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ABSTRACT
Hierarchically Separated Tree (HST) is the most popular solution

to embed a metric space into a tree metric. By using HSTs, many

optimization problems, which are hard on defined metrics, become

easier to get good approximation bounds with respect to the effec-

tiveness, e.g., task assignment, trip planning, and facility location

planning. Existing work focuses on constructing HSTs for arbitrary

metric spaces, which makes a general-purpose algorithm take at

least 𝑂 (𝑛2)-time to get tight distortion guarantees 𝑂 (log𝑛). Here,
distortion is a prevalent measurement of HSTs’ effectiveness and

usability. However, we observe that (1) in many applications that

HSTs are applied, only 𝐿𝑝 metrics are used (e.g., Euclidean space),

(2) the state-of-the-art solution is still time-consuming to construct

HSTs for large-scale data, and (3) distortions of existing algorithms

are only satisfactory for high-dimensional data. Thus, in this paper,

we are motivated to study the Embedding 𝐿𝑝 metrics through Tree

metrics (ELT) problem. We aim to design a faster algorithm than

𝑂 (𝑛2) time to construct HSTs with not only 𝑂 (log𝑛) distortion
guarantees but also good and robust empirical results. Specifically,

we first present a divide-and-conquer based general framework and

prove that it has a distortion guarantee of 𝑂 (log𝑛). To achieve a

better time complexity than 𝑂 (𝑛2), we next design two optimiza-

tion techniques: reducing to nearest neighbor search (by indexing)

and sampling. Finally, extensive experiments demonstrate that our

algorithm DCsam outperforms the state-of-the-art algorithms by a

large margin in terms of both distortion and running time.
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1 INTRODUCTION
Hierarchically Separated Tree (HST) [14] is a tree-based data struc-

ture (index), which is the most popular solution to embed arbitrary

metric spaces (“original metrics” for short) into tree-based metric

spaces. By using HSTs, many optimization problems (e.g., NP-hard
or online problems) become easier to get approximate results with

good bounds on the performance ratio. A few selections of these

problems include task assignment [18, 55, 57], trip planning [19, 63],

privacy protection [24, 54], and facility location planning [12, 20].

These studies have three common things in their algorithms:

(1) they reduce the problems on their defined metric spaces to in-

stances on HSTs, (2) instances on HSTs can be tackled by good

approximation guarantees (say 𝜌), and (3) problems on the original

metrics will usually have approximation bounds of 𝜌 × distortion.
Here, the distortion is the maximum elongation of the distance for

any two data points on the HST over their original distances. Since

lower distortions imply better effectiveness (i.e., smaller approxi-

mation bounds), early studies [14, 15, 25, 26, 39, 41] of HSTs focus

on minimizing the distortion. This series of work culminated in the

breakthrough of [25, 26] by constructing HSTs with tight distortion

guarantees (𝑂 (log𝑛)). Recent work [17, 29, 32, 64] improved the

time efficiency of the seminal construction method in [25, 26] from

𝑂 (𝑛3) to 𝑂 (𝑛2) in the worst case.

Up to now, the algorithm in [25, 26] takes at least 𝑂 (𝑛2) to con-

struct an HST for 𝑛 data points whose distance function needs

𝑂 (1) time (e.g., constant dimensions). Similar to other 𝑂 (𝑛2)-time

algorithms (e.g., [31, 61]), it is time-consuming to construct HSTs
for large-scale spatial data on 2D Euclidean spaces. For example,

our experiments show that a regular server (with Intel(R) Xeon(R)

2.40GHz CPU) takes several hours to construct HSTs for one million

2D points. Moreover, we observe another empirical phenomenon:

distortions of existing HSTs are much higher on low-dimensional
spaces than high-dimensional spaces. High distortions may cause

low effectiveness of optimization solutions by HSTs, as many ap-

plications consider low-dimensional spatial data. For example, 2D

Euclidean space and 2D Manhattan space are often considered in

the aforementioned applications of HSTs.

Motivated by these observations, this paper focuses on construct-
ing HSTs more efficiently to get both tight theoretical guarantees and
low empirical distortions. Specifically, we study the Embedding 𝐿𝑝
metrics through Tree metrics (ELT) problem. We focus this prob-

lem scope, since 𝐿𝑝 metrics cover many popular metrics such as

Manhattan distance (𝐿1), Euclidean distance (𝐿2) and Chebyshev

distance (𝐿∞). These metrics not only “play the most prominent

roles” in low-distortion embeddings (according to §8 of the text-

book [58]), but also are the primary concerns in applications of

HSTs (e.g., the selected problems above).
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To solve the ELT problem, we design a divide-and-conquer based

framework. The main idea is to first find a good division scheme

to partition a metric space into several subspaces, then construct

the subtree of each subspace, and finally merge the subtrees into

the final HST. Although theoretical analysis implies that this frame-

work has a distortion guarantee no worse than the state-of-the-

art method [26], it suffers from an even higher time complexity

(𝑂 (𝑛4 log𝑛)). Thus, we design two optimization techniques: re-
ducing distortion computation to nearest neighbor (NN) search by
indexing and two-phase sampling. The former brings us the chance

to reduce high time complexity by leveraging the rich literature of

(approximate) NN, which is not limited to 𝐿𝑝 metrics. The latter

achieves the trade-off between distortions and running time.

Our main contributions are summarized as follows.

• We propose a divide-and-conquer based framework. The-

oretical analysis implies that its distortion guarantee is no

lower than that of the state-of-the-art [26], i.e., 𝑂 (log𝑛).
• We design two optimization techniques to improve the time

complexity while retaining 𝑂 (log𝑛) distortion guarantee.

By using these optimizations, the time complexity of our

algorithm DCsam is 𝑂 (𝑛1.5 log2 𝑛), which is asymptotically

faster than the state-of-the-art solution (𝑂 (𝑛2) [26]).
• Extensive experiments demonstrate that our solution outper-

forms the existing baselines [14, 15, 26] in both effectiveness

(i.e., distortion) and time efficiency. For example, distortions

of DCsam are lower than these baselines by up to 16×-41× in
our experiments. Moreover, DCsam is up to 783× faster than
[26] and up to 4-5 orders of magnitude faster than [14, 15].

In the rest of this paper, Sec. 2 introduces the ELT problem and

baselines. Then, we present our solution in Sec. 3-4, experiments

in Sec. 5, and related work in Sec. 6. Finally, we conclude in Sec. 7.

2 PROBLEM STATEMENT AND BASELINE
This section introduces the problem definition and our baselines.

2.1 Problem Definition
Definition 1 (𝐿𝑝 Metric). An 𝐿𝑝 metric space (“metric” for short)

is denoted by 𝑆 = (𝑉 , 𝐷𝑖𝑠). The set 𝑉 contains 𝑛 points in real

𝑑-dimensional space R𝑑 . 𝐷𝑖𝑠 = (∑𝑑
𝑖=1 |𝑥 [𝑖] − 𝑦 [𝑖] |𝑝 )1/𝑝 is the 𝐿𝑝 -

norm function. As a metric space, 𝑆 needs to satisfy three conditions

for all 𝑥,𝑦, 𝑧 ∈ 𝑉 : (1) 𝐷𝑖𝑠 (𝑥, 𝑥) = 0, (2) 𝐷𝑖𝑠 (𝑥,𝑦) = 𝐷𝑖𝑠 (𝑦, 𝑥), and
(3) 𝐷𝑖𝑠 (𝑥,𝑦) + 𝐷𝑖𝑠 (𝑦, 𝑧) ≥ 𝐷𝑖𝑠 (𝑥, 𝑧) (triangle inequality).

We focus on 𝐿𝑝 metrics, where 𝑝 ∈ [1,∞] and 𝑑 is fixed. Follow-

ing the conventions in existing work [17, 25, 26, 64], the distance

𝐷𝑖𝑠 (𝑥,𝑦) when 𝑥 ≠ 𝑦 is defined in [1,∞) (e.g., by normalization).

The diameter of this metric is denoted by Δ = max𝐷𝑖𝑠 (𝑥,𝑦). We as-

sume Δ is bounded by𝑂 (𝑝𝑜𝑙𝑦 (𝑛)) (e.g., 𝑛𝑑 or 𝑛’s power of any large

constant). This assumption generally holds in real-world datasets.

Definition 2 (Tree Metric [58]). A tree metric 𝑆𝑇 = (𝑉𝑇 , 𝐷𝑖𝑠𝑇 ) is
a tree-structured metric, where distance 𝐷𝑖𝑠𝑇 (𝑢, 𝑣) between nodes

𝑢 and 𝑣 is the sum of edge weights along the path from 𝑢 to 𝑣 .

Fig. 1 depicts an example of tree metrics, where points 𝑝1-𝑝6
in Table 1 are represented by the leaves 𝑢13-𝑢18. On this tree, the

distance between 𝑝2 and 𝑝5 (corresponding to leaves 𝑢13 and 𝑢15)

consists of two parts, i.e., the distance of path from 𝑢13 to their low-

est common ancestor (LCA) and the length of path from their LCA

(denoted by lca(𝑢13, 𝑢15) = 𝑢4) to𝑢14. Thus, we have𝐷𝑖𝑠𝑇 (𝑝2, 𝑝5) =
𝑊 (𝑢13, 𝑢7) +𝑊 (𝑢7, 𝑢4) +𝑊 (𝑢4, 𝑢9) +𝑊 (𝑢9, 𝑢15) = 2+4+4+2 = 12,

where𝑊 (·, ·) is the edge weight (marked in the left side of Fig. 1).

Definition 3 (Embedding, Stretch and Distortion [58]). Given two

metrics 𝑆 = (𝑉 , 𝐷𝑖𝑠) and 𝑆𝑇 = (𝑉𝑇 , 𝐷𝑖𝑠𝑇 ), a mapping 𝑓 : 𝑉 → 𝑉𝑇
is an embedding if 𝐷𝑖𝑠 (𝑥,𝑦) ≤ 𝐷𝑖𝑠𝑇 (𝑓 (𝑥), 𝑓 (𝑦)) for all 𝑥,𝑦 ∈ 𝑉 .
The stretch of the distance between 𝑥 and 𝑦 is defined as

Stretch(𝑥,𝑦) B 𝐷𝑖𝑠𝑇 (𝑓 (𝑥), 𝑓 (𝑦))
𝐷𝑖𝑠 (𝑥,𝑦) . (1)

The distortion is the maximum of the pairwise stretches, i.e.,

Distort(𝑉 ) B max

𝑥 ∈𝑉 ,𝑦∈𝑉
𝐷𝑖𝑠𝑇 (𝑓 (𝑥), 𝑓 (𝑦))

𝐷𝑖𝑠 (𝑥,𝑦) (2)

Fig. 1 also depicts an embedding of the points 𝑝1-𝑝6 in a 2D

Euclidean space (i.e., 𝑆 is a 𝐿2 metric). As the distance 𝐷𝑖𝑠 (𝑝2, 𝑝5) is√︁
(3 − 0)2 + (4 − 5)2 = 3.16, the stretch between these two points is

𝐷𝑖𝑠𝑇 (𝑝2, 𝑝5)/𝐷𝑖𝑠 (𝑝2, 𝑝5) = 12/3.16 = 3.80. After enumerating all

pairwise stretches, we can derive that the distortion is Distort(𝑉 ) =
Stretch(𝑝4, 𝑝1) = 60/

√︁
(5 − 10)2 + (8 − 9)2 = 11.77. Next, we present

the Embedding 𝐿𝑝 metrics by Tree metrics (ELT) problem as follows.

Definition 4 (ELT Problem [14]). Given an 𝐿𝑝 metric space 𝑆 =

(𝑉 , 𝐷𝑖𝑠), we aim to embed 𝑆 into a tree metric 𝑆𝑇 = (𝑉𝑇 , 𝐷𝑖𝑠𝑇 ) such
that the distortion of this embedding can be minimized.

Key Idea of ELT Problem. First, the ELT problem embeds (maps)

the metric space 𝑆 into a simple and well-structured tree metric

𝑆𝑇 (i.e., HST introduced in Sec. 2.2). Unfortunately, the pairwise

distances in 𝑆 may not remain the same in 𝑆𝑇 after embedding

and some of them are stretched. Thus, ELT aims to minimize the

maximum among all stretches (i.e., the distortion in Def. 3).

Second, the ELT problem is useful, since it has been shown that

many optimization problems on HSTs are easier to be solved than

on other metric spaces (e.g., a Euclidean space) [14, 17, 26, 39], e.g.,
trip planning [19, 63] and facility location planning [12, 20].

Third, there are generally three steps to use the ELT problem: (1)

constructing the tree metric 𝑆𝑇 , (2) reducing the problem instances

(i.e., any point 𝑥 ∈ 𝑉 is mapped into 𝑓 (𝑥) ∈ 𝑉𝑇 and 𝐷𝑖𝑠 is changed

into 𝐷𝑖𝑠𝑇 ) and (3) designing approaches for instances on 𝑆𝑇 =

(𝑉𝑇 , 𝐷𝑖𝑠𝑇 ). Our work focuses on the first step since the state-of-the-

art construction algorithm is slow in large-scale datasets and also

has a high distortion. Due to the page limitation, please refer to the

textbooks [60] (§8) and [35] (§26) for a more detailed introduction.

Finally, in Sec. 5.3, we provide a case study on using ELT in a

real-world problem: online metric bipartite matching (OMBM). We

also show (1) the effectiveness of OMBM is improved by using ELT

and (2) a lower distortion leads to a greater improvement.

Motivation of Our Problem Scope. Our ELT problem is based

on the proposed problem in [14], where the original metric 𝑆 is an

arbitrary metric space. We restrict the problem scope of 𝑆 due to

two reasons: (1) for 𝐿𝑝 metric, “the cases 𝑝 = 1, 2,∞ play the most

prominent roles” in low-distortion embeddings according to the

textbook [58] (§8), and (2) these cases 𝐿1, 𝐿2, 𝐿∞ are widely used as

the distance metric in aforementioned applications. We also discuss

the support to other metric spaces in Sec. 4.4.



Table 1: Coordinates of points 𝑝1-𝑝6 in a Euclidean space

Point 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6

Coordinate (10,9) (3,4) (2,6) (5,8) (0,5) (1,9)

Figure 1: A 2-HST of the toy example (𝑘 = 2)
Theoretical Analysis Model. We follow the standard analysis

model in existing work [14, 15, 25, 26, 35, 39] to analyze the the-

oretical guarantee of distortions (distortion guarantee for short).
Def. 5 indicates that the distortion guarantee is the maximum of all
expected stretches, i.e., E[𝐷𝑖𝑠𝑇 (𝑓 (𝑥), 𝑓 (𝑦))]/𝐷𝑖𝑠 (𝑥,𝑦).

Definition 5 (Distortion Guarantee). A tree metric 𝑆𝑇 probabilisti-

cally approximates the original metric 𝑆 if a probability distribution

over 𝑆𝑇 exists such that E[𝐷𝑖𝑠𝑇 (𝑓 (𝑥), 𝑓 (𝑦))] ≤ 𝜌×𝐷𝑖𝑠 (𝑥,𝑦) for all
𝑥,𝑦 ∈ 𝑉 , where E[·] is the expected distance under this distribution
and 𝜌 is the distortion guarantee.

2.2 Hierarchically Separated Tree and Baseline
The Hierarchically Separated Tree (HST) [14] is the most popular

solution due to its tight distortion guarantee (𝑂 (log𝑛) [25]).

Definition 6 (HST). An HST is a rooted tree with three properties:

(1) All edges between adjacent levels have the same weight;

(2) From top to bottom, the edge weights are geometrically de-

creased by a user-defined parameter 𝑘 ;

(3) Each point in 𝑆 is mapped into a unique leaf on the HST.

HSTs are also called𝑘-HSTs, where𝑘 is usually 2. Fig. 1 illustrates

a 2-HST. These properties are obviously satisfied based on the edge

weights labelled on the left, e.g., 𝐷𝑖𝑠𝑇 (𝑢1, 𝑢2) = 𝐷𝑖𝑠𝑇 (𝑢1, 𝑢3) = 16

(the first one) and 𝐷𝑖𝑠𝑇 (𝑢1, 𝑢2) = 𝐷𝑖𝑠𝑇 (𝑢2, 𝑢4)/𝑘 (the second one).

Besides, each point 𝑝1-𝑝6 is mapped into a unique leaf 𝑢12-𝑢17.

Baseline Selection.We select the most popular algorithms [14, 15,

26] as our baselines in experiments. FRT [26] is the state-of-the-art

with 𝑂 (log𝑛) distortion guarantee and 𝑂 (𝑛2) time complexity.

Algo. 1 illustrates this baseline [26]. The basic idea is to construct
the nodes of HST via ball partitions whose centers are iterated from

a randomized permutation 𝜋 and radii are computed by 𝛽 and k

(lines 1-2). Line 3 creates the root and calculates the tree height 𝐻 .

Lines 4-10 create the other nodes from top to bottom, where 𝑈𝑖−1
denotes the internal nodes at the level 𝑖 − 1. At each level 𝑖 , some

points are separated from the internal node 𝑢 by a ball partition

with the center 𝜋 [ 𝑗] and the radius 𝑟𝑖 (line 8). In line 9, we create a

Algorithm 1: Construct HSTs by FRT [26]

1 Pick 𝛽 in [ 1
𝑘
, 1] randomly from a distribution 𝑝 (𝛽) = 1

𝛽𝑘 ln𝑘
;

2 Pick a random permutation 𝜋 of the 𝑛 points in 𝑉 ;

3 Root← 𝑉 , height 𝐻 ← ⌈log𝑘 Δ⌉ + 1,𝑈1 ← {𝑟𝑜𝑜𝑡}, 𝑖 ← 2;

4 while𝑈𝑖−1 has some node with more than one point do
5 Radius 𝑟𝑖 ← 𝛽 × 𝑘𝐻+1−𝑖 , edge weight𝑤𝑖 ← 𝑟𝑖 × 𝑘 ;
6 for 𝑗 ← 1 to 𝑛 do
7 foreach node 𝑢 ∈ 𝑈𝑖−1 do
8 𝑢 ′ ← a new node consisting of all unassigned

points in 𝑢 closer than 𝑟𝑖 to 𝜋 [ 𝑗];
9 𝑢 ′ is a child of 𝑢 with weight𝑤𝑖 , add 𝑢

′
into𝑈𝑖 ;

10 𝑖 ← 𝑖 + 1;

Table 2: Summary of the major notations in this paper
Notation Description

𝑆, 𝑆𝑇 the original metric 𝑆 and the tree metric 𝑆𝑇

𝑉 ,𝑛 a set of 𝑛 points in the original metric 𝑆 (i.e., |𝑉 | = 𝑛)

𝐷𝑖𝑠, 𝐷𝑖𝑠𝑇 the distance functions on 𝑆 and 𝑆𝑇 respectively

Δ the diameter of 𝑆 , i.e., Δ = max𝑥,𝑦∈𝑉 𝐷𝑖𝑠 (𝑥, 𝑦)
𝑘 the parameter of the HSTs (i.e., 𝑘-HSTs), where 𝑘 ≥ 2

𝐻 the height of the constructed HSTs, 𝐻 = ⌈log𝑘 Δ⌉ + 1
B(𝑥, 𝑟 ) a circular range centered at point 𝑥 with a radius 𝑟

Stretch(𝑥, 𝑦) the stretch between points 𝑥 and 𝑦

Distort(𝑉 ) the distortion of the tree metric 𝑆𝑇 = (𝑉𝑇 , 𝐷𝑖𝑠𝑇 )
Stretch(𝑋,𝑌 ) the maximum stretch between point sets 𝑋 and 𝑌

child node𝑢 ′ of𝑢 to represent these separated points. The iterations

will stop until each (leaf) node represents a singleton point.

Example 1. Algo. 1 constructs a 2-HST for the points in Table 1

with 𝛽 = 1 and 𝜋 = {𝑝2, 𝑝3, 𝑝5, 𝑝4, 𝑝6, 𝑝1}. Since the diameter Δ is

max𝑖, 𝑗 𝐷𝑖𝑠 (𝑝𝑖 , 𝑝 𝑗 ) = 10.77, the tree height 𝐻 is ⌈log
2
Δ⌉ + 1 = 5.

When level 𝑖 = 2, the radius 𝑟2 is 1× 25+1−2 = 16 and the weight𝑤2

is 𝑟2×2 = 32 in line 5. In line 8, a new node𝑢1 is created to represent

the points 𝑝1-𝑝6, since all these points are closer than 𝑟2 = 16 to

𝜋 [1] = 𝑝2. In line 9, we add this node 𝑢1 as a child of the root 𝑢0
with the edge weight𝑤2 = 32 as shown in Fig. 1. When 𝑖 = 3, the

radius 𝑟3 is 8 and the weight 𝑤3 is 16. When 𝑗 = 1 at the third

level, a node 𝑢2 is created to represent 𝑝2-𝑝6, since their distances

to 𝜋 [ 𝑗] = 𝑝2 are closer than 𝑟3 = 8. Then, 𝑢2 is appended as a child

of the node 𝑢1 with the edge weight𝑤3 = 16 in Fig. 1. When 𝑗 is 4,

the distance of the only unassigned point 𝑝1 to 𝜋 [ 𝑗] = 𝑝4 is closer

than 𝑟3. Hence, we create a child node 𝑢3 of the internal node 𝑢1
in lines 8-9. Similarly, nodes 𝑢4-𝑢6 are created at the fourth level,

nodes 𝑢7-𝑢12 are created at the fifth level, and nodes 𝑢13-𝑢18 are

created at the leaf level (i.e., the sixth level).

Remark. The distance function on an HST involves the computa-

tion of the lowest common ancestor, which can be answered by a

range minimum query in 𝑂 (1) time by using 𝑂 (𝑛) auxiliary space.

Please refer to [28, 30, 36] for the implementation details.

Table 2 lists the major notations used in the rest of this paper.

3 OUR GENERAL FRAMEWORK
In this section, we present a divide-and-conquer based framework

including the main idea (Sec. 3.1) and algorithm details (Sec. 3.2).

3.1 Main Idea



3.1.1 Understanding High Distortion of Baseline. Although the

baseline FRT (i.e., Algo. 1) has a tight distortion guarantee (𝑂 (log𝑛)),
we observe that distortions of FRT can be high in real datasets and

synthetic datasets (see Sec. 5). Sometimes, the distortions of FRT
are higher than another baseline (algorithm Bar96 [14]) which has

an even worse distortion guarantee (𝑂 (log𝑛 logmin{𝑛,Δ})).
Our understanding of this experimental result is as follows:

(1) Algo. 1 [26] and other different implementations [17, 25, 29,

32, 64] of FRT [26] are all randomized algorithms.

(2) In general, the effectiveness of a randomized algorithm highly

depends on the choices of random variables [45]. For example,

distortions of any implementation of FRT depend on two random

variables 𝛽 and 𝜋 . Although 𝛽 is a continuous variable, at most

𝑛2 values of 𝛽 matter according to [26]. By contrast, 𝜋 , a random

permutation of 𝑛 data points, has 𝑛! possible choices, where 𝑛! can

be extremely large for even small 𝑛 (e.g., 13! is over 6 billion).
(3) Such numerous choices of 𝜋 can lead to low robustness. Thus,

the HST constructed by FRT may have a high distortion unless

sufficient choices of 𝜋 have been tried. However, trying different 𝜋

will inevitably exacerbate the bottleneck of time efficiency.

3.1.2 Main Idea of Our Framework. By contrast with the baseline

FRT [26], our divide-and-conquer based framework relies on 𝛽 only.

Rationale ofDivide-and-Conquer.As shown in Fig. 1, an internal
node (e.g., 𝑢2) of an HST corresponds to a subset (e.g., 𝑝2-𝑝6) of
the point set 𝑉 and the subtree rooted at this internal node can be

viewed as an HST of a subspace (e.g., ({𝑝2, · · · , 𝑝6}, 𝐷𝑖𝑠)). Moreover,

the subsets of the nodes at the same level are disjoint. Based on

such HSTs, our divide-and-conquer based strategy is as follows:

• Divide.We divide the original metric into disjoint subspaces.

• Conquer. We construct a subtree (HST) for each subspace.

• Combine. These subtrees are merged into the final HST.

Intuitively, different divisions of the original metric may lead to

different effectiveness (distortions). Thus, a major challenge here
is how to find a good division based on the distortion. To address

this challenge, we first propose a new equivalent expression of dis-
tortion and then elaborate on how to use it in our division scheme.
Note that the primary expression of distortion enumerates all pair-

wise stretches in Def. 3, which relies on the final HST after the

construction procedure. In contrast, the new expression allows us

to compute some intermediate results (e.g., some of the pairwise

stretches) to guide the division without waiting for the final HST.

New Equivalent Expression of Distortion. We assume the orig-

inal metric 𝑆 = (𝑉 , 𝐷𝑖𝑠) has been divided into𝑚 disjoint subspaces

𝑆1 = (𝑋1, 𝐷𝑖𝑠), · · · , 𝑆𝑚 = (𝑋𝑚, 𝐷𝑖𝑠), i.e.,⋃𝑖 𝑋𝑖 = 𝑉 and𝑋𝑖 ∩𝑋 𝑗 = ∅
for any 𝑖 ≠ 𝑗 . We define a function Stretch(𝑋𝑖 , 𝑋 𝑗 ) to compute the

maximum stretch between any point in 𝑋𝑖 and any point in 𝑋 𝑗 , i.e.,

Stretch(𝑋𝑖 , 𝑋 𝑗 ) B max

𝑥𝑖 ∈𝑋𝑖 ,𝑥 𝑗 ∈𝑋 𝑗

𝐷𝑖𝑠𝑇 (𝑓 (𝑥𝑖 ), 𝑓 (𝑥 𝑗 ))
𝐷𝑖𝑠 (𝑥𝑖 , 𝑥 𝑗 )

. (3)

For brevity, Stretch(𝑋𝑖 , 𝑋 𝑗 ) is also called the “maximum stretch

between subspaces 𝑆𝑖 and 𝑆 𝑗 ”. By using Stretch(𝑋𝑖 , 𝑋 𝑗 ), we can

rewrite the definition of the distortion in Eq. (2) as:

Distort(𝑉 ) = max

{
max

𝑖
{Distort(𝑋𝑖 )},max

𝑖< 𝑗
{Stretch(𝑋𝑖 , 𝑋 𝑗 )}

}
.

This is correct since it enumerates all pairwise stretches. For ex-

ample, Distort(𝑋𝑖 ) enumerates all pairwise stretches over point set

Algorithm 2: Divide-and-conquer based framework DC

input :a metric space 𝑆 = (𝑉 , 𝐷𝑖𝑠), current level 𝑙 , and 𝛽

output :a 𝑘-HST with height 𝐻 of this metric space 𝑆

1 Root 𝑢𝑙 ← represents 𝑉 , 𝑐𝑝∗ ← null, stret∗ ←∞;
2 foreach center 𝑐𝑝 ∈ 𝑉 do // Find a good division
3 stret← 1, 𝑌𝑙 ← 𝑉 , 𝑋𝐻+2 ← {𝑐𝑝};
4 for level 𝑖 ← 𝑙 + 1 to 𝐻 + 1 do
5 𝑟𝑖 ← 𝛽 × 𝑘𝐻+1−𝑖 , 𝑌𝑖 ← points in 𝑌𝑖−1 within the

circular range B(𝑐𝑝, 𝑟𝑖 ), 𝑋𝑖 ← 𝑌𝑖−1 \ 𝑌𝑖 ;
6 stret← max{stret, Stretch(𝑋𝑖 , 𝑌𝑖 )};
7 if stret < stret∗ then stret∗, 𝑐𝑝∗ ← stret, 𝑐𝑝 ;

8 for 𝑖 ← 𝑙 + 1 to 𝐻 + 1 do // Divide, Conquer, Combine
9 𝑌𝑖 ← the points in 𝑌𝑖−1 that are located in the circular

range B(𝑐𝑝∗, 𝑟𝑖 ), 𝑋𝑖 ← 𝑌𝑖−1 \ 𝑌𝑖 ;
10 A node 𝑢𝑖 ← represents the point set 𝑌𝑖 and add 𝑢𝑖 to

child nodes of 𝑢𝑖−1 with edge weight 𝑟𝑖 × 𝑘 ;
11 𝑇𝑖 ← construct the HST of subspace 𝑆𝑖 = (𝑋𝑖 , 𝐷𝑖𝑠) by

this algorithm with level (𝑖 − 1) and same 𝛽 ;

12 Link the child nodes of 𝑇𝑖 ’s root as the child nodes of

𝑢𝑖−1 with the edge weight 𝑟𝑖 × 𝑘 ;

𝑋𝑖 andmax𝑖< 𝑗 {Stretch(𝑋𝑖 , 𝑋 𝑗 )} enumerates the pairwise stretches

between any point in 𝑋𝑖 and any point outside 𝑋𝑖 . Let a point set 𝑌𝑖
to denote

⋃𝑚
𝑗=𝑖+1 𝑋 𝑗 . A new equivalent expression of distortion is

Distort(𝑉 ) = max

𝑖
{Distort(𝑋𝑖 ), Stretch(𝑋𝑖 , 𝑌𝑖 )}. (4)

This is because

max

𝑖< 𝑗
{Stretch(𝑋𝑖 , 𝑋 𝑗 )} = max

𝑖< 𝑗
max

𝑥 ∈𝑋𝑖 ,𝑦∈𝑋 𝑗

𝐷𝑖𝑠𝑇 (𝑓 (𝑥), 𝑓 (𝑦))
𝐷𝑖𝑠 (𝑥,𝑦)

= max

𝑥 ∈𝑋𝑖 ,𝑦∈𝑋𝑖+1∪···∪𝑋𝑚

𝐷𝑖𝑠𝑇 (𝑓 (𝑥), 𝑓 (𝑦))
𝐷𝑖𝑠 (𝑥,𝑦)

= max

𝑥 ∈𝑋𝑖 ,𝑦∈𝑌𝑖

𝐷𝑖𝑠𝑇 (𝑓 (𝑥), 𝑓 (𝑦))
𝐷𝑖𝑠 (𝑥,𝑦) = max

𝑖
{Stretch(𝑋𝑖 , 𝑌𝑖 )}

Observations from New Expression. The distortion defined in

Eq. (4) is determined by two factors: (1) the distortion of the subtree

for each subspace (i.e., Distort(𝑋𝑖 )) and (2) the maximum stretch

between each pair of subspaces (i.e., Stretch(𝑋𝑖 , 𝑌𝑖 )). Since the first
factor Distort(𝑋𝑖 ) is recursively defined by Eq. (4) (i.e., subspace
(𝑋𝑖 , 𝐷𝑖𝑠) is recursively divided into subspaces), we canmainly focus

on the second factor. In other words, a good division scheme should

minimize max𝑖 Stretch(𝑋𝑖 , 𝑌𝑖 ) as much as possible.

Our Division Scheme.We can enumerate each point in 𝑉 as the

center 𝑐𝑝 of a circular range that is used to divide the original

metric 𝑆 . This circular range is denoted by B(𝑐𝑝, 𝑟 ), where 𝑐𝑝 is

the center and 𝑟 is the radius. We maintain the best center 𝑐𝑝∗ in
𝑉 whose maximum stretch between the separated subspaces (i.e.,
max𝑖 Stretch(𝑋𝑖 , 𝑌𝑖 ) by this center) is the lowest.

3.2 General Framework
3.2.1 Preliminary. We do not intend to change the structure of

HSTs, so we use the same height and edge weight as in FRT [26].

(1) The height 𝐻 is ⌈log𝑘 Δ⌉ + 1, where Δ is the diameter of 𝑆 .



(2) For any level 𝑖 = 1, · · · , 𝐻 , the edge weight between the 𝑖th

level and the (𝑖 + 1)th level is 𝛽 × 𝑘𝐻+1−𝑖 , where 𝛽 is randomly

sampled in [1/𝑘, 1] by the same distribution in FRT [26].

3.2.2 Algorithm Details. Algo. 2 illustrates the details of our frame-

workDC. Lines 2-7 find the best center 𝑐𝑝∗ whose maximum stretch

(stret∗) between the separated subspaces is the lowest. Specifi-

cally, for each center 𝑐𝑝 in 𝑉 , we use stret to denote the maxi-

mum stretch between the separated subspaces by 𝑐𝑝 , i.e., stret =
max𝑖 Stretch(𝑋𝑖 , 𝑌𝑖 ) in line 6. In line 5, we separate the points in

𝑌𝑖−1 by a circular range B(𝑐𝑝, 𝑟𝑖 ) centered at 𝑐𝑝 with a radius 𝑟𝑖 . At

each level 𝑖 , the point set 𝑌𝑖 contains the points in 𝑌𝑖−1 inside this
circular range, while 𝑋𝑖 contain the remaining points in 𝑌𝑖−1 which
are outside this circular range. At the leaf level, 𝑌𝐻+1 contains a sin-
gle point (i.e., 𝑐𝑝) since the radius 𝑟𝐻+1 = 𝛽 ≤ 1. Thus, we use 𝑋𝐻+2
to denote {𝑐𝑝} in line 3 so that

⋃𝐻+2
𝑖=𝑙+1 𝑋𝑖 = 𝑉 . We maintain stret∗

and 𝑐𝑝∗ in line 7. If more than one center can result in stret∗, we
randomly sample one as 𝑐𝑝∗. After finding a good division scheme,

we divide the metric space 𝑆 into several subspaces by 𝑐𝑝∗ in lines

8-9. At each level 𝑖 , we create a node 𝑢𝑖 to represent the point set 𝑌𝑖
and add 𝑢𝑖 to the child nodes of the internal node 𝑢𝑖−1 (line 10). For
each disjoint subspace 𝑆𝑖 , we recursively construct its subtree in

line 11. Then, we merge (combine) the subtrees into the final HST

by linking the children of the subtree’s root as the children of 𝑢𝑖−1.

Example 2. Back to our toy example. Initially, 𝑆 contains all six

points 𝑝1-𝑝6, 𝑙 is 1 and 𝛽 is 1. The tree height 𝐻 is ⌈log
2
Δ⌉ + 1 = 5.

As shown in Fig. 1, we create the root 𝑢0 in line 1 to represent

𝑝1-𝑝6. In line 2, we iteratively select 𝑝1-𝑝6 as the center 𝑐𝑝 . In

lines 3-6, we calculate the maximum stretch (i.e., stret) between
the separated subspaces by 𝑐𝑝 . For example, when 𝑐𝑝 = 𝑝2 and the

level 𝑖 = 2, the radius 𝑟2 is 2
4 = 16. In line 5, the set 𝑌2 is 𝑝1-𝑝6

and 𝑋2 is ∅, since all the points are in a circular range centered

at 𝑝2 with a radius of 16 (i.e., B(𝑝2, 𝑟2)). So, stret is still 1. When

𝑖 = 3 and the radius 𝑟3 = 8, we have 𝑌3 is 𝑝2-𝑝6 and 𝑋3 = {𝑝1}.
We calculate Stretch(𝑋3, 𝑌3) by Eq. (3) in line 6. Eventually, we

have Stretch(𝑋3, 𝑌3) = 𝐷𝑖𝑠𝑇 (𝑢18, 𝑢16)/𝐷𝑖𝑠 (𝑝1, 𝑝4) = 60/5.10 =

11.77, where 𝑢18 and 𝑢16 are leaves in Fig. 1. Hence, stret becomes

11.77. Similarly, we derive that (1) 𝑌4 = {𝑝2, 𝑝3, 𝑝5}, 𝑋4 = {𝑝4, 𝑝6},
Stretch(𝑋4, 𝑌4) = Stretch(𝑝3, 𝑝6) = 28/

√
10 = 8.85 and (2) 𝑌5 =

{𝑝2}, 𝑋5 = {𝑝3, 𝑝5}, Stretch(𝑋5, 𝑌5) = Stretch(𝑝2, 𝑝3) = 12/
√
5 =

5.37. Finally, the maximum stretch between the separated subspaces

by 𝑐𝑝 is stret = max{11.77, 8.85, 5.37} = 11.77. After enumerating

all the center points, we have 𝑐𝑝∗ = 𝑝2 and stret∗ = 11.77.

Lines 8-12 construct the final HST by recursions. Fig. 2 illustrates

the detailed procedure, where nodes created for sets 𝑌𝑖 are marked

by blue and subtrees created for subspaces 𝑆𝑖 = (𝑋𝑖 , 𝐷𝑖𝑠) aremarked

by red. Specifically, when level 𝑖 = 2, we create 𝑢1 in Fig. 2a to

represent 𝑌2 = {𝑝1, · · · , 𝑝6} and no recursion is executed since 𝑋2

is ∅. At the 3rd level, we create 𝑢2 to represent 𝑌3 = {𝑝2, · · · , 𝑝6}
and construct the subtree for the subspace 𝑆3 = (𝑋3, 𝐷𝑖𝑠) in Fig. 2b.

Since there is only one point left, the subtree contains the nodes

𝑢 ′, 𝑢3, 𝑢6, 𝑢12, 𝑢18 at levels 2-6, where 𝑢 ′ is this subtree’s root (i.e.,
a fake node that will be removed later) and the other nodes are

shown in Fig. 2b. In line 12, we link the node 𝑢3 as a child node of

𝑢1 with the edge weight𝑤3 = 𝑟3 × 2 = 16 and remove 𝑢 ′. Similarly,

when the level 𝑖 increases to 4, the node 𝑢4 is created to represent

the point set 𝑌4 and a subtree is recursively constructed for the

subspace 𝑆4 = (𝑋4, 𝐷𝑖𝑠) as shown in Fig. 2c. At the 5th level, 𝑢7
is created to represent 𝑌5 and a subtree is created to denote 𝑋5 as

shown in Fig. 2d. At the leaf level, we construct the HST in Fig. 1.

3.2.3 Distortion Guarantee. We prove the distortion guarantee

(defined in Def. 5) of Algo. 2 is 𝑂 (log𝑛) in Theorem 1.

Theorem 1. The distortion guarantee of Algo. 2 is 𝑂 (log𝑛).

Proof. Themain idea is to use our new equivalent expression of

distortion and the fact that the distortion guarantee of the baseline

FRT is𝑂 (log𝑛) [26], i.e., 𝑐𝛽 log𝑛 for a fixed 𝛽 , where 𝑐𝛽 is a constant

factor depending on 𝛽 . Since Algo. 2 uses the same distribution in

FRT to sample 𝛽 , we only need to prove the distortion guarantee of
Algo. 2 is no higher than 𝑐𝛽 log𝑛 for fixed 𝛽 .

Without loss of generality (WLOG), we assume 𝑆0 = (𝑉0, 𝐷𝑖𝑠)
is an input of Algo. 2 and |𝑉0 | = 𝑛0. Here, 𝑆0 can be either the

original metric 𝑆 or a separated subspace in line 11.𝑇 ∗ is an HST of

𝑆0 constructed by Algo. 2 and 𝜌∗ is its distortion. 𝑇 is an HST of 𝑆0
constructed by FRT Algo. 1 and 𝜌 ≤ 𝑐𝛽 log𝑛0 is its distortion. We

use Stretch𝑇 ∗ (𝑥,𝑦) and Stretch𝑇 (𝑥,𝑦) to denote the stretch between
any 𝑥,𝑦 ∈ 𝑉0 on 𝑇 ∗ and 𝑇 , respectively. From the prerequisite, we

know Stretch𝑇 (𝑥,𝑦) ≤ 𝜌 ≤ 𝑐𝛽 log𝑛0 for all points 𝑥,𝑦 ∈ 𝑉0.
Next, we use our new equivalent expression of distortion in

Eq. (4) to derive the distortion of𝑇 ∗. As the distortion is recursively

defined in Eq. (4), we focus on the term max𝑖 Stretch(𝑋𝑖 , 𝑌𝑖 ), i.e.,
the value of stret in line 6 of Algo. 2. Line 7 guarantees the best

center 𝑐𝑝∗
0
has the minimum stret (denoted by stret∗

0
). We consider

two cases based on 𝑐𝑝∗
0
in Algo. 2 and the parameter 𝜋 in FRT:

(1) 𝑐𝑝∗
0
≠ 𝜋 [1]. In FRT (Algo. 1), the left-most node is sepa-

rated by the center 𝜋 [1] at each level. For example, the nodes

𝑢0, 𝑢1, 𝑢2, 𝑢4, 𝑢7, 𝑢12 in Fig. 1 are separated by 𝜋 [1] = 𝑝2 in Exam-

ple 1. Thus, the points contained in each left-most node can be

viewed as 𝑋𝑖 and the union of the points in its right siblings can be

viewed as 𝑌𝑖 . As themax𝑖 Stretch(𝑋𝑖 , 𝑌𝑖 ) by 𝜋 [1] is larger than that

by the best center 𝑐𝑝∗
0
, we can derive that max𝑖 Stretch𝑇 ∗ (𝑋𝑖 , 𝑌𝑖 ) ≤

max𝑖 Stretch𝑇 (𝑋𝑖 , 𝑌𝑖 ) ≤ 𝑐𝛽 log𝑛0 for this case.

(2) 𝑐𝑝∗
0
= 𝜋 [1]. Similarly, we also derivemax𝑖 Stretch𝑇 ∗ (𝑋𝑖 , 𝑌𝑖 ) =

max𝑖 Stretch𝑇 (𝑋𝑖 , 𝑌𝑖 ) ≤ 𝑐𝛽 log𝑛0 for this case.

Sincewe have proved stret∗
0
= max𝑖 Stretch𝑇 ∗ (𝑋𝑖 , 𝑌𝑖 ) ≤ 𝑐𝛽 log𝑛0,

we then study the recursive term max𝑖 Distort(𝑋𝑖 ) in Eq. (4).

WLOG, we assume Algo. 2 has recursively constructed sub-

trees for subspaces 𝑆1 = (𝑉1, 𝐷𝑖𝑠), · · · , 𝑆𝑚 = (𝑉𝑚, 𝐷𝑖𝑠), where
𝑛𝑖 = |𝑉𝑖 | < 𝑛0. We use 𝑐𝑝∗

𝑖
to denote the best centers in each sub-

space 𝑆𝑖 and stret∗𝑖 to denote the correspondingmax𝑖 Stretch(𝑋𝑖 , 𝑌𝑖 )
by 𝑐𝑝∗

𝑖
in this subspace. As our previous analysis holds for any input

space, we have stret∗
𝑖
≤ 𝑐𝛽 log𝑛𝑖 < 𝑐𝛽 log𝑛0 for any 𝑖 in [1,𝑚]. By

Eq. (4), the distortion of our HST 𝑇 ∗ is max
𝑚
𝑖=0

stret𝑖 ≤ 𝑐𝛽 log𝑛0.

We complete this proof by substituting 𝑆0 = 𝑆 and 𝑛0 = 𝑛. □

By substituting 𝑐𝛽 = 8, the proof above also shows Algo. 2 gets

the same distortion guarantee (8 log𝑛) for 2-HSTs as in FRT [26].

3.2.4 Time Complexity. We assume the dimension 𝑑 of the original

metric is constant and hence𝐷𝑖𝑠 (𝑥,𝑦) takes𝑂 (1) time. We use 𝑛𝑖 to

denote the number of points in𝑋𝑖 . In Algo. 2, line 2 takes𝑂 (𝑛) time.

Line 4 and 8 take 𝑂 (𝐻 ) time. Line 5 takes 𝑂 ( |𝑋𝑖 | |𝑌𝑖 |) = 𝑂 (𝑛 · 𝑛𝑖 )
time to calculate Stretch(𝑋𝑖 , 𝑌𝑖 ). Line 9 takes 𝑂 (𝑛) time. Line 11 is

the recursion procedure over𝑋𝑖 with 𝑛𝑖 points. Thus, we can derive



(a) level 𝑖 = 2 (b) level 𝑖 = 3 (c) level 𝑖 = 4 (d) level 𝑖 = 5

Figure 2: Illustrations of the construction procedure by our divide-and-conquer based framework DC
Table 3: Comparisons between our algorithms and FRT

Algorithm Time Space Distortion Guarantee

FRT [26] 𝑂 (𝑛2) 𝑂 (𝑛) 𝑂 (log𝑛)
DC (Sec. 3) 𝑂 (𝑛4 log𝑛) 𝑂 (𝑛) 𝑂 (log𝑛)

DCnn (Sec. 4.2) 𝑂 (𝑛3 log𝑛) 𝑂 (𝑛) 𝑂 (log𝑛)
DCsam (Sec. 4.3) 𝑂 (𝑛1.5 log2 𝑛) 𝑂 (𝑛) 𝑂 (log𝑛)

the worst-case running time 𝑇 (𝑛) by the recursion below,

𝑇 (𝑛) =
∑︁𝐻+1

𝑖=𝑙+1𝑇 (𝑛𝑖 ) +𝑂 (𝑛
2𝐻

∑︁𝐻+1
𝑖=𝑙+1 𝑛𝑖 ), (5)

where

∑𝐻+1
𝑖=𝑙+1 𝑛𝑖 = 𝑂 (𝑛). Algo. 2 has totally 𝑛 recursions, since

each recursion creates one unique leaf (i.e., 𝑐𝑝∗) and an HST has

𝑛 leaves. Thus, Eq. (5) is bounded by 𝑂 (𝑛 · 𝑛3𝐻 ) = 𝑂 (𝑛4𝐻 ). As
Δ ≤ 𝑂 (𝑝𝑜𝑙𝑦 (𝑛)) and𝐻 = 𝑂 (logΔ) = 𝑂 (log𝑛), the worst-case time

complexity of Algo. 2 is 𝑂 (𝑛4 log𝑛).

4 OUR OPTIMIZATION METHODS
A naive implementation of our framework takes 𝑂 (𝑛4 log𝑛) time,

which is much slower than the baseline FRT (𝑂 (𝑛2)). Thus, we
present our optimization techniques in Sec. 4.1-Sec. 4.3 to improve

the time efficiency and discuss practical issues (e.g., achieving linear
space of HSTs) in Sec. 4.4. Table 3 lists the comparisons between

our proposed algorithms and the baseline FRT [26].

4.1 Main Idea
Understanding Inefficiency of Our Algorithm DC. Based on

the time complexity analysis of Algo. 2, two factors lead to the

inefficiency of DC: (1) it is time-consuming to compute the maxi-

mum stretch between two separated subspaces, i.e., Stretch(𝑋𝑖 , 𝑌𝑖 )
in the new expression of distortion (Eq. (4)), and (2) all the points

are tested to be candidate centers to find a good division.

Main Idea of Optimization Techniques. To alleviate the first
factor, we identify that the distortion computation in our new ex-

pression can be reduced to the nearest neighbor (NN) search in

Sec. 4.2. We also show that the approximate nearest neighbor (ANN)

can be used to handle multi-dimensional data. This reduction brings

us the chance to reduce the time complexity, since efficient indexes

to NN and ANN have been widely studied. By indexing, Sec. 4.2 also

designs a pruning strategy to avoid using all the points as centers,

which alleviates the second factor to some extent.

To fully overcome the second factor, we use sampling to pick a cer-

tain number of points as centers in Sec. 4.3. Intuitively, this sample

number makes the trade-off between distortion and running time.

Thus, we derive a lower bound of this sample number (𝑂 (log𝑛))
based on the distortion guarantee in Lemma 4. By using 𝑂 (log𝑛)

samples, our algorithm (DCsam in Table 3) takes 𝑂 (𝑛1.5 log2 𝑛)
time, which is asymptotically faster than the baseline FRT [26].

4.2 Optimization By Indexing
This subsection presents our indexing based optimization, which

reduces the time complexity from 𝑂 (𝑛4 log𝑛) to 𝑂 (𝑛3 log𝑛).
4.2.1 Reducing Distortion Computation to NN Search. We have

presented a new expression of distortion in Eq. (4), where recur-

sively computes the distortion by the maximum stretch between

separated subspaces (i.e., max𝑖 Stretch(𝑋𝑖 , 𝑌𝑖 )). Thus, we focus on
reducing Stretch(𝑋𝑖 , 𝑌𝑖 ) to NN search as follows.

Stretch(𝑋𝑖 , 𝑌𝑖 ) B max

𝑥 ∈𝑋𝑖 ,𝑦∈𝑌𝑖

𝐷𝑖𝑠𝑇 (leaf(𝑥), leaf(𝑦))
𝐷𝑖𝑠 (𝑥,𝑦) (6)

= max

𝑥 ∈𝑋𝑖 ,𝑦∈𝑌𝑖

𝐷𝑖𝑠𝑇 (leaf(𝑥), 𝑢𝑖−1) + 𝐷𝑖𝑠𝑇 (𝑢𝑖−1, leaf(𝑦))
𝐷𝑖𝑠 (𝑥,𝑦) (7)

= max

𝑥 ∈𝑋𝑖 ,𝑦∈𝑌𝑖

2 × 𝐷𝑖𝑠𝑇 (leaf(𝑥), 𝑢𝑖−1)
𝐷𝑖𝑠 (𝑥,𝑦) (8)

= max

𝑥 ∈𝑋𝑖 ,𝑦∈𝑌𝑖

2(𝑟𝑖−1 + · · · + 𝑟𝐻 )
𝐷𝑖𝑠 (𝑥,𝑦) =

2(𝑟𝑖−1 + · · · + 𝑟𝐻 )
min𝑥 ∈𝑋𝑖 ,𝑦∈𝑌𝑖 𝐷𝑖𝑠 (𝑥,𝑦)

(9)

=
2𝛽 (𝑘 + 𝑘2 · · · + 𝑘𝐻−𝑖+2)
min𝑥 ∈𝑋𝑖 ,𝑦∈𝑌𝑖 𝐷𝑖𝑠 (𝑥,𝑦)

=
2𝛽 (𝑘𝐻−𝑖+3 − 𝑘)/(𝑘 − 1)

min𝑥 ∈𝑋𝑖
{min𝑦∈𝑌𝑖 𝐷𝑖𝑠 (𝑥,𝑦)}

(10)

Eq. (6) is due to the definition of Stretch(·, ·). In Eq. (7), an inter-

nal node 𝑢𝑖−1 is created to be the lowest common ancestor (LCA) of

𝑥 and𝑦, i.e., lca(leaf(𝑥), leaf(𝑦)) = 𝑢𝑖−1. Thus, the distance between
leaf(𝑥) and leaf(𝑦) equals to the total distance from leaf(𝑥)/leaf(𝑦)
to their LCA𝑢𝑖−1, i.e.,𝐷𝑖𝑠𝑇 (leaf(𝑥), leaf(𝑦)) = 𝐷𝑖𝑠𝑇 (leaf(𝑥), 𝑢𝑖−1)+
𝐷𝑖𝑠𝑇 (𝑢𝑖−1, leaf(𝑦)). Based on the edge weights of HSTs, the dis-

tances from leaf(𝑥) or leaf(𝑦) to 𝑢𝑖−1 are equal. Finally, we derive
Eq. (10), wheremin𝑦∈𝑌𝑖 𝐷𝑖𝑠 (𝑥,𝑦) asks for the nearest neighbor (NN)
of 𝑥 over 𝑌𝑖 . Since the point number in 𝑌𝑖 decides the time of NN

search, we present a relatively tight upper bound of Stretch(𝑋𝑖 , 𝑌𝑖 )
to reduce the point number from |𝑌𝑖 | to |𝑋𝑖+1 |.
Lemma 1. Given 𝑋𝑖 and 𝑌𝑖 =

⋃𝐻+2
𝑗=𝑖+1 𝑋 𝑗 in Algo. 2, we have

Stretch(𝑋𝑖 , 𝑌𝑖 ) ≤
{
2(𝑘3 − 𝑘𝑖+1−𝐻 )
(𝑘 − 1)2 ,

2𝛽 (𝑘𝐻−𝑖+3 − 𝑘)/(𝑘 − 1)
min𝑥∈𝑋𝑖

min𝑦∈𝑋𝑖+1 𝐷𝑖𝑠 (𝑥, 𝑦)

}
Proof. By the definitions of 𝑌𝑖 , 𝑌𝑖+1 and Eq. (10), we only need

to prove the following inequality to derive this lemma.

2𝛽 (𝑘𝐻−𝑖+3 − 𝑘)/(𝑘 − 1)
min𝑥 ∈𝑋𝑖

{min𝑦∈𝑌𝑖\𝑋𝑖+1 𝐷𝑖𝑠 (𝑥,𝑦)}
≤ 2(𝑘3 − 𝑘𝑖+1−𝐻 )

(𝑘 − 1)2
. (11)

Based on the line 7 of Algo. 2, we know (1) 𝐷𝑖𝑠 (𝑐𝑝,𝑦) < 𝑟𝑖+1 for
any point 𝑦 in 𝑌𝑖 \ 𝑋𝑖+1 = 𝑌𝑖+1 and (2) 𝑟𝑖 ≤ 𝐷𝑖𝑠 (𝑐𝑝, 𝑥) < 𝑟𝑖−1 for



any point 𝑥 in 𝑋𝑖 . Since 𝑟𝑖 = 𝛽𝑘𝐻−(𝑖−1) , we have

𝐷𝑖𝑠 (𝑥,𝑦) ≥ 𝐷𝑖𝑠 (𝑐𝑝, 𝑥)−𝐷𝑖𝑠 (𝑐𝑝,𝑦) ≥ 𝑟𝑖−𝑟𝑖+1 = 𝛽 (𝑘−1)𝑘𝐻−𝑖 (12)

By substituting Eq. (12) into the left-hand side (LHS) of Eq. (11), we

have the upper bound of the LHS as

2𝛽 (𝑘𝐻−𝑖+3 − 𝑘)/(𝑘 − 1)
𝛽 (𝑘 − 1)𝑘𝐻−𝑖

=
2(𝑘𝐻−𝑖+3 − 𝑘)
(𝑘 − 1)2𝑘𝐻−𝑖

=
2(𝑘3 − 𝑘𝑖+1−𝐻 )
(𝑘 − 1)2

.

Note that this upper bound is usually much smaller than the distor-

tion guarantee 8 log𝑛. For example, when 𝑘 = 2 (the most popular

parameter selection), it is always smaller than 16. Thus, we have

derived a relatively tight upper bound for Stretch(𝑋𝑖 , 𝑌𝑖 ). □

Pruning via Indexing. Let Stretch↑(𝑋𝑖 , 𝑌𝑖 ) denote the upper bound
of Stretch(𝑋𝑖 , 𝑌𝑖 ) defined in Lemma 1. Since 𝑋𝑖 and 𝑌𝑖 are divided

by 𝑐𝑝 at the level 𝑖 , we use UB[𝑐𝑝] [𝑖] to denote the maximum of

these upper bounds between levels 𝑖 and 𝐻 + 1, i.e.,

UB[𝑐𝑝] [𝑖] B max𝑖≤ 𝑗≤𝐻+1 Stretch
↑(𝑋𝑖 , 𝑌𝑖 ) (13)

By dynamic programming (DP), we can rewrite Eq. (13) as

UB[𝑐𝑝] [𝑖] = max{UB[𝑐𝑝] [𝑖 + 1], Stretch↑(𝑋𝑖 , 𝑌𝑖 )} (14)

Let LB denote the maximum of stret∗ = max𝑖 Stretch
↑(𝑋𝑖 , 𝑌𝑖 ) with

respect to (w.r.t.) the best center 𝑐𝑝∗ during all the recursions of
Algo. 2 (lines 6, 7 and 11). Thus, LB can be viewed as the lower

bound of the distortion. Once we have found a division whose

maximum stretch between separated subspaces is lower than LB,

we can stop enumerating the next center as the current one is good

enough to retain the distortion. Our pruning lemma is as follows.

Lemma 2. We are given a subspace 𝑆 ′ = (𝑉 ′, 𝐷𝑖𝑠) at current level
𝑙 during the recursions of Algo. 2. For any center point 𝑐𝑝 ∈ 𝑉 ′, if
UB[𝑐𝑝] [𝑙 + 1] ≤ LB or stret ≤ LB, we can directly use 𝑐𝑝 as the best
center point 𝑐𝑝∗ without changing the distortion guarantee.

Proof. Since LB is the maximum of stret∗ w.r.t. the best center
𝑐𝑝∗ during all the recursions of Algo. 2, we know the distortion

defined in Eq. (4) is larger than LB. We use stret to be the maximum

stretch of the separated subspaces by the current center point 𝑐𝑝 .

When stret ≤ LB, it indicates that the current division scheme

cannot increase the distortion. Thus, the current center point 𝑐𝑝 is

good enough to keep the distortion guarantee 𝑂 (log𝑛).
When UB[𝑐𝑝] [𝑙 + 1] ≤ LB, UB[𝑐𝑝] [𝑙 + 1] is the upper bound of

stret for the center point 𝑐𝑝 to divide a larger space (𝑆 = (𝑉 , 𝐷𝑖𝑠)),
where 𝑆 ′ is separated from this space. In other words, the maximum

stretch to divide 𝑆 at level 𝑙 by 𝑐𝑝 is UB[𝑐𝑝] [𝑙 + 1]. As 𝑉 ′ ⊆ 𝑉 , we

can infer that stret ≤ UB[𝑐𝑝] [𝑙 + 1] ≤ LB by Eq. (3). □

Remark. In our framework (Algo. 2), we can also use an index to

compute the separated subspaces (lines 7 and 11) by range queries.

However, such an implementation involves 𝐻 (exact) range queries

over the point set 𝑌𝑖−1, which can be slow for multi-dimensional

data. Instead, we use a faster implementation that takes 𝑂 (𝑛) time.

The basic idea is to directly compute the level at which a point

𝑥 ∈ 𝑋𝑖 is separated from the set 𝑌𝑖−1 (i.e., outside the circular

range B(𝑐𝑝, 𝑟𝑖 )). This level is denoted by lev(𝑥, 𝑐𝑝). Since 𝑟𝑖 ≤
𝐷𝑖𝑠 (𝑥, 𝑐𝑝) < 𝑟𝑖−1 and 𝑟𝑖 = 𝑘𝐻−(𝑖−1)𝛽 , we can derive that

lev(𝑥, 𝑐𝑝) =
{
𝐻 + 1 − ⌊log𝑘

(
𝐷𝑖𝑠 (𝑥, 𝑐𝑝)/𝛽

)
⌋, if 𝑥 ≠ 𝑐𝑝

𝐻 + 2, if 𝑥 = 𝑐𝑝
(15)

Algorithm 3: Our algorithm DCnn

input :a metric space 𝑆 = (𝑉 , 𝐷𝑖𝑠), current level 𝑙 , and 𝛽

output :a 𝑘-HST with height 𝐻 of this metric space 𝑆

1 Root 𝑢𝑙 ← represents 𝑉 , 𝑐𝑝∗ ← null, stret∗ ←∞;
2 𝑉 ← sort each point 𝑣 in 𝑉 by UB[𝑣] [𝑙 + 1];
3 if UB[𝑉 [0]] [𝑙 + 1] ≤ LB then Use 𝑉 [0] as 𝑐𝑝∗ to execute

lines 8-12 of Algo. 2 and return; // Prune

4 foreach center 𝑐𝑝 ∈ 𝑉 do // Find a good division
// Compute separated subspaces

5 𝑋 ← sort points in 𝑉 by lev(𝑥, 𝑐𝑝) in Eq. (15);

6 ∀𝑖 ∈ (𝑙, 𝐻 + 2], 𝑋𝑖 ← all 𝑥 ∈ 𝑋 whose lev(𝑥, 𝑐𝑝) = 𝑖;

// Reduce to nearest neighbor (NN) search

7 for level 𝑖 ← 𝐻 + 1 to 𝑙 + 1 do
8 Stretch

↑(𝑋𝑖 , 𝑌𝑖 ) ← upper bound of Stretch(𝑋𝑖 , 𝑌𝑖 )
in Lemma 1 by NN or ANN search;

9 stret← max{stret, Stretch↑(𝑋𝑖 , 𝑌𝑖 )};
10 UB[𝑐𝑝] [𝑖] ← min{UB[𝑐𝑝] [𝑖 + 1], Stretch↑(𝑋𝑖 , 𝑌𝑖 )};
11 if stret > stret∗ then break; // Prune

12 if stret < stret∗ then stret∗, 𝑐𝑝∗ ← stret, 𝑐𝑝 ;

13 if stret∗ ≤ LB then break; // Prune

14 LB← max{LB, stret∗}, execute lines 8-12 of Algo. 2;

After getting these levels, we use a counting sort to derive the

separated subspaces. We use the counting sort (instead of other

sorting methods), since the level here is no larger than 𝐻 + 2 =

𝑂 (log𝑛) and a counting sort takes linear time and linear space.

4.2.2 Algorithm Details. Algo. 3 illustrates a divide-and-conquer
based method (DCnn) with the optimization above. Line 1 is same

as that of Algo. 2. In line 2, we sort each point 𝑣 ∈ 𝑉 based on its

upper bound (UB[𝑣] [𝑙 + 1]) of the maximum stretch between their

separated subspaces (when 𝑣 is used as the center). Line 3 is a prun-

ing by Lemma 2. We find a good division in lines 4-13. Specifically,

we compute the separated point sets 𝑋𝑖 in lines 5-6 by a counting

sort. In lines 7-11, we calculate the upper bound of the maximum

stretch between the separated subspaces 𝑆𝑖 = (𝑋𝑖 , 𝐷𝑖𝑠). First, we
enumerate each level in line 7. Then, we compute Stretch

↑(𝑋𝑖 , 𝑌𝑖 )
by answering NN queries over the points 𝑋𝑖+1 based on Lemma 1.

In line 10, we update the current upper bound UB[𝑐𝑝] [𝑖] by Eq. (14).
Wemaintain the best center 𝑐𝑝∗ and the corresponding upper bound
(stret∗) in line 12. Line 13 is another pruning based on Lemma 2. In

line 14, we maintain the lower bound (i.e., LB) of the final distortion.
After getting a good division, we run lines 8-12 of Algo. 2 to execute

the divide-and-conquer procedure. Here, we still use lines 5-6 to

compute the separated subspaces by 𝑐𝑝∗.

Example 3. Back to Example 2. Algo. 3 also iterates each point

in 𝑝1-𝑝6 as the center point 𝑐𝑝 . When 𝑐𝑝 = 𝑝2, we first calcu-

late lev(𝑥, 𝑐𝑝) by Eq. (15) for each 𝑥 ∈ {𝑝1, · · · , 𝑝6}. For example,

lev(𝑝1, 𝑝2) = 𝐻 +1−⌊log
2
(𝐷𝑖𝑠 (𝑝1, 𝑝2)/𝛽)⌋ = 5+1−⌊log

2

√
74⌋ = 3

(i.e., the first case of Eq. (15)), and lev(𝑝2, 𝑝2) = 𝐻 + 2 = 7 (i.e., the
second case of Eq. (15)). The other values of lev(𝑥, 𝑐𝑝) are listed in

Table 4 and these values represent the level at which each point 𝑥

is separated from 𝑌𝑖−1 in Fig. 1. In line 5, we use a counting sort to

obtain an ordered sequence of the points 𝑋 = {𝑝1, 𝑝4, 𝑝6, 𝑝3, 𝑝5, 𝑝2}.
In line 6, we can process that 𝑋2 = ∅, 𝑋3 = {𝑝1}, 𝑋4 = {𝑝4, 𝑝6},



Table 4: Values of lev(𝑥, 𝑐𝑝) when 𝑐𝑝 = 𝑝2 in Example 3

𝑥 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6

lev(𝑥, 𝑝2) 3 7 5 4 5 4

𝑋5 = {𝑝3, 𝑝5}, 𝑋6 = ∅ and 𝑋7 = {𝑝2}. We can also verify that the

separated point sets are same as the results in Example 2. Lines

7-11 calculate the upper bound (stret) by Lemma 1. Specifically,

when level 𝑖 = 𝐻 + 1 = 6, we need to find out the NN of each

point in 𝑋6 over the dataset 𝑋7. Since 𝑋6 is an empty set, we have

Stretch
↑(𝑋6, 𝑌6) = 2(23 − 26+1−5)/12 = 8 by Lemma 1. Next, we set

stret = 8 and UB[𝑐𝑝] [𝑖] = 8 in lines 10-11. When 𝑖 decreases to 3,

we answer the NN of 𝑋3 = {𝑝1} over the dataset 𝑋4 = {𝑝4, 𝑝6}. By
Lemma 1, we derive Stretch

↑(𝑋3, 𝑌3) as

max

{
2(23 − 23+1−5)
(2 − 1)2

,
2(25−3+3 − 2)
𝐷𝑖𝑠 (𝑝1, 𝑝4)

}
= max

{
15,

60

√
26

}
= 15,

where 𝑝4 is the NN of 𝑝1 over 𝑋4. Eventually, we have 𝑐𝑝
∗ = 𝑝2.

4.2.3 Distortion Guarantee. In Lemma 3, we prove the distortion

guarantee of Algo. 3 is still 𝑂 (log𝑛) by using either NN or ANN

search. This lemma holds for any ANN algorithm that reports any

point within 𝑐 times the nearest distance (i.e., 𝑐-approximate NN).

For those ANN algorithms that achieve this 𝑐-approximation with

high probability, 𝑂 (log𝑛) will hold with high probability.

Lemma 3. By using either (exact) NN search or 𝑐-approximate NN
search, the distortion guarantee of Algo. 3 is still 𝑂 (log𝑛).

Proof. For exact NN search, the correctness of this statement

can be directly derived from the proofs of Eq. (10)-(15) and Lemma 1-

2 and the distortion guarantee of Algo. 2 in Theorem 1.

For 𝑐-approximate NN search, we have𝐷𝑖𝑠 (𝑥,𝑦′)/𝑐 ≤ 𝐷𝑖𝑠 (𝑥,𝑦∗)
≤ 𝐷𝑖𝑠 (𝑥,𝑦′), where 𝑦∗ is the NN of 𝑥 in𝑋𝑖+1 and 𝑦′ is the ANN. Let
𝑐𝑝 ′ be the center found by ANN and the corresponding upper bound

stret′ is obtained by substituting𝐷𝑖𝑠 (𝑥,𝑦∗) with𝐷𝑖𝑠 (𝑥,𝑦′)/𝑐 in line
9. Thus, stret′ = max𝑖 { 2(𝑘

3−𝑘𝑖+1−𝐻 )
(𝑘−1)2 ,

2𝛽 (𝑘𝐻−𝑖+3−𝑘)/(𝑘−1)
min𝑥∈𝑋𝑖

𝐷𝑖𝑠 (𝑥,𝑦′)/𝑐 } ≤ 𝑐×stret
where stret is the upper bound of max𝑖 Stretch(𝑋𝑖 , 𝑌𝑖 ) in line 9 by

exact NN. This is due to the definition of this upper bound in

Lemma 1 and 𝐷𝑖𝑠 (𝑥,𝑦′) ≥ 𝐷𝑖𝑠 (𝑥,𝑦∗) for any point 𝑥 ∈ 𝑋𝑖 . Thus,
the distortion by ANN is at most 𝑐 times the distortion by exact NN.

Since 𝑐 is a constant error bound, we complete the proof. □

4.2.4 Time Complexity. Our ELT problem focuses on R𝑑 for fixed

dimension 𝑑 . Under this scope, there exists algorithms [5, 34, 35, 58]

that take 𝑂 (𝑛 log𝑛) pre-processing time and 𝑂 (𝑛) space to answer

𝑐-approximate NN query in 𝑂 (log𝑛) time. For low dimension (e.g.,
𝑑 = 2), exact NN with an 𝑂 (log𝑛) query time also needs 𝑂 (𝑛)
space and 𝑂 (𝑛 log𝑛) pre-processing time [22, 52]. Accordingly, we

analyze the time complexity of Algo. 3 as follows. Line 2 needs

𝑂 (𝑛 log𝑛) time to sort. Lines 5-6 only need𝑂 (𝑛) time by a counting

sort, since lev(𝑦, 𝑐𝑝) ≤ 𝐻 + 2. In each iteration of line 7, we take

𝑂 ( |𝑋𝑖+1 | log |𝑋𝑖+1 |) time to construct the index for NN/ANN search

and𝑂 ( |𝑋𝑖 | log |𝑋𝑖+1 |) time to find NN/ANN of any point in 𝑋𝑖 over

the point set𝑋𝑖+1. Thus, for each center point 𝑐𝑝 , the total time cost

of lines 7-11 is bounded by

∑𝐻+1
𝑖=𝑙+1𝑂 (( |𝑋𝑖+1 | + |𝑋𝑖 |) log |𝑋𝑖+1 |) =

𝑂 (𝑛 log𝑛), where ⋃𝐻+2
𝑖=𝑙+1 |𝑋𝑖 | = 𝑛. Line 3 and 14 are recursions,

which are similar to lines 8-12 of Algo. 2. Thus, based on the analysis

of Algo. 2, the time complexity of Algo. 3 is 𝑂 (𝑛3 log𝑛).

4.3 Optimization By Sampling
This subsection presents our sampling based optimization, which

reduces the time complexity from 𝑂 (𝑛3 log𝑛) to 𝑂 (𝑛1.5 log2 𝑛).
4.3.1 Our Sampling Scheme. In Algo. 3, enumerating all centers in

𝑉 leads to the worst case and we use sampling to address this issue.

Our Two-phase Sampling. To beat𝑂 (𝑛2) time, the basic idea is to
(1) do partitions by a two-phase sampling, (2) construct the subtrees

of partitioned subspaces by Algo. 3 with the aforementioned simple

sampling, and (3) merge the subtrees into the final HST. Our two-

phase sampling scheme is as follows:

Phase 1. We randomly pick 𝑚 centers from the point set 𝑉

(without replacement). For each center 𝑐𝑝 , we keep partitioning the

point set as in line 5 of Algo. 3 until the number of remaining points

is bounded by a parameter 𝛼 . We mark these remaining points to be

taken out from the sample set 𝑉 , because 𝑐𝑝 and its closed points

(i.e., the remaining ones) may result in similar divisions at top

levels and experiments show that the distortion defined in our new

expression is often decided by the divisions at top levels.

Phase 2.We again sample𝑚 centers from the marked remaining

points of the best center from the first phase. Since the number of

these remaining points is bounded by 𝑂 (𝛼), we will try𝑚 samples

from 𝑂 (𝛼) points and maintain the best center point 𝑐𝑝∗.
Rationale of Two-phase Sampling. We first assume the origi-

nal metric space 𝑆 = (𝑉 , 𝐷𝑖𝑠) is partitioned into several subspaces

{𝑆𝑖 = (𝑉𝑖 , 𝐷𝑖𝑠)}, where the number of points in each subspace is

bounded by a parameter 𝛼 (i.e., |𝑉𝑖 | = 𝑂 (𝛼)). Hence, each subtree

of these subspaces can be constructed in 𝑂 (𝑚𝛼2 log𝛼) time by

Algo. 3 based on its time complexity in Sec. 4.2.4. Thus, it takes

𝑂 ( 𝑛𝛼𝑚𝛼2 log𝛼) = 𝑂 (𝑚𝑛𝛼 log𝛼) time to construct all the subtrees.

When𝑚 = 𝑂 (log𝑛) and 𝛼 = 𝑂 (
√
𝑛), this time cost is𝑂 (𝑛1.5 log2 𝑛),

which is asymptotically faster than 𝑂 (𝑛2). As long as partition-

ing also takes 𝑂 (𝑛1.5 log2 𝑛) time via our two-phase sampling, the

overall time complexity will beat the state-of-the-art [26]. Thus,

we present the algorithm details of partitioning in Sec. 4.3.2 and

analyze the parameter selections of𝑚 and 𝛼 in Sec. 4.3.3-4.3.4. Note

that the parameter selections (𝑚 = 𝑂 (log𝑛) and 𝛼 = 𝑂 (
√
𝑛)) are

based on the theoretical analysis in Sec. 4.3.3 and Sec. 4.3.4.

4.3.2 Algorithm Details. Algo. 4 illustrates the recursive procedure
to divide the original metric into several subspaces each with less

than 𝑂 (𝛼) points. Lines 2-11 are the first phase. Specifically, we
randomly pick 𝑂 (𝑚) center points from 𝑉 (without replacement)

in lines 2-3. Lines 4-5 compute the separated subspaces by 𝑐𝑝 . Line

6 finds the largest level 𝑖∗ in [𝑙 +1, 𝐻 +2] such that the total number

of remaining points is still bounded by 𝑂 (𝛼). In other words, the

point set 𝑌𝑖∗ =
⋃𝐻+2

𝑗=𝑖∗+1 𝑋 𝑗 at the level 𝑖
∗
has 𝑂 (𝛼) points. Lines

7-9 calculate the upper bound of the maximum stretch between

separated subspaces by the same way in Algo. 3. In line 11, we mark

the remaining points to be taken out from the possible samples.

Line 12 is the second phase, where we enumerate each center from

the marked points of 𝑐𝑝∗ (in line 11) and maintain the best center

𝑐𝑝∗. Line 13 computes the separated subspaces by 𝑐𝑝∗. Lines 14-17
create a node 𝑢𝑖 to represent the point set 𝑌𝑖 . Each subspace 𝑋𝑖 is

then recursively partitioned by Algo. 4 in line 16. Line 17 merges

the subtree of each subspace into the final HST. In line 18, we can

obtain a tree/subtree of space/subspace 𝑆 , where each leaf node

represents a disjoint subspace 𝑆𝑆𝑖 each with 𝑂 (𝛼) points. After



Algorithm 4: Our algorithm DCsam

1 if |𝑉 | ≤ 𝑂 (𝛼) then return an empty subtree and 𝑆 itself ;
2 for 𝑠𝑎𝑚𝑝𝑙𝑒𝐼𝐷 ← 1 to 𝑂 (𝑚) do // Phase 1
3 𝑐𝑝 ← a random center from unmarked points in 𝑉 ;

4 𝑋 ← sort points 𝑥 in 𝑉 by lev(𝑥, 𝑐𝑝) in Eq. (15);

5 ∀𝑖 ∈ (𝑙, 𝐻 + 2], 𝑋𝑖 ← all 𝑥 ∈ 𝑋 whose lev(𝑥, 𝑐𝑝) = 𝑖;

6 𝑖∗ ← argmax{𝑖 ∈ [𝑙 + 1, 𝐻 + 2] |∑𝐻+2
𝑗=𝑖+1 |𝑋𝑖 | = 𝑂 (𝛼)};

7 for level 𝑖 ← 𝑖∗ to 𝑙 + 1 do
8 Stretch

↑(𝑋𝑖 , 𝑌𝑖 ) ← upper bound of Stretch(𝑋𝑖 , 𝑌𝑖 )
in Lemma 1 by NN or ANN search;

9 stret← max{stret, Stretch↑(𝑋𝑖 , 𝑌𝑖 )};
10 if stret < stret∗ then stret∗, 𝑐𝑝∗ ← stret, 𝑐𝑝 ;

11 Mark the points separated in levels 𝑖∗ + 1-𝐻 + 2;
12 foreach 𝑂 (𝑚) samples from the marked points of 𝑐𝑝∗ do

run lines 3-10 ; // Phase 2

13 Run lines 3-6 with 𝑐𝑝∗, 𝑆𝑆𝑖∗+1 = (
⋃𝐻+2

𝑗=𝑖∗+1 𝑋 𝑗 , 𝐷𝑖𝑠);
14 for 𝑖 ← 𝑙 + 1 to 𝑖∗ do // Divide-and-Conquer

15 Node 𝑢𝑖 ← represent points 𝑌𝑖 =
⋃𝐻+2

𝑗=𝑖+1 𝑋 𝑗 and add 𝑢𝑖

to the child nodes of 𝑢𝑖−1 with edge weight 𝑟𝑖 × 𝑘 ;
16 𝑇𝑖 , 𝑆𝑆𝑖 ← partition subspace 𝑆𝑖 = (𝑋𝑖 , 𝐷𝑖𝑠) by this

algorithm recursively at the level 𝑖 − 1;
17 Link the child nodes of 𝑇𝑖 ’s root node as the child nodes

of 𝑢𝑖−1 with the edge weight 𝑟𝑖 × 𝑘 ;
18 return a subtree created by {𝑢𝑖 } and a set of subspaces 𝑆𝑆𝑖 ;

that, we use Algo. 3 (with 𝑂 (𝑚) sampled centers) to process all the

subspaces in 𝑆𝑆 and merge their subtrees into the final HST.

Example 4. Back to Example 2. We assume the number of sampled

centers𝑚 = log𝑛 ≈ 3 and the parameter 𝛼 =
√
𝑛 ≈ 3. We also as-

sume 𝑝2 is the first sample in line 2. Lines 4-5 process the separated

subspaces, i.e., 𝑋2 = ∅, 𝑋3 = {𝑝1}, 𝑋4 = {𝑝4, 𝑝6}, 𝑋5 = {𝑝3, 𝑝5},
𝑋6 = ∅ and 𝑋7 = {𝑝2}. Line 6 derives 𝑖∗ = 4 and lines 7-9 calculate

stret = 11.77. The detailed procedure of lines 4-6 is referred to

Example 3. Then we have stret∗ = 11.77 and 𝑐𝑝∗ = 𝑝2 in line 10.

We mark the remaining points 𝑝2, 𝑝3, 𝑝5 in line 11 and they are re-

moved from the candidate samples. At the end of the first phase, we

have 𝑐𝑝∗ = 𝑝2. Line 12 is the second phase of our sampling scheme

and we sample𝑚 = 3 points from the marked points (e.g., 𝑝3, 𝑝5)
of 𝑝2. Since they both lead to larger stret than 11.77, 𝑐𝑝∗ remains

to be 𝑝2. In line 13, we have 𝑆𝑆5 = ({𝑝2, 𝑝3, 𝑝5}, 𝐷𝑖𝑠). When level

𝑖 = 2 in line 14, we create the internal node 𝑢1 in Fig. 1 to represent

𝑌2 = {𝑝1, · · · , 𝑝6}. When 𝑖 = 3, we create the internal node𝑢2 to rep-

resent𝑌3 = {𝑝2, · · · , 𝑝6}. The subspace 𝑆3 = (𝑋3, 𝐷𝑖𝑠) is recursively
partitioned in line 16, and we obtain an empty tree 𝑇3 and a sub-

space 𝑆𝑆3 = (𝑋3, 𝐷𝑖𝑠) (since |𝑋3 | ≤ 𝛼). Similarly, when 𝑖 = 𝑖∗ = 4,

we create the internal node 𝑢4 to represent 𝑌4 = {𝑝2, 𝑝3, 𝑝5}. In
line 16, we get an empty subtree𝑇4 and a subspace 𝑆𝑆4 = (𝑋4, 𝐷𝑖𝑠).
Finally, we use Algo. 3 to construct the subtrees for each subspace

𝑆𝑆𝑖 and merge them into the final HST by the red edges in Fig. 1.

4.3.3 Distortion Guarantee. We prove the distortion guarantee of

Algo. 4 is still 𝑂 (log𝑛) when𝑚 = 𝑂 (log𝑛) in Lemma 4.

Lemma 4. When the number of sampled centers𝑚 ≥ 𝑂 (log𝑛), the
distortion guarantee of Algo. 4 is still 𝑂 (log𝑛).

Proof. Let𝑚 be the number of samples and 𝜌1, · · · , 𝜌𝑚 be the

maximum stretch between the separated subspaces by the sampled

centers.We need to prove𝑚 = 𝑂 (log𝑛) sample is enough to achieve

the distortion guarantee 𝑂 (log𝑛) with a high probability (e.g., 1 −
1/𝑛). We assume the desired value is 8 log𝑛 + 𝛿 as the distortion

guarantee of the baseline FRT is proved to be 8 log𝑛 in [26]. We

can derive Eq. (16) by Markov’s inequality [44].

Pr

[
𝜌𝑖 ≥ 8 log𝑛 + 𝛿

]
≤ E[𝜌𝑖 ]

8 log𝑛 + 𝛿 ≤
8 log𝑛

8 log𝑛 + 𝛿 (16)

Thus, the probability that no samples have the desired maximum
stretch is bounded by ( 8 log𝑛

8 log𝑛+𝛿 )
𝑚
. If this probability is lower than

1/𝑛, we can derive the bound of𝑚 as follows.(
8 log𝑛

8 log𝑛 + 𝛿

)𝑚
≤ 1

𝑛
=⇒ 𝑚 ≥ log𝑛

log (8 log𝑛 + 𝛿) − log (8 log𝑛) (17)

By choosing a proper 𝛿 = 𝑂 (log𝑛), we have𝑚 = 𝑂 (log𝑛). □

4.3.4 Time Complexity. Since Algo. 4 improves over Algo. 3 by

using sampling, we can recursively define the running time of

Algo. 4 as follows based on the previous complexity analysis.

𝑇 (𝑛) =
{
𝑂 (1), if 𝑛 ≤ 𝑐∑𝐻+1

𝑖=𝑙+1𝑇 (𝑛𝑖 ) +𝑂 (𝑚𝑛 log𝑛), otherwise

(18)

As line 16 has 𝑂 (𝑛/𝛼) partitions and𝑚 = log𝑛 by Lemma 4, we

can derive the time complexity by mathematical induction.

𝑇 (𝑛) = 𝑂 (max{𝐻,𝑛/𝛼} ×𝑚𝑛 log𝑛) (19)

Besides, it takes 𝑂 ( 𝑛𝛼 × 𝛼
2
log

2 𝛼) time to handle the partitioned

subspaces by using only 𝑂 (log𝛼) samples in Algo. 3. Thus, we

can achieve the optimal time complexity when 𝑇 (𝑛) in Eq. (19)

asymptotically equals 𝑂 ( 𝑛𝛼 𝛼
2
log

2 𝛼). Finally, we have 𝛼 = 𝑂 (
√
𝑛)

and the time complexity of Algo. 4 is 𝑂 (𝑛1.5 log2 𝑛).
Remark. To achieve the time complexity of 𝑂 (𝑛1.5 log2 𝑛), we use
the following lemma to derive the tree height.

Lemma 5. Let the upper bound Δ↑ of the diameter Δ be the sum of
the top-2 longest distances to a point 𝑧 ∈ 𝑉 (which takes 𝑂 (𝑛) time).
The tree height 𝐻 equals to either ⌈log𝑘 Δ↑⌉ + 1 or ⌈log𝑘 Δ↑⌉.

Proof. Suppose the diameter Δ equals to 𝐷𝑖𝑠 (𝑥,𝑦). We first

prove the upper bound Δ↑ is between Δ and 2Δ based on the tri-

angle inequality and the definitions of Δ,Δ↑: (1) Δ = 𝐷𝑖𝑠 (𝑥,𝑦) ≤
𝐷𝑖𝑠 (𝑥, 𝑧) + 𝐷𝑖𝑠 (𝑧,𝑦) ≤ Δ↑; and (2) Δ↑ ≤ 2max𝑣∈𝑉 𝐷𝑖𝑠 (𝑣, 𝑧) ≤ 2Δ.

We next show how to derive the proper tree height. Let 𝐻 ′

be ⌈log𝑘 Δ↑⌉ + 1. Since 𝑘 ≥ 2 and Δ↑ ∈ [Δ, 2Δ], we have 𝐻 ′ ∈
[𝐻,𝐻 + 1], where 𝐻 ′ and 𝐻 are integers. Then, we can first use

𝐻 ′ to be the initial tree height and construct the HST by Algo. 4.

If the constructed HST has only one node at the 2nd level, we

will safely remove its root without changing the distortion. This

is true since (1) the remaining subtree is also an HST and (2) the

distortion defined in Eq. (3) remains the same (i.e., the distance

function 𝐷𝑖𝑠𝑇 (·, ·) between any two leaves on the HST remains the

same). For example, as shown in Fig. 1, we can safely remove the

root𝑢0 without changing the distances between any two leaves and

the distortion (11.77). Moreover, when 𝐻 ′ = 𝐻 + 1, we can prove

this root must have only child, since the radius at the 2nd level,

𝑟 ′
2
= 𝛽 × 𝑘𝐻 ′+1−2 = 𝛽𝑘𝐻 , is longer than Δ. Thus, all the points are

contained in only one node at the 2nd level. □



4.4 Discussion
This subsection discusses the following practical issues.

Achieving Linear Space. The standard HST constructed by either

the baseline FRT or our solution takes 𝑂 (𝑛𝐻 ) = 𝑂 (𝑛 log𝑛) spaces.
To achieve a linear size space, we can use the compressing strategy

proposed in [64]. The basic idea of this compressing strategy is

to remove any redundant node that has only one child during the

construction. This ensures that the total number of tree nodes is

bounded by𝑂 (𝑛). For example, we can execute this operation after

line 10 of Algo. 2 and line 15 of Algo. 4 (when 𝑋𝑖 = ∅).
Beyond 𝐿𝑝 Metrics. To extend our solution to non-𝐿𝑝 metrics, we

only need to replace the (approximate) nearest neighbor search

algorithm for these metrics. This extension benefits from the rich

studies on the approximate nearest neighbor (ANN) search. For

instance, we can apply a popular ANN library called FLANN [47, 48]

for some non-𝐿𝑝 metrics such as chi-square histogram distance [49]

and Hellinger distance [53]. The experiment in Appendix A of our

full paper [2] shows this extension still achieves a notably lower

distortion and 10.5× faster time efficiency than the state-of-the-art

method FRT [26, 64]. In fact, existing work has proposed many

ANN algorithms for other metrics that take (1)𝑂 (log𝑛) query time,

(2) 𝑂 (𝑛 log𝑛) pre-processing time, and (3) 𝑂 (𝑛) space. Please refer
to the recent work [5, 46] for a comprehensive survey.

Insertions and Deletion. In this scenario, points in the original

metric are no longer static and the HST needs to be updated when

some points are inserted or deleted. To handle this scenario, our

construction methods can be extended by a data structure called Hi-

erarchically Separated Forest (HSF) in [64]. We only need to replace

the construction routine (FRT) with our algorithm DCsam. Our

experiment in our full paper [2] demonstrates that this extension is

16× faster than the method in [64] and also has a lower distortion.

5 EXPERIMENTAL STUDY
In the experiment, we present our setup in Sec. 5.1 and results in

Sec. 5.2. We also conduct a case study in Sec. 5.3 to demonstrate

the motivations of using HSTs with low distortions.

5.1 Experimental Setup
Datasets. We use four real datasets, NYC, Tokyo, Chengdu, and
Haikou, which are commonly used in existing work [56, 65–67].

NYC and Tokyo are collected by Foursquare [3] in New York and

Tokyo. Their raw data [62] has 227,428 and 573,703 check-in records

respectively and each record is associated with its user ID, a times-

tamp, the location and category of the check-in venue. Chengdu and
Haikou are collected by Didi Chuxing [1] in Chengdu and Haikou.

Their raw data [23] has 209,423 and 7,340,025 taxi-calling records

and each record contains its appearance time, completion time, the

pickup location and delivery location of the passenger. We extract

the locations from these datasets and remove the duplicated ones

since they are mapped into the same leaf on an HST. Table 5 lists

the number of unique locations in these datasets.

In Table 6, we also generate four synthetic datasets (Nor , Exp,
Uni, and Skew) to test the effect of the dimensionality and scalability.

The dimension 𝑑 is up to 100 and the number of points 𝑛 is up to 100

million. The first three synthetic datasets are generated following

the uniform, normal and exponential distributions, respectively. The

range of each coordinate is [−107, 107]. The fourth dataset, skewed

Table 5: Real datasets in 2D Euclidean spaces (i.e., 𝐿2 metric)

Dataset NYC Tokyo Chengdu Haikou

#(points) (𝑛) 42,981 67,123 227,447 319,419

Table 6: Synthetic datasets (default setting is underlined)

Parameter Setting

Distribution uniform, normal, exponential, skewed

#(points) (𝑛) 5, 10, 50, 100, · · · , 100000 (×103)
#(dimensions) (𝑑) 2, 3, 4, 5, 10, 20, 100

data, is generated from uniform data by raising the coordinates of

2nd-100th dimensions to their powers (e.g., 𝑦 to 𝑦𝛾 and 𝛾 = 2 by

default), following the existing work [8, 50, 51].

Due to the page limitation, we focus on the most popular HST

and distance metric in existing work: 2-HST (k=2) for 𝐿2 metric

(𝑝 = 2). In general, larger 𝑝 will lead to longer running time and

larger 𝑘 will decrease the tree height and change the edge weight.

Compared Algorithms.We compare our algorithms,DC (Algo. 2),

DCnn (Algo. 3), and DCsam (Algo. 4), with the following baselines.

• Bar96 [14] and Bar98 [15]. They were designed by Bar-

tal to construct HSTs with different distortion guarantees:

𝑂 (log𝑛 log (min{𝑛,Δ})) and 𝑂 (log𝑛 log log𝑛).
• FRT [26]. FRT [26] is the state-of-the-art solution with a

distortion guarantee of 𝑂 (log𝑛). We use the 𝑂 (𝑛2)-time

implementation in [64] since it is faster than the other se-

quential implementations [17, 25, 26] in these datasets. Note

that these implementations always have the same distortion.

Implementation. All the algorithms are coded in C++. DCnn and

DCsam use R-trees [16, 33] in the Boost library [21] to answer NN

queries. Unlike DCnn, DCsam uses Arya and Mount’s ANN library

[9, 10] in ANN search for multi-dimensions (𝑑 = 3-20) and an LSH

based algorithm QALSH [37, 38] for high-dimensions (𝑑 = 100).

The error bound 𝑐 for ANN is 3.0 for 𝑑 ≤ 10 and 3.5 for 𝑑 > 10.

Metrics. The algorithms are evaluated in terms of distortion, time
cost, and space cost of the constructed HST. Experiments are con-

ducted on a server with Intel Xeon(R) 2.40GHz processors with

128GB RAM. Each setting is repeated 10 times and each time corre-

sponds to a test case with the data points and parameters (e.g., 𝑛
and 𝑑). Finally, their average result is reported.

5.2 Experimental Result on Constructing HST
5.2.1 Result on Real Datasets. Fig. 3 shows the experimental results

on the real datasets. These results fluctuate in Fig. 3a-3d since all

the algorithms are randomized solutions. The distortions of our al-

gorithms (DCnn and DCsam) are much lower and more stable than

those of existing baselines. For example, the average distortions

of DCnn and DCsam are up to 24.8× and 12.9× lower than that

of FRT. The gap between DCnn and DCsam is up to 1.9×, which
indicates our sampling based optimization retains low distortions.

In terms of time efficiency, our algorithm DCsam is the fastest

and FRT is the runner-up. For example, DCsam is up to 224×,
10673×, and 23836× faster than FRT, Bar96, and Bar98, respectively.
DCnn is often faster than Bar96 and Bar98, but slower than FRT.
DCsam is faster than DCnn by up to 16439×, which demonstrates

our sampling based optimization significantly reduces the time cost.

The result of DC is ignored, since it is extremely slow. For example,

DC takes almost 10 days to handle the smallest real dataset NYC.
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(h) Time cost (Haikou)
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Figure 3: Performance on the real datasets

As for space cost, all the algorithms are relatively efficient, since

the space usages are less than 32MB. Bar96 takes the lowest space
cost since its HSTs have lower heights than the others. The results

of FRT and our algorithms are close due to the same tree height.

5.2.2 Result onMulti-Dimensional Synthetic Datasets. Fig. 4 depicts
the results on multi-dimensional datasets. In terms of distortion,
our algorithms are always more effective than the existing base-

lines. For example, DC/DCnn and DCsam have up to 14.6×-88.1×
and 9.5×-41.7× lower distortions than the baselines. Our DCsam
always has a lower distortion than FRT under these four distribu-

tions. For instance, the improvement of DCsam over FRT is up to

10% when 𝑑 = 100. We also observe the distortions decrease with

the increase of the dimension. It implies it is easier to handle the

high-dimension data than low-dimension data. This may because

pairwise distances are sparse on high-dimensional spaces due to

the curse of dimensionality [58, 59]. Based on our expressions of

the distortion in Eq. (4) and (10), the sparsity makes it easier to get

low distortions (i.e., nearest neighbors get farther).
As for time cost, DCsam is still the fastest and FRT is the runner-

up. For instance, DCsam is faster than FRT by up to 5.3×. Moreover,

it is faster than Bar98 and Bar96 by 3-5 orders of magnitude. Our

algorithmDCnn is often more efficient than Bar98 and Bar96, while
our naive implementation DC is the least efficient. Some results of

Bar98, Bar96, DC, and DCnn are not provided, since their construc-

tion cannot be finished in 24 hours.

In terms ofmemory usage, all the algorithms need less than 8.5MB

space. Bar96 is the most efficient and Bar98 is the least efficient.

The space costs of FRT, DC, DCnn and DCsam are close.

5.2.3 Result on Scalability Tests. Fig. 5 illustrates the experimental

results of the scalability tests. In terms of distortion, our proposed al-
gorithms are notably more effective than the baselines. For example,

DCsam has up to 16.9×-34.4× lower distortions than the baselines.

Among the baselines, FRT and Bar96 are always better than Bar98.
We also observe that the distortions of all the algorithms increase

with the expansion of the data scale. This is reasonable since their

distortion guarantees all increase with the data size (i.e., 𝑛).
In terms of time cost, DCsam is always the fastest and FRT is the

runner-up. For instance, DCsam is up to 783× faster than FRT, and
DCsam is faster than DCnn by up to 4 orders of magnitude due

to our sampling technique. DCnn is faster than DC by up to 565×
because of our indexing based optimization. These results verify

that DCsam is more capable of handling large-scale datasets. Those

results, whose algorithms cannot terminate in 1 day, are omitted.

We omit the results of space cost due to the page limitation. The

overall pattern is very similar to the previous results. The space

cost of our DCsam is 9.2GB when 𝑛 is 100 million.

5.2.4 Summary. The major experimental findings are as follows.

(1) In terms of effectiveness, our algorithms always have lower

distortions than the existing baselines. For example, distortions

of DCsam are up to 16×, 25×, and 41× lower than FRT, Bar96,
and Bar98, respectively. Another observation is that distortions

of existing baselines for high-dimensional data are better than for

low-dimensional data due to the curse of dimensionality [58, 59].

(2) In terms of efficiency, DCsam is always the fastest. In real

datasets, it is up to 224×, 10673×, and 23836× faster than FRT
(runner-up), Bar96 and Bar98, respectively. Moreover, comparisons

between DC, DCnn and DCsam validate our optimization tech-

niques, which jointly reduces the running time by over 5 orders of

magnitude. As for space cost of HSTs, the space of our algorithms

is often close to that of FRT which is comparably efficient.

(3) Among the baselines, although FRT has the best distortion

guarantee, its distortions are not robust enough and sometimes

higher than Bar96 in real datasets. As for efficiency, FRT is the

fastest, Bar96 takes the least space and Bar98 is the least efficient.
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Figure 4: Performance on the multi-dimensional synthetic datasets (both coordinate axes are in log scale)
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Figure 5: Performance the scalability tests (both coordinate axes are in log scale)

5.3 A Case Study on Using HST
5.3.1 Motivation. We conduct a case study on using HSTs in a real

problem to verify two things: (1) whether an algorithm can get

better performance with HSTs than without HSTs, and (2) whether

HSTs with lower distortions can further improve the performance.

5.3.2 Experimental Setup. Our case study focuses on the Online
Metric Bipartite Matching (OMBM) problem [40], which has been

widely used as the model for task assignment in spatial crowdsourc-

ing [57]. In a bipartite graph, OMBM assumes the location of each

left-hand vertex (worker’s location) are known in advance and the

location of each right-hand vertex (task’s location) is only known

when it appears. The edge weight is the distance between the loca-

tions. Here, we focus on the objective called bottleneck distance [7].
In other words, we aim to find a matching in this bipartite graph to

minimize the longest distance between the matched pairs.

Dataset.We use the real dataset called Shenzhou in [55], since [55]

has also studied the OMBM problem with a different objective in

spatial crowdsourcing. Shenzhou is a taxi-calling dataset collected

by UCAR Inc. [4]. It has four test groups and the number of vertices

is up to 10292 in these tests. Please refer to [55] for more details.

Compared Algorithms. We compare the following algorithms:

(1) Greedy. For each right-hand vertex, it matches the nearest

left-hand vertex by their distance on the 2D Euclidean space.

(2) Greedy-FRT and Greedy-DCsam. They also use the greedy

strategy above by using distances on the HSTs of this Euclidean

space, i.e., 2-HSTs constructed by FRT and DCsam respectively.

We pick Greedy as an example since both Greedy [40] and HST-

based Greedy [43] are widely used to solve the OMBM problem.

Metrics. In addition to the previous metrics, we also consider the

objective (i.e., bottleneck distance in the matching of OMBM).



Table 7: Experimental results of our case study

Algorithm Distortion

Construction

Time (Secs)

Bottleneck

Distance

Greedy N/A N/A 151.3

Greedy-FRT 732.5 0.241 127.6

Greedy-DCsam 517.0 0.058 115.8

5.3.3 Experimental Result. Table 7 presents the average results on
all the test cases of the Shenzhou dataset. We can easily observe

that the objective (i.e., bottleneck distance) is improved by using

HSTs. For example, Greedy-FRT can reduce the bottleneck distance

by 15.6% and Greedy-DCsam can improve the objective by 23.4%.

It also demonstrates that HSTs with lower distortions can result

in better effectiveness in practice. Although the result of distor-

tion indicates that the original (Euclidean) distance is stretched on

the HST, the objective (i.e., the bottleneck distance) is still reason-

ably decreased, because (1) it is the actual moving distance (i.e.,
Euclidean distance) between a worker and a task and (2) Greedy is

myopic while Greedy-FRT/Greedy-DCsam has a good theoretical

guarantee to find a better assignment [40, 43]. Besides, our algo-

rithm DCsam still performs better than the baseline FRT in terms

of both distortion and time efficiency when constructing HSTs. The

space cost of the HSTs is always less than 0.43MB and the difference

of the space cost between DCsam and FRT is very little (< 10KB).

5.3.4 Discussion. We have two observations from the case study.

• A lower distortion can lead to better effectiveness for the

optimization problem that uses HSTs. This is reasonable

since the theoretical guarantee of an HST-based solution

for the original metric (e.g., Euclidean metric for OMBM) is

𝜌 × distortion, where 𝜌 is the theoretical guarantee of this

solution for HSTs. In other words, when the distortion of

the constructed HST gets lower, this effectiveness guarantee

will get closer to the optimum.

• it is important to construct an HST efficiently in some ap-

plications. For example, killer applications of the OMBM

problem include task assignment in spatial crowdsourcing,

taxi dispatching and food delivery [55, 57]. In these applica-

tions, the left-hand vertices of OMBM represent the locations

of workers or drivers, which are periodically changed in

practice. In Greedy-FRT and Greedy-DCsam, HSTs are con-

structed based on the locations of left-hand vertices. Thus,

the construction of an HST should be scalable enough and

cannot be done in advance. Otherwise, the high time cost in

constructing an HST (by FRT) will become the time efficiency

bottleneck of the HST-based algorithm (e.g., Greedy-FRT).

In general, the first observation potentially holds in most of

the optimization problems mentioned in Sec. 1, such as privacy

protection and facility location planning. The second observation

often holds in online problems such as task assignment in spatial

crowdsourcing [57] and real-time trip planning [19, 63].

6 RELATEDWORK
Our paper is closely related to the Embedding Arbitrary metrics by
Tree metrics (EAT) problem. For other metric embedding problems,

please refer to the surveys and textbooks [6, 35, 39, 58].

The EAT problem was first studied by Bartal in [14]. It aimed

to embed arbitrary metrics by tree metrics with low distortions.

Bartal also first proposed the Hierarchically Separated Tree (HST) to
solve it. So far, HSTs have been widely used in many applications,

such as task assignment [18, 55, 57], trip planning [19, 63], privacy

preservation [24, 54], facility location planning [12, 20], distributed

query processing [42], and clustering [13].

To minimize the distortion of an HST, early studies [14, 15, 25, 26,

39, 41] mainly focus on improving the distortion guarantees. Specifi-

cally, Bartal [14] proposed a graph-based algorithmwith a distortion

guarantee of 𝑂 (log𝑛 log (min{𝑛,Δ})) and further improved the

distortion guarantee to 𝑂 (log𝑛 log log𝑛) [15]. Konjevod et al. [41]
followed [14, 15] and discovered a distortion guarantee of𝑂 (logΔ).
Indyk [39] converted a quadtree [27] into an HST with a distortion

guarantee of𝑂 (log4 𝑛). Among these studies, Fakcharoenphol et al.
[25, 26] proposed the state-of-the-art construction algorithm FRT
with the tight distortion guarantee (𝑂 (log𝑛)).

Recent studies [17, 29, 32, 64] focused on improving the efficiency

of FRT. Specifically, Zeng et al. [64] proposed a 𝑂 (𝑛2)-time imple-

mentation with 𝑂 (𝑛) space cost. Blelloch et al. [17] and Friedrichs

et al. [29] studied the parallel versions to get low average-case time

complexity. Gao et al. [32] aimed to minimize the communication

cost in a distributed sensor network during the construction.

7 CONCLUSION
This paper studies the Embedding 𝐿𝑝 metrics through Tree metrics

(ELT) problem. Although solutions have been proposed to solve

this problem with optimal theoretical guarantees (𝑂 (log𝑛)), they
are still not effective and efficient enough in large-scale datasets.

To achieve a low distortion, we first present a divide-and-conquer

based framework, which has a high time cost. We next propose

two optimization techniques (indexing and sampling) and design

an algorithm called DCsam with the optimal theoretical guarantee

and a low time complexity (𝑂 (𝑛1.5 log2 𝑛)). Finally, extensive exper-
iments demonstrate that DCsam outperforms the state-of-the-art

methods by a large margin in both distortion and running time.
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