 0.01. The
meta-trained model is then tested on three datasets MiniImageNet
[39], TieredImageNet [30], and CUB [41] to verify both in-domain
and cross-domain performance.
Results. Tab. 2 shows the accuracy averaged over 5000 new unseen
tasks randomly drawn from the meta test dataset. We also report the
average number of GMACs and the average peak memory per task
according to Appendix A. Clearly, p-Meta almost always yields the
highest accuracy in all settings. Note that the comparison between
“p-Meta (3.2)” and “MAML++” can be considered as the ablation
studies on learning sparse layer-wise inner step sizes proposed
in Sec. 3.2. Thanks to the imposed sparsity on 𝜶 , “p-Meta (3.2)”
significantly reduces the peak memory (2.5× saving on average and
up to 3.1×) and the computation burden (1.7× saving on average and
up to 2.4×) over “MAML++”. Note that the imposed sparsity also
cause a moderate accuracy drop. However, with the meta attention,
“p-Meta (3.2+3.3)” not only notably improves the accuracy but also

further reduces the peak memory (2.7× saving on average and
up to 3.4×) and computation (1.9× saving on average and up to
2.6×) over “MAML++”. “ANIL” only updates the last layer, and
therefore consumes less memory but also yields a substantially
lower accuracy.

4.3 Performance on Reinforcement Learning
Settings. To show the versatility of p-Meta, we experiment with
two few-shot reinforcement learning problems: 2D navigation and
Half-Cheetah robot locomotion simulated withMuJoCo library [37].
For all experiments, we mainly adopt the experimental setup in [10].
We use a neural network policy with two hidden fc layers of size
100 and ReLU activation function. We adopt vanilla policy gradient
[42] for the inner loop and trust-region policy optimization [32] for
the outer loop. During the inner loop as well as few-shot learning,
the agents rollout 20 episodes with a horizon size of 200 and are
updated for one gradient step. The policy model is trained for 500
meta epochs, and the model with the best average return during
training is used for evaluation. The task batch size is set to 20 for
2D navigation, and 40 for robot locomotion. The (initial) inner step
size 𝜶 is set to 0.1. Each episode is considered as a data sample, and
thus the gradients are accumulated 20 times for a gradient step.
Results. Tab. 3 lists the average return averaged over 400 new
unseen tasks randomly drawn from simulated environments. We
also report the average number of GMACs and the average peak
memory per task according to Appendix A. Note that the reported
computation and peakmemory do not include the estimations of the
advantage [9], as they are relatively small and could be done during
the rollout. p-Meta consumes a rather small amount of memory and
computation, while often obtains the highest return in comparison
to others. Therefore, p-Meta can fast adapt its policy to reach the
new goal in the environment with less on-device resource demand.

4.4 Ablation Studies on Meta Attention
We study the effectiveness of our meta attention via the following
two ablation studies. The experiments are conducted on “4Conv”
in both 5-way 1-shot and 5-way 5-shot as Sec. 4.2.

 

1447



KDD ’22, August 14–18, 2022, Washington, DC, USA ZhongnanQu et al.

Table 4: Ablation results of meta attention on 4Conv.

𝜌 5-way 1-shot 5-way 5-shot

fw bw Mini Tiered CUB Mini Tiered CUB

x x 47.1% 52.3% 41.8% 62.9% 68.3% 59.3%
0 x 48.1% 53.2% 41.7% 64.1% 68.4% 59.0%
x 0 47.8% 53.1% 40.9% 63.9% 68.5% 60.0%
0 0 49.0% 54.2% 43.1% 64.5% 69.2% 60.2%
0 0.3 48.5% 53.4% 42.2% 64.7% 68.2% 59.3%
0.3 0 48.8% 53.9% 42.6% 65.0% 68.5% 60.2%
0.3 0.3 48.7% 53.7% 42.3% 64.5% 68.3% 59.5%
0.5 0.5 48.2% 53.4% 42.7% 64.8% 68.1% 59.1%
𝜶Ch 47.8% 52.8% 41.0% 63.6% 68.1% 58.1%

x: no forward/backward meta attention, i.e., 𝜸 fw
𝑙

= 1 or 𝜸bw
𝑙

= 1.
𝜶Ch: introducing an input- and output-channel-wise inner step sizes 𝜶Ch per
layer. We use 𝜶 · 𝜶Ch as the overall inner step sizes. 𝜶Ch is meta-trained as 𝜶
without imposing sparsity.

Sparsity in Meta Attention. Tab. 4 shows the few-shot classifica-
tion accuracy with different sparsity settings in the meta attention.

We first do not impose sparsity on 𝜸 fw
𝑙

and 𝜸bw
𝑙

(i.e., set both
𝜌’s as 0), and adopt forward attention and backward attention
separately. In comparison to no meta attention at all, enabling
either forward or backward attention improves accuracy. With
both attention enabled, the model achieves the best performance.

We then test the effects when imposing sparsity on 𝜸 fw
𝑙

or 𝜸bw
𝑙

(i.e., set 𝜌 > 0). We use the same 𝜌 for all layers. We observe a sparse
𝜸bw
𝑙

often cause a larger accuracy drop than a sparse 𝜸 fw
𝑙
. Since

a sparse 𝜸bw
𝑙

does not bring substantial memory or computation
saving (see Appendix A), we use 𝜌 = 0 for backward attention and
𝜌 = 0.3 for forward attention.

Attention scores 𝜸𝑙 introduce a dynamic channel-wise learn-
ing rate according to the new data samples. We further compare
meta attention with a static channel-wise learning rate, where the
channel-wise learning rate 𝜶Ch is meta-trained as the layer-wise
inner step sizes in Sec. 3.2 while without imposing sparsity. By com-
paring “𝜶Ch” with “0, 0” in Tab. 4, we conclude that the dynamic
channel-wise learning rate yields a significantly higher accuracy.
Layer-wise Updating Ratios. To study the resulted updating ra-
tios across layers, i.e., the layer-wise sparsity of weight gradients,
we randomly select 100 new tasks and plot the layer-wise updat-
ing ratios, see Fig. 5 Left (1:5). The “4Conv” backbone has 9 layers
(𝐿 = 9), i.e., 8 alternates of conv and group normalization layers,
and an fc output layer. As mentioned in Sec. 4.1, we do not apply
meta attention to the output layer, i.e.,𝜸9 = 1. The used backbone is
updated with 5 gradient steps (𝐾 = 5). We use 𝜌 = 0.3 for forward
attention, and 𝜌 = 0 for backward. Note that Alg. 1 adaptively de-
termines the sparsity of𝜸𝑙 , which also means different samples may
result in different updating ratios even with the same 𝜌 (see Fig. 5).
The size of 𝒙𝑙−1 often decreases along the layers in current DNNs.
As expected, the latter layers are preferred to be updated more,
since they need a smaller amount of memory for updating. Inter-
estingly, even if with a small 𝜌(= 0.3), the ratio of updated weights
is rather small, e.g., smaller than 0.2 in step 3 of 5-way 5-shot. It
implies that the outputs of softmax have a large discrepancy, i.e.,
only a few channels are adaptation-critical for each sample, which
in turn verifies the effectiveness of our meta attention mechanism.

We also randomly pair data samples and compute the cosine
similarity between their attention scores𝜸𝑙 . We plot the cosine sim-
ilarity of step 1 in Fig. 5 Right. The results show that there may exist
a considerable variation on the adaptation-critical weights selected
by different samples, which is consistent with our observation in
Tab. 4, i.e., dynamic learning rate outperforms the static one.

5 RELATEDWORK
Meta Learning for Few-Shot Learning.Meta learning is a pre-
vailing solution to few-shot learning [22], where the meta-trained
model can learn an unseen task from a few training samples, i.e.,
data-efficient adaptation. The majority of meta learning meth-
ods can be divided into two categories, (i) metric-based methods
[34, 35, 39] that learn an embedded metric for classification tasks to
map the query samples onto the classes of labeled support samples,
(ii) gradient-based methods [1, 10, 26, 28, 38, 40] that learn an initial
model (and/or optimizer parameters) such that it can be adapted
with gradient information calculated on the new few samples. In
comparison to metric-based methods, we focus on gradient-based
meta learning methods for their wide applicability in various learn-
ing tasks (e.g., regression, classification, reinforcement learning)
and the availability of gradient-based training frameworks for low-
resource devices [36].

Particularly, we aim at meta training a DNN that allows effective
adaptation on memory-constrained devices. Most meta learning
algorithms [1, 10, 40] optimize the backbone network for better
generalization yet ignore the workload if the meta-trained back-
bone is deployed to low-resource platforms for model adaptation.
Manually fixing certain layers during on-device few-shot learning
[26, 28, 33] may also reduce memory and computation, but to a
much lesser extent as shown in our evaluations.
Efficient DNN Training. Existing efficient training schemes are
mainly designed for high-throughput GPU training on large-scale
datasets. A general strategy is to trade memory with computation
[4, 18], which is unfit for IoT device with a limited computation
capability. An alternative is to sparsify the computational graphs
in backpropagation [29]. Yet it relies on massive training iterations
on large-scale datasets. Other techniques include layer-wise local
training [17] and reversible residual module [12], but they often
incur notable accuracy drops.

There are a few studies on DNN training on low-resource plat-
forms, such as updating the last several layers only [25], reducing
batch sizes [24], and gradient approximation [15]. However, they
are designed for vanilla supervised training, i.e., train and test on
the same task. One recent study proposes to update the bias param-
eters only for memory-efficient transfer learning [2], yet transfer
learning is prone to overfitting when trained with limited data [10].

6 CONCLUSION
In this paper, we present p-Meta, a new meta learning scheme for
data- and memory-efficient on-device DNN adaptation. It enables
structured partial parameter updates for memory-efficient few-shot
learning by automatically identifying adaptation-critical weights
both layer-wise and channel-wise. Evaluations show a reduction in
peak dynamic memory by 2.5× on average over the state-of-the-art

 

1448



p-Meta: Towards On-device Deep Model Adaptation KDD ’22, August 14–18, 2022, Washington, DC, USA

2 4 6 8

Layer

0.0

0.2

0.4

0.6

0.8

1.0

U
p

da
ti

ng
R

at
io

k =1

5-way 1-shot

5-way 5-shot

2 4 6 8

Layer

0.0

0.2

0.4

0.6

0.8

1.0

U
p

da
ti

ng
R

at
io

k =2

2 4 6 8

Layer

0.0

0.2

0.4

0.6

0.8

1.0

U
p

da
ti

ng
R

at
io

k =3

2 4 6 8

Layer

0.0

0.2

0.4

0.6

0.8

1.0

U
p

da
ti

ng
R

at
io

k =4

2 4 6 8

Layer

0.0

0.2

0.4

0.6

0.8

1.0

U
p

da
ti

ng
R

at
io

k =5

2 4 6 8

Layer

0.5

0.6

0.7

0.8

0.9

1.0

1.1

C
os

in
e

S
im

ila
ri

ty

Similarity of γl (k = 1)

Figure 5: Left (1:5): Layer-wise updating ratios (mean ± standard deviation) in each updating step. Note that the ratio of updated
weights is determined by both static layer-wise inner step sizes 𝛼1:𝐾1:𝐿 and the dynamic meta attention scores 𝜸1:𝐿 . The layer with
an updating ratio of 0 means its 𝛼 = 0. Right: Cosine similarity (mean ± standard deviation) of 𝜸1:𝐿 between random pair of data
samples. The results are reported in step 1, because all samples are fed into the same initial model in step 1.

few-shot adaptation methods. We envision p-Meta as an early step
towards adaptive and autonomous edge intelligence applications.

ACKNOWLEDGEMENT
Part of Zhongnan Qu and Lothar Thiele’s work was supported by
the Swiss National Science Foundation in the context of the NCCR
Automation. This research was supported by the Lee Kong Chian
Fellowship awarded to Zimu Zhou by Singapore Management Uni-
versity. Zimu Zhou is the corresponding author.

REFERENCES
[1] Antreas Antoniou, Harrison Edwards, and Amos Storkey. 2019. How to train

your MAML. In ICLR.
[2] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020. TinyTL: Reduce Memory,

Not Parameters for Efficient On-Device Learning. In NeurIPS.
[3] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri

Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re. 2021. MONGOOSE:
A Learnable LSH Framework for Efficient Neural Network Training. In ICLR.

[4] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv:1604.06174

[5] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and
Zicheng Liu. 2020. Dynamic Convolution: Attention Over Convolution Ker-
nels. In CVPR.

[6] Tristan Deleu. 2018. Model-Agnostic Meta-Learning for Reinforcement Learning
in PyTorch. Available at: https://github.com/tristandeleu/pytorch-maml-rl.

[7] Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua
Bengio. 2019. Torchmeta: A Meta-Learning library for PyTorch. https://arxiv.
org/abs/1909.06576 Available at: https://github.com/tristandeleu/pytorch-meta.

[8] Lei Deng, Guoqi Li, SongHan, Luping Shi, and Yuan Xie. 2020. Model compression
and hardware acceleration for neural networks: a comprehensive survey. Proc.
IEEE 108, 4 (2020), 485–532.

[9] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. 2016.
Benchmarking Deep Reinforcement Learning for Continuous Control. In ICML.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML.

[11] Dawei Gao, Xiaoxi He, Zimu Zhou, Yongxin Tong, and Lothar Thiele. 2021.
Pruning meta-trained networks for on-device adaptation. In CIKM.

[12] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. 2017. The
Reversible Residual Network: Backpropagation Without Storing Activations. In
NeurIPS.

[13] Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee. 2019. Metasense:
few-shot adaptation to untrained conditions in deep mobile sensing. In SenSys.

[14] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

[15] Mary Gooneratne, Khe Chai Sim, Petr Zadrazil, Andreas Kabel, Françoise Beau-
fays, and Giovanni Motta. 2020. Low-rank Gradient Approximation For Memory-
Efficient On-device Training of Deep Neural Network. In ICASSP.

[16] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv:1706.02677

[17] Klaus Greff, Rupesh K. Srivastava, and Jürgen Schmidhuber. 2017. Highway and
Residual Networks learn Unrolled Iterative Estimation. In NeurIPS.

[18] Audrūnas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves.
2016. Memory-Efficient Backpropagation Through Time. In NeurIPS.

[19] Liang-Yan Gui, Yu-Xiong Wang, Deva Ramanan, and José MF Moura. 2018. Few-
shot human motion prediction via meta-learning. In ECCV.

[20] Song Han, Huizi Mao, andWilliam J Dally. 2016. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
In ICLR.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR.

[22] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. 2020.
Meta-learning in neural networks: a survey. arXiv:2004.05439

[23] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. In CVPR.
[24] Seulki Lee and Shahriar Nirjon. 2019. Neuro.ZERO: a zero-energy neural network

accelerator for embedded sensing and inference systems. In SenSys.
[25] Akhil Mathur, Daniel J. Beutel, Pedro Porto Buarque de Gusmão, Javier Fernandez-

Marques, Taner Topal, Xinchi Qiu, Titouan Parcollet, Yan Gao, and Nicholas D.
Lane. 2021. On-device Federated Learning with Flower. In MLSys.

[26] Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, and Se-Young Yun. 2021. BOIL:
Towards Representation Change for Few-shot Learning. In ICLR.

[27] Boris N. Oreshkin, Pau Rodriguez, and Alexandre Lacoste. 2018. TADAM: Task
dependent adaptive metric for improved few-shot learning. In NeurIPS.

[28] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. 2020. Rapid
learning or feature reuse? Towards understanding the effectiveness of MAML. In
ICLR.

[29] Md Aamir Raihan and Tor M. Aamodt. 2020. Sparse Weight Activation Training.
In NeurIPS.

[30] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B.
Tenenbaum, Hugo Larochelle, and Richard S. Zemel. 2018. Meta-Learning for
Semi-Supervised Few-Shot Classification. In ICLR.

[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet large scale visual recognition challenge.
International Journal of Computer Vision 115, 3 (2015), 211–252.

[32] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. 2015. Trust Region Policy Optimization. In ICML.

[33] Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng.
2021. Partial Is Better Than All: Revisiting Fine-tuning Strategy for Few-shot
Learning. In AAAI.

[34] Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. Prototypical Networks
for Few-shot Learning. In NeurIPS.

[35] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M.
Hospedales. 2018. Learning to Compare: Relation Network for Few-Shot Learning.
In CVPR.

[36] TensorFlow. [n.d.]. On-Device Training with TensorFlow Lite. https://www.
tensorflow.org/lite/examples/on_device_training/overview. Accessed: 2022-01-
15.

[37] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
for model-based control. In IROS.

[38] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci,
Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Man-
zagol, and Hugo Larochelle. 2020. Meta-Dataset: A Dataset of Datasets for
Learning to Learn from Few Examples. In ICLR.

[39] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan
Wierstra. 2016. Matching Networks for One Shot Learning. In NeurIPS.

[40] Johannes Von Oswald, Dominic Zhao, Seijin Kobayashi, Simon Schug, Massimo
Caccia, Nicolas Zucchet, and João Sacramento. 2021. Learning where to learn:
Gradient sparsity in meta and continual learning. In NeurIPS.

[41] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona.
2010. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001. California
Institute of Technology.

[42] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms
for Connectionist Reinforcement Learning. Mach. Learn. 8, 3–4 (may 1992).
https://doi.org/10.1007/BF00992696

[43] Yuxin Wu and Kaiming He. 2018. Group Normalization. In ECCV.

 

1449

https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1909.06576
https://arxiv.org/abs/1909.06576
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/2004.05439
https://www.tensorflow.org/lite/examples/on_device_training/overview
https://www.tensorflow.org/lite/examples/on_device_training/overview
https://doi.org/10.1007/BF00992696


KDD ’22, August 14–18, 2022, Washington, DC, USA ZhongnanQu et al.

A MEMORY AND COMPUTATION
In the following, we derive the memory requirement and computa-
tion workload for inference and adaptation. We restrict ourselves
to a feed-forward network of fully-connected (fc) or convolutional
(conv) layers. Note that our analysis focuses on 2D conv layers
but can apply to other conv layer types as well. We assume the
rectified linear activation function (ReLU) for all layers, denoted as
𝜎 . For simplicity, we omit the bias, normalization layers, pooling or
strides. We use the notation𝑚(𝒙) to denote the memory demand
in words to store tensor 𝒙 . The wordlength is denoted as T .

For representing indexed summations we use the Einstein nota-
tion. If index variables appear in a term on the right hand side of
an equation and are not otherwise defined (free indices), it implies
summation of that term over the range of the free indices. If indices
of involved tensor elements are out of range, the values of these
elements are assumed to be 0.

A.1 Single Layer
We start with a single layer and accumulate the memory and com-
putation for networks with several layers afterwards. Assume the
input tensor of a layer is 𝒙 , the weight tensor is 𝒘 , the result af-
ter the linear transformation is 𝒚, and the layer output after the
non-linear operator is 𝒛 which is also the input to the next layer.

For convolutional layers, we have 𝒙 ∈ R𝐶𝐼 ×𝐻𝐼 ×𝑊𝐼 and ele-
ments 𝑥𝑐𝑖 𝑗 , where𝐶𝐼 , 𝐻𝐼 , and𝑊𝐼 denote the number of input chan-
nels, height and width, respectively. In a similar way, we have
𝒛 ∈ R𝐶𝑂×𝐻𝑂×𝑊𝑂 with elements 𝑥 𝑓 𝑖 𝑗 where 𝐶𝑂 , 𝐻𝑂 , and𝑊𝑂 de-
note the number of output channels, height and width, respectively.
Moreover,𝒘 ∈ R𝐶𝑂×𝐶𝐼 ×𝑆×𝑆 with elements𝑤 𝑓 𝑐𝑚𝑛 . Therefore,

𝑚 (𝒙 ) = 𝐶𝐼𝐻𝐼𝑊𝐼 , 𝑚 (𝒚 ) =𝑚 (𝒛 ) = 𝐶𝑂𝐻𝑂𝑊𝑂 , 𝑚 (𝒘 ) = 𝐶𝑂𝐶𝐼𝑆
2

For fully connected layers we have 𝒙 ∈ R𝐶𝐼 , 𝒚, 𝒛 ∈ R𝐶𝑂 , and
𝒘 ∈ R𝐶𝑂×𝐶𝐼 with memory demand

𝑚 (𝒙 ) = 𝐶𝐼 , 𝑚 (𝒚 ) =𝑚 (𝒛 ) = 𝐶𝑂 , 𝑚 (𝒘 ) = 𝐶𝑂𝐶𝐼

A.1.1 Fully Connected Layer. For inference we derive the relations
𝑦𝑓 = 𝑤 𝑓 𝑐𝑥𝑐 and 𝑧𝑓 = 𝜎 (𝑦𝑓 ) for all admissible indices 𝑓 ∈ [1,𝐶𝑂 ].
The necessary dynamic memory has a size of about𝑚(𝒙) +𝑚(𝒚)
words and we need about𝑚(𝒘) MAC operations.

For adaptation, we suppose that 𝜕ℓ
𝜕𝑧𝑖

is already provided from the

next layer. We find 𝜕ℓ
𝜕𝑦𝑖

= 𝜎′ (𝑦𝑖 ) · 𝜕ℓ𝜕𝑧𝑖 with 𝜎′ (𝑦𝑖 ) =
{
1 if 𝑦𝑖 > 0
0 if 𝑦𝑖 < 0

which leads to 𝜕ℓ
𝜕𝑥𝑖

= 𝑤 𝑗𝑖 · 𝜕ℓ𝜕𝑦 𝑗 . The necessary dynamic memory is
about𝑚(𝒙) +𝑚(𝒚) · (1+ 1

T ) words, where the last term comes from
storing 𝜎′ (𝑦𝑖 ) single bits from the forward path. We need about
𝑚(𝒘) MAC operations.

According to the approach described in the paper we are only
interested in the partial derivatives 𝜕ℓ

𝜕𝑤𝑓 𝑐
if 𝛼 > 0 for this layer,

and if scales 𝛾bw
𝑓

> 0 and 𝛾 fw𝑐 > 0 for indices 𝑓 , 𝑐 . To simplify the
notation, let us define the critical ratios

𝜇fw =
number of nonzero elements of 𝛾 fw𝑐

𝐶𝐼

𝜇bw =
number of nonzero elements of 𝛾bw

𝑓

𝐶𝑂

which are 1 if all channels are determined to be critical for weight
adaptation, and 0 if none of them.

We find 𝛾bw
𝑓

𝜕ℓ
𝜕𝑤𝑓 𝑐

𝛾 fw𝑐 = (𝛾bw
𝑓

𝜕ℓ
𝜕𝑦𝑓
) · (𝛾 fw𝑐 𝑥𝑐 ). Therefore, we need

𝜇fw𝜇bw𝑚(𝒘) + 𝜇fw𝑚(𝒙) words dynamic memory if 𝛼 > 0 where
the latter term considers the information needed from the forward
path. We require about 𝜇fw𝜇bw𝑚(𝒘) MAC operations if 𝛼 > 0.

A.1.2 Convolutional Layer. The memory analysis for a convolu-
tional layer is very similar, just replacing matrix multiplication by
convolution. For inference we find 𝑦𝑓 𝑖 𝑗 = 𝑤 𝑓 𝑐𝑚𝑛𝑥𝑐,𝑖+𝑚−1, 𝑗+𝑛−1
and 𝑧𝑓 𝑖 𝑗 = 𝜎 (𝑦𝑓 𝑖 𝑗 ) for all admissible indices 𝑓 , 𝑖 , 𝑗 . The necessary
dynamic memory has a size of aboutmax{𝑚(𝒙),𝑚(𝒚)}words when
using memory sharing between input and output tensors. We need
about 𝐻𝑂𝑊𝑂 ·𝑚(𝒘) MAC operations.

For adaptation, we again suppose that 𝜕ℓ
𝜕𝑧𝑓 𝑖 𝑗

is provided from the
next layer. We find 𝜕ℓ

𝜕𝑦𝑓 𝑖 𝑗
= 𝜎′ (𝑦𝑓 𝑖 𝑗 ) · 𝜕ℓ

𝜕𝑧𝑓 𝑖 𝑗
and get 𝜕ℓ

𝜕𝑥𝑐𝑖 𝑗
= 𝑤 𝑓 𝑐𝑚𝑛 ·

𝜕ℓ
𝜕𝑦𝑓 ,𝑖+𝑚−1, 𝑗+𝑛−1

. The necessary memory is aboutmax{𝑚(𝒙),𝑚(𝒚)}+
𝑚 (𝒚 )
T words, where the last term comes from storing𝜎′ (𝑦𝑓 𝑖 𝑗 ) single

bits from the forward path. We need about 𝐻𝐼𝑊𝐼 ·𝑚(𝒘) multiply
and accumulate operations.

For determining the weight gradients we find 𝜕ℓ
𝜕𝑤𝑓 𝑐𝑚𝑛

= 𝜕ℓ
𝜕𝑦𝑓 𝑖 𝑗

·
𝑥𝑐,𝑖+𝑚−1, 𝑗+𝑛−1. When considering the scales for filtering, we yield
𝛾bw
𝑓

𝜕ℓ
𝜕𝑤𝑓 𝑐𝑚𝑛

𝛾 fw𝑐 = (𝛾bw
𝑓

𝜕ℓ
𝜕𝑦𝑓 𝑖 𝑗

) · (𝛾 fw𝑐 𝑥𝑐,𝑖+𝑚−1, 𝑗+𝑛−1). As a result, we
need 𝜇fw𝜇bw𝑚(𝒘) + 𝜇fw𝑚(𝒙) words of dynamic memory if 𝛼 > 0
where the latter term considers the information needed from the for-
ward path. We require about 𝜇fw𝜇bw𝐻𝑂𝑊𝑂𝑚(𝒘) MAC operations
if 𝛼 > 0.

Finally, let us determine the required memory and computation
to determine the scales 𝛾 fw𝑐 and 𝛾bw

𝑓
. According to Fig. 3, we find

as an upper bound for the memory 𝐵 · (𝐶𝐼 +𝐶𝑂 ) and (𝐶𝐼𝐻𝐼𝑊𝐼 +
2𝐶2
𝐼
+𝐶𝑂𝐻𝑂𝑊𝑂 + 2𝐶2

𝑂
) MAC operations.

A.2 All Layers
The above relations are valid for a single layer. The following rela-
tions hold for the overall network. In order to simplify the notation,
we consider a network that consists of convolution layers only.
Extensions to mixed layers can simply be done.

We suppose 𝐿 layers with sizes 𝐶𝑙 , 𝐻𝑙 ,𝑊𝑙 and 𝑆𝑙 for the number
of output channels, output width, output height and kernel size,
respectively. We assume that the step-sizes 𝛼𝑙 for some iteration of
the adaption are given. The memory requirement in words is

𝑚 (𝒙𝑙 ) = 𝐶𝑙𝐻𝑙𝑊𝑙 , 𝑚 (𝒘𝑙 ) = 𝐶𝑙𝐶𝑙−1𝑆
2
𝑙

and the word-length is again denoted as T . We define as 𝛼𝑙 ={
1 if 𝛼𝑙 > 0
0 if 𝛼𝑙 = 0

the mask that determines whether the weight adap-

tation for this layer is necessary or not.
Let us first look at the forward path. The necessary dynamic

memory is about max0≤𝑙≤𝐿{𝑚(𝒙𝑙 )} words. The amount of MAC
operations is

∑
1≤𝑙≤𝐿 𝐻𝑙𝑊𝑙𝑚(𝒘𝑙 ).

The backward path needs only to be evaluated until we reach
the first layer where we require the computation of the gradi-
ents. We define 𝑙min = min{𝑙 | 𝛼𝑙 = 1}. For the calculation of the
partial derivatives of the activations we need dynamic memory

 

1450



p-Meta: Towards On-device Deep Model Adaptation KDD ’22, August 14–18, 2022, Washington, DC, USA

of max𝑙min≤𝑙≤𝐿{𝑚(𝒙𝑙 )} +
1
T
∑
𝑙min≤𝑙≤𝐿𝑚(𝒙𝑙 ) words where the last

term is due to storing the derivatives of the ReLU operations. We
need about

∑
𝑙min+1≤𝑙≤𝐿 𝐻𝑙−1𝑊𝑙−1𝑚(𝒘𝑙 ) MAC operations.

The second contribution of the backward path is for computing
the weight gradients. The memory and computation demand of
the scales will be neglected as they are much smaller than other
contributions. We can determine the necessary dynamic memory as
max1≤𝑙≤𝐿{𝛼𝑙 𝜇fw𝑙 𝜇bw

𝑙
𝑚(𝒘𝑙 )} +

∑
1≤𝑙≤𝐿 𝛼𝑙 𝜇

fw
𝑙
𝑚(𝒙𝑙−1), and we need∑

1≤𝑙≤𝐿 𝛼𝑙 𝜇
fw
𝑙
𝜇bw
𝑙
𝐻𝑙𝑊𝑙𝑚(𝒘𝑙 ) MAC operations.

Considering all necessary dynamic memory with memory reuse
for an adaptation step, we get an estimation of memory in words

max
0≤𝑙≤𝐿

{𝑚 (𝒙𝑙 ) } +
∑︁

1≤𝑙≤𝐿
𝛼𝑙𝑚 (𝒘𝑙 )+

+
∑︁

1≤𝑙≤𝐿
𝛼𝑙 𝜇

fw
𝑙
𝑚 (𝒙𝑙−1 ) +

1
T

∑︁
𝑙min≤𝑙≤𝐿

𝑚 (𝒙𝑙 ) (16)

if we accumulate the weight gradients before doing an SGD step
and re-use some memory during back-propagation. More elaborate
memory re-use can be used to slightly sharpen the bounds without
a major improvement. For conventional training, each parameter is
in 32-bit floating point format, i.e., one word corresponds to 32-bit.
As discussed in Sec. 2, we only consider max-pooling and ReLU-
styled activation as the 𝜎 function. The wordlength 𝑇 in Eq.(16) is
set as 16 for max-pooling , and 32 for ReLU-styled activation. One
can see that under the typical assumptions for network parameters,
the above memory requirement in words is dominated by∑︁

1≤𝑙≤𝐿
𝛼𝑙 𝜇

fw
𝑙
𝑚 (𝒙𝑙−1 ) (17)

The necessary storage between the forward and backward path is
reduced proportionally to 𝜇fw

𝑙
with factor𝑚(𝒙𝑙−1).

Finally, the amount of MAC computations can be estimated as∑︁
1≤𝑙≤𝐿

𝐻𝑙𝑊𝑙𝑚 (𝒘𝑙 ) (1 + 𝛼𝑙 𝜇fw𝑙 𝜇bw
𝑙
) +

∑︁
𝑙min≤𝑙≤𝐿

𝐻𝑙−1𝑊𝑙−1𝑚 (𝒘𝑙 ) (18)

while neglecting lower order terms. Here it is important to note
that all terms are of similar order. The approach used in the paper
does not determine a trade-off between computation and memory,
but reduces the amount of MAC operations. This reduction is less
than the reduction in required dynamic memory.

B OTHER EXPERIMENTS
B.1 Pooling & Normalization
In this section, we test the backbone network with different types
of pooling and normalization. Without further notations in the
following experiments, we meta-train our “4Conv” backbone on
MiniImageNet with full batch sizes, and conduct few-shot learning
with gradient accumulation with a batch size of 1, as in Sec. 4. Here,
we report the results with the original “MAML” method [10] in
Tab. 5. Clearly, the discrepancy of batch statistics between meta-
training phase and few-shot learning phase causes a large accuracy
loss in batch normalization layers. Batch normalization works only
if few-shot learning uses full batch sizes, i.e., without gradient accu-
mulation, which however does not fit in our memory-constrained
scenarios (see Sec. 3.5.1). In addition, max-pooling performs bet-
ter than average-pooling. We thus use group normalization and
max-pooling in our backbone model, see Sec. 4.

Table 5: Comparison between different pooling and normal-
ization layers.

4Conv 5-way 1-shot

Pooling Norm. Mini Tiered CUB

Average Batch 25.3% 27.2% 26.1%
Average Group 45.8% 50.3% 40.2%
Max Batch 27.6% 28.9% 26.5%
Max Group 46.2% 51.4% 39.9%

Table 6: Ablation results of sample batch sizes.

5-way 1-shot 5-way 5-shot

Batch Size 1 2 5 1 5 25

Mini 48.8% 48.7% 48.3% 65.0% 65.1% 64.7%
Tiered 53.9% 53.6% 54.3% 68.5% 68.9% 68.1%
CUB 42.6% 42.1% 42.4% 60.2% 59.5% 60.6%

Table 7: Ablation results of sparse 𝒙𝑙−1 and sparse 𝒈(𝒚𝑙 ).

𝜌 = 0.3 5-way 1-shot 5-way 5-shot

fw bw Mini Tiered CUB Mini Tiered CUB

x x 47.1% 52.3% 41.8% 62.9% 68.3% 59.3%
𝒈 (𝒘𝑙 ) x 48.2% 53.6% 41.2% 63.6% 69.0% 59.0%
𝒙𝑙−1 x 37.4% 37.9% 35.4% 47.9% 49.3% 42.5%
x 𝒈 (𝒘𝑙 ) 48.0% 53.0% 42.6% 64.0% 67.8% 59.9%
x 𝒈 (𝒚𝑙 ) 22.8% 21.1% 20.6% 20.7% 21.0% 20.4%

x: no forward/backward (sparse) meta attention, i.e., 𝜸 fw
𝑙

= 1 or 𝜸bw
𝑙

= 1.

B.2 Sample Batch Size
In this section, we show the effects brought from different sample
batch sizes. During few-shot learning phase, gradient accumulation
is applied to fit in different on-device memory constraints. We
report the accuracy when adopting different sample batch sizes in
gradient accumulation. Although group normalization eliminates
the variance of batch statistics, adopting different batch sizes may
still result in diverse performance due to the batch-averaged scores
in meta attention. The results in Tab. 6 show that different batch
sizes yield a similar accuracy level, which indicates that our meta
attention module is relatively robust to batch sizes.

B.3 Sparse x and Sparse g(y)
Our meta attention modules take 𝒙𝑙−1 and 𝒈(𝒚𝑙 ) as inputs, and out-
put attention scores which are used to create sparse 𝒈(𝒘𝑙 ). However,
applying the resulted sparse attention scores on 𝒙𝑙−1 and 𝒈(𝒚𝑙 )
can also bring memory and computation benefits, as discussed
in Sec. 3.1. We conduct the ablations when multiplying attention
scores 𝜸 fw

𝑙
and 𝜸bw

𝑙
on 𝒈(𝒘𝑙 ) (also the one used in the main text),

or on 𝒙𝑙−1 and 𝒈(𝒚𝑙 ) respectively. The results in Tab. 7 show that a
channel-wise sparse 𝒙𝑙−1 hugely degrades the performance, in com-
parison to only imposing sparsity on 𝒈(𝒘𝑙 ) while using a dense 𝒙𝑙−1
in the forward pass. In addition, directly adopting a sparse 𝒈(𝒚𝑙 )
in backpropagation may even cause non-convergence in few-shot
learning. We think this is due to the fact that the error accumulates
along the propagation when imposing sparsity on 𝒙𝑙−1 or 𝒈(𝒚𝑙 ).

 

1451


	Abstract
	1 Introduction
	2 Preliminaries and Challenges
	3 Method
	3.1 p-Meta Overview
	3.2 Selecting Adaption-Critical Layers by Learning Sparse Inner Step Sizes
	3.3 Selecting Adaption-Critical Channels within Layers via Sparse Meta Attention
	3.4 Summary of p-Meta
	3.5 Deployment Optimization

	4 Evaluation
	4.1 General Experimental Settings
	4.2 Performance on Image Classification
	4.3 Performance on Reinforcement Learning
	4.4 Ablation Studies on Meta Attention

	5 Related Work
	6 Conclusion
	References
	A Memory and Computation
	A.1 Single Layer
	A.2 All Layers

	B Other Experiments
	B.1 Pooling & Normalization
	B.2 Sample Batch Size
	B.3 Sparse x and Sparse g(y)




