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Abstract. Approximate nearest neighbor query is a fundamental spa-
tial query widely applied in many real-world applications. In the big data
era, there is an increasing demand to scale these queries over a spatial
data federation, which consists of multiple data owners, each holding
a private, disjoint partition of the entire spatial dataset. However, it is
non-trivial to enable approximate k-nearest neighbor query over a spa-
tial data federation. This is because stringent security constraints are
often imposed to protect the sensitive, privately owned data partitions,
whereas naively extending prior secure query processing solutions leads
to high inefficiency (e.g., 100 s per query). In this paper, we propose two
novel algorithms for efficient and secure approximate k-nearest neigh-
bor query over a spatial data federation. We theoretically analyze their
communication cost and time complexity, and further prove their security
guarantees and approximation bounds. Extensive experiments show that
our algorithms outperform the state-of-the-art solutions with respect to
the query efficiency and often yield a higher accuracy.

Keywords: Approximate nearest neighbor · Spatial data federation

1 Introduction

k-Nearest Neighbor (kNN) query is one of the most fundamental queries in
spatial databases, which aims to find k spatial objects that are closest to a given
location. The approximate solutions to kNN queries (a.k.a., approximate kNN or
ANN) are of particular research interest since they are better suited for real-time
response over large-scale spatial data than the exact counterparts [6,7,12,13,25].
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Fig. 1. Example of approximate kNN query over spatial data federation

There has been widespread adoption of approximate kNN in various application
domains, such as transportation and map service, to name a few [12,13,21].

As the scale of real-world spatial applications continues to grow from region-
to city- or even nation-wide, there has been a sharp urge to support approximate
kNN queries over a spatial data federation [2,18,24]. A spatial data federation
consists of multiple data owners who agree on the same schema and manage
their own partition of the entire spatial dataset autonomously. Direct access to
each raw data partition is prohibited, and secure queries over the federation
are compulsory due to data sensitivity or commercial reasons. Take Amap [1],
a major map service company in China, as an example. It offers a taxi-calling
service via an integrated platform uniting dozens of taxi companies including
Caocao, Shouqi, Yidao, etc. Prior to dispatching taxi orders, Amap may want to
retrieve the k nearest drivers of a given passenger over the entire dataset of these
companies via an approximate kNN query (see Fig. 1). The query should deliver
high accuracy within a short time for satisfactory user experiences. It should
also provide security guarantees for data partitions of the taxi companies by not
leaking sensitive information such as locations during the query processing.

A naive solution is to extend general-purpose secure query schemes over
data federations [2,24] to approximate kNN queries over a spatial data federa-
tion. However, they can be highly inefficient when processing approximate kNN
queries. For instance, on the OpenStreetMap benchmark dataset [20,27] with
10k spatial objects and 6 data owners, the query delay of Conclave [24] is 100 s
per query, which can hardly support real-time responses in taxi-calling appli-
cations. Other proposals (e.g., SAQE [4] and Shrinkwrap [3]) are dedicated to
specific relational queries and cannot be easily extended to spatial queries such
as approximate kNN.

In this paper, we focus on efficient and secure solutions to approximate
kNN query over spatial data federation (“federated approximate kNN query” for
short). Specifically, we first design an approximation algorithm called one-round.
The main idea is to (1) retrieve kNN over each data owner’s local dataset in plain-
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text, (2) securely estimate how much each local kNN will contribute to the final
result, and (3) securely collect the final result from all data owners based on the
estimated contribution ratio. Due to the possible errors introduced in one-round,
we further propose an improved algorithm called multi-round which optimizes
the contribution ratio estimation procedure for a better trade-off between query
accuracy and efficiency. To summarize, we have made following contributions.

– To the best of our knowledge, we are the first to study approximate kNN
queries over a spatial data federation.

– We design two novel algorithms for federated approximate kNN queries. We
theoretically analyze their communication cost and time complexity, and
prove their security guarantees and approximation bounds.

– We conduct extensive experiments on both synthetic and real datasets and
compare our algorithms with the state-of-the-art solutions. Results show that
our method is always more efficient and often achieves higher accuracy. For
instance, our solution can be 2–4 orders of magnitude faster than SMCQL [2]
and Conclave [24] on the real dataset.

The rest of this paper is organized as follows. We first formally define the
federated approximate kNN query in Sect. 2. Next, we introduce our algorithms
and present our theoretical analysis in Sect. 3. Finally, we conduct experiments
in Sect. 4, review related studies in Sect. 5, and conclude in Sect. 6.

2 Problem Statement

In this section, we first introduce some basic concepts and then present the
formal definition of the approximate kNN query over spatial data federation.

Definition 1 (Spatial Object). A spatial object di is denoted by a location
ldi

= (xdi
, ydi

) on a 2-dimensional Euclidean space.

Based on Definition 1, the distance between spatial objects d1 and
d2 is computed by the Euclidean distance function dis(ld1 , ld2) =√

(xd2 − xd1)2 + (yd2 − yd1)2.

Definition 2 (Data Owner). A data owner Si owns a set Di of spatial objects
d1, d2, · · · , d|Di|, where |Di| is the number of spatial objects in Di.

In real-world applications, a data owner is often a company that owns a
certain amount of spatial data [19,22,26]. Moreover, these data owners may
want to run spatial analytics jointly (over the union of their datasets) but are
unwilling/unable to share their raw data directly. As a result, a spatial data
federation can be established to provide unified analytic services with security
guarantees.

Definition 3 (Spatial Data Federation). A spatial data federation F =
{S1, S2, ..., Sn} units n data owners to provide spatial query services. A set D is
used to represent all the spatial objects, i.e., D1

⋃
D2

⋃
. . .

⋃
Dn, where a subset

Di of spatial objects is held by the data owner Si.



354 K. Zhang et al.

The query processing over a spatial data federation usually requires a joint
computation across the data owners. Therefore, this federation also needs to
guarantee the security of each data owner. As a result, existing work [2–4,24]
usually assumes that each data owner can be a semi-honest attacker, which is
defined by the following threat model.

Definition 4 (Semi-honest Threat Model). Referring to existing work [2,
24], the data owners over spatial data federation are presumed to be semi-honest.
A semi-honest attacker follows the query execution plan (e.g., correctly executing
spatial queries over their owned dataset), but is also curious about the sensitive
data (e.g., the locations of spatial objects) of the other data owners.

Our problem is defined upon the (exact) k nearest neighbor (kNN) query.

Definition 5 ((Exact) kNN [13]). Given a set D of spatial objects, a query
location lq = (xq, yq), and a positive integer k, kNN retrieves a set res∗ ⊆ D
of k spatial objects that are closest to the query location lq, i.e., ∀d ∈ res∗ and
d

′ ∈ D − res∗, dis(ld, lq) ≤ dis(ld′ , lq).

Based on these concepts, we introduce the approximate kNN query over
spatial data federation (“federated approximate kNN query” for short) as follows.

Definition 6 (Federated Approximate kNN Query). Given a spatial data
federation F = {S1, S2, ..., Sn}, a query location lq = (xq, yq), and a positive
integer k, a federated approximate kNN query q(F, lq, k) aims to find a set res
of k spatial objects over the whole dataset D such that the result accuracy δ
of this approximate answer can be maximized as much as possible

δ =
|res ∩ res∗|

k
, where res∗ is the exact kNN (1)

while satisfying the following security constraint.

– Security constraint. Under the semi-honest threat model, the query process-
ing algorithm should ensure a data owner cannot infer any sensitive informa-
tion about other data owners except for the query result.

In Definition 6, the result accuracy defined in Eq. (1) is a widely-used met-
ric [13,25] to assess the quality of the retrieved results. In the security require-
ment, the extra sensitive information can be the locations of any other owner’s
spatial objects, the ownership of the spatial objects, and the cardinality of query
results over another owner’s local dataset (“local result” as short).

Example 1. Three data owners S1, S2, and S3 constitute a spatial data federa-
tion F . The locations of the spatial objects owned by S1, S2, and S3 are listed
in Table 1. A query user submits a kNN query q(F, lq, k) to this federation F ,
where the query location lq = (3, 3) and k = 5. Suppose the exact kNN is res∗=
{(2,3),(3,2),(3,2),(3,3),(3,4)}, and the result found by an approximation algo-
rithm is res = {(3, 3), (3, 2), (2, 3), (0, 4), (6, 4)}. The accuracy δ of this approxi-
mate result is |res ∩ res∗|/k = 3/5 = 60%.
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3 Our Approximation Algorithms

In this section, we first introduce an overview of our solution in Sect. 3.1. Then,
two basic and secure computation operations are presented in Sect. 3.2. Based
on these basic operations, we propose two algorithms with different trade-offs
for federated approximate kNN queries, i.e., one-round algorithm (Sect. 3.3) and
multi-round algorithm (Sect. 3.4). The former is faster than the latter, while the
latter is more accurate than the former. Finally, we prove the approximation
guarantees of both algorithms in Sect. 3.5.

Table 1. Locations of spatial objects owned by S1, S2, and S3

S1

ID Location

1 (0,4)

2 (3,0)

3 (3,4)

4 (3,5)

5 (4,4)

6 (7,6)

S2

ID Location

1 (1,6)

2 (3,2)

3 (3,3)

4 (3,6)

5 (4,5)

S3

ID Location

1 (1,4)

2 (2,3)

3 (3,2)

4 (4,2)

5 (4,6)

6 (6,4)

7 (7,3)

Fig. 2. Comparison of the extended baseline and our solution

3.1 Overview

Limitation of Extended Baseline. As shown in Fig. 2(a), existing general-
purpose solutions (e.g., Conclave [24]) can be extended as a baseline. In general,
it first asks each data owner to perform an approximate kNN (i.e., ANN) over
its local dataset, and then uses secure sort and secure top-k to compute the final
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result. From experiments in Sect. 4, we have two observations on the limitation of
baselines. (1) The inefficiency is mainly caused by the secure operations, which
are complicated and time-consuming. (2) The errors of totally O(n) ANNs may
exacerbate the error of the final answer. Thus, it motivates us to design a new
query processing solution that requires more light-weight secure operations and
fewer inaccurate approximations.

Overview of Our Solution. To overcome the limitation, the main idea of our
solution is illustrated in Fig. 2(b). Specifically, each silo first executes exact kNN
(instead of ANN) to produce k candidate objects. Next, an accurate method is
devised to approximately estimate the contribution ratio to the final answer in
each silo. This method relies on secure summation, which is one of the simplest
secure operations. Based on this ratio, a secure set union is used to collect the
final answer from all silos. By contrast, our solution only involves light-weight
secure operations and one approximation operation.

3.2 Preliminary

Our algorithm is designed based on two primitive operations as follows, i.e.,
secure summation and secure set union.

Secure Summation Operation [5]. The secure summation operation gets
the sum of the private values held by multiple data owners while satisfying the
security constraint. For example, when data owners S1-S3 hold value1-value3
respectively, a secure summation operation works as follows. Each pair of Si and
Sj (i < j) negotiates a random number sci,j secretly in advance. When a secure
summation request is submitted, each data owner Si perturbs valuei as value

′
i =

valuei +
∑

j∈[1,3],i<j sci,j −∑
j∈[1,3],i>j scj,i. Next, Si sends value

′
i to the spatial

data federation. Finally, the spatial data federation adds up value
′
1, value

′
2, and

value
′
3 in plain text as the final result, which equals to value1 +value2 +value3.

Secure Set Union Operation [10]. The secure set union operation gets the
union of the private sets held by multiple data owners while satisfying the
security constraint. For example, suppose 3 data owners S1-S3 hold datasets
set1 − set3, respectively. First, S1, S2 and S3 generate random sets rset1, rset2,
and rset3, respectively. Then, S1 sends tset1 = set1

⋃
rset1 to S2, S2 sends

tset2 = tset1
⋃

set2
⋃

rset2 to S3, and S3 sends tset3 = tset2
⋃

set3
⋃

rset3 to
S1. Next, S1 sends tset1 = tset3 − rset1 to S2, S2 sends tset2 = tset1 − rset2
to S3, and S3 sends tset3 = tset2 − rset3 to S1. Finally, S1 submits tset3 to the
spatial data federation, which equals the union of set1, set2, and set3.

3.3 One-Round Algorithm

Main Idea. Each data owner first performs an exact kNN query over its local
dataset to get the local kNN set. Then the spatial data federation estimates the
contribution ratio of each data owner’s local kNN to the final answer. The larger
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the ratio is, the more objects the data owner’s local kNN will contribute to the
final answer.

Algorithm Details. Algorithm 1 illustrates the detailed procedure. In lines
1–2, each data owner executes its local kNN. In lines 3–5, we use a radius ri
to denote the kth nearest distance to the query location lq and areai to denote
the area of a circle with the radius ri to the center lq. Then, the contribution
ratio ratei of the data owner Si’s local kNN to the final result is inversely
proportional to areai. To compute ratei, we first compute sum =

∑n
i=1

1
areai

by the secure summation operation SecureSum(), and then each data owner Si

can calculate ratei as 1/areai

sum . Accordingly, Si provides the top (ratei ×k)NN as
the partial result resi. Finally, the spatial data federation performs the secure
union SecureUnion() among these partial results res1, res2, · · · , resn to collect
the final result.

Example 2. Back to Example 1. The values of some intermediate variables are
shown in Table 2. Data owners calculate the kth nearest distance to lq based on
their local kNN first. For example, since the location of the kth nearest neigh-
bor of S1 is (0,4), the kth nearest distance to lq can be calculated as r1 =√

(0 − 3)2 + (4 − 3)2 =
√

10. Similarly, we have r2 =
√

13 and r3 =
√

10. There-
fore, area1 = 10π, area2 = 13π, and area3 = 10π. By the secure summation,
we have sum = 18/65π. Then, rate1 can be computed as area1/sum = 13/36.
rate2 and rate3 can be calculated similarly. It indicates the data owners S1-S3

would offer their 2NN, NN and 2NN as the partial result. By using a secure
union, the final result by Algorithm 1 is res = {(3, 4), (4, 4), (3, 3), (3, 2), (2, 3)}.

Algorithm 1: One-round algorithm
Input: spatial object sets D1, D2, · · · , Dn, the query request q(F, lq, k)
Output: query result

1 for i ∈ [1, n] do
2 nni ← Si’s local kNN over Di

3 for i ∈ [1, n] do
4 ri ← maxj∈[1,k] dis(lnni[j], lq)
5 areai ← π(ri)

2

6 sum ← SecureSum( 1
area1

, 1
area2

, · · · , 1
arean

)

7 for i ∈ [1, n] do

8 ratei ← 1/areai
sum

9 numi ← ratei × k
10 resi ← the top numi-NN in nni

11 return res ← SecureSetUnion(res1, res2, · · · , resn)
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Table 2. Values of some intermediate variables in Example 2

S1 S2 S3

ID of local kNN {3,5,4,2,1} {3,2,5,4,1} {2,3,4,1,5}
r

√
10

√
13

√
10

area 10π 13π 10π

rate 13/36 5/18 13/36

num 2 1 2

ID of res {3,5} {3} {2,3}

Communication Complexity. In Algorithm 1, the communication mainly
occurs in the secure summation and secure set union. Since each data owner
needs to send information to other n − 1 data owners, the communication com-
plexity of secure summation is O(n2). In the secure set union, the communication
complexity of interactions among these n data owners is O(n). Thus, the com-
munication complexity of Algorithm 1 is O(n2).

Time Complexity. The time complexity of lines 1–5 is O(log m), where m is
the maximum number of objects owned by a data owner. In line 6, the time
complexity of the secure summation is O(n), where n is the number of data
owners. The time complexity of lines 7–10 is O(1). Note that although the total
communication cost is O(n2), the time complexity of communication is still
bounded by O(n + logm) for each data owner. In line 11, the time complexity
of the secure set union is O(n). Thus, the time complexity of Algorithm 1 is
O(n + log m).

Security Proof. We prove the security of Algorithm 1 in Lemma 1 by the
composition lemma [8] in cryptography theory.

Fact 1 (Composition Lemma [8]). Given a secure protocol φ(y|x) that can
securely compute y based on plain-text query x, the operation y can be securely
computed by executing protocol φ(y|x) but substitutes every plain-text query x
with a secure protocol φ(x).

Lemma 1. Algorithm 1 is secure against the semi-honest threat model in Defi-
nition 4.

Proof. Let φ(x) be the secure summation (line 6) and φ(y|x) be the calculation
procedure in lines 1–10 based on the plain-text summation. It can be observed
that lines 1–5 and lines 7–10 do not involve interactions across data owners,
which means each data owner can execute lines 1–10 independently when the
summation result is known. Based on the composition lemma [8], the computa-
tions in lines 1–10 are also secure. As the secure set union (line 11) is secure, the
whole calculation procedure of Algorithm 1 is secure.
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3.4 Multi-round Algorithm

Motivation. The one-round algorithm roughly estimates the contribution ratio
of data owners’ local kNN to the query result, which may result in unsatis-
fied accuracy (see our experiments in Sect. 4). Thus, we present a multi-round
algorithm that slightly sacrifices efficiency for an improvement in the accuracy.

Main Idea. To further improve the query accuracy, we use a more fine-grained
approach to estimate the contribution of each data owner to the final query
result. Specifically, we divide the query processing procedure into multiple rounds
and each round contributes a part of the final result. For example, when the num-
ber of rounds is W , k/W nearest neighbors (k/WNN) of kNN will be determined
in each round. In this way, the estimation of the contribution ratio in each round
can be more accurate than that in Algorithm 1. Besides, those objects, which
have been determined, will not appear in subsequent rounds.

Algorithm Details. Algorithm 2 illustrates the detailed procedure. In lines 1–
3, each data owner Si maintains a set UnadSeti that contains candidate objects
and a set AdSeti that contains selected objects. The local kNN of Si is put into
UnadSeti as initialization. Different from Algorithm 1, Algorithm 2 takes W
(W > 1) rounds to compute the final results in lines 4–8 and each round decides
k/W nearest neighbors (k/WNN). Specifically, for each round w, we estimate
the contribution ratio of UnadSet1, UnadSet2, · · · , UnadSetn to the k/WNN
in this round, which is similar to the one-round algorithm. Note that in the w
(w ≥ 2)th round, we fine-tune the areai as π[r2i − (r

′
i)

2], where ri is defined as
line 4 of Algorithm 1 and r′

i is the cached value of ri in the (w−1)th round. The
selected objects of Si are removed from UnadSeti to AdSeti. In line 9, the final
result is calculated by a secure set union over AdSet1, AdSet2, · · · , AdSetn.

Example 3. Back to Example 1. We aim to find 2NN and 3NN in the 1st and
2nd rounds, respectively. The values of the intermediate variables of the 1st
and 2nd rounds are listed in Table 3 and Table 4, respectively. By merging
AdSet1, · · · , AdSetn, we have res={(3,4),(3,3),(3,2),(2,3),(3,2)}, whose query
accuracy is 100%.

Communication and Time Complexity. Algorithm 2 involves W contribu-
tion estimation and 1 secure set union operation. Since the number W of rounds
is a constant parameter, the communication complexity and time complexity of
Algorithm 2 are same as those of Algorithm 1, i.e., O(n2) and O(n + log m),
respectively.
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Algorithm 2: Multi-round algorithm
Input: spatial object sets D1, D2, · · · , Dn, the query request q(F, lq, k), the

query round W
Output: query result

1 for i ∈ [1, n] do
2 UnadSeti ← Si’s local kNN over Di

3 AdSeti ← φ

4 for w ∈ [1, W ] do
5 for i ∈ [1, n] do
6 NewadSeti ← resi found by Algorithm 1 whose input is

{UnadSet1, UnadSet2, · · · , UnadSetn, q(F, lq, k/W )}
7 AdSeti ← AdSeti ∪ NewadSeti
8 UnadSeti ← UnadSeti − NewadSeti

9 return res ← SecureUnion(AdSet1, AdSet2, · · · , AdSetn)

Table 3. Values of some intermediate variables of the 1st round in Example 3

S1 S2 S3

ID of objects in NewadSet ∅ {3} {2}
ID of objects in AdSet ∅ {3} {2}
ID of objects in UnadSet {1,2,3,4,5,6} {1,2,4,5} {1,3,4,5,6,7}

Security Proof. We prove the security of Algorithm 2 in Lemma 1 by the
composition lemma [8] (i.e., Fact 1 in Sect. 3.3).

Lemma 2. Algorithm 2 is secure against the semi-honest threat model in Defi-
nition 4.

Proof. Let φ(x) be the calculation procedure in line 6 and φ(y|x) be the calcu-
lation procedure in lines 1–8 based on the plain-text calculation procedure in
line 6. It can be observed that lines 1–5 and lines 7–8 do not involve interactions
across data owners, which means each data owner can execute lines 1–8 inde-
pendently when the result of line 6 is known. Since the calculation procedure in
line 6 is proved to be secure in Sect. 3.3, the computations in lines 1–8 are also
secure based on the composition lemma [8]. As the secure set union (line 9) is
secure, the whole calculation procedure of Algorithm 2 is secure.

3.5 Approximation Guarantees of both Algorithms

The following theorem proves the approximation guarantees of our one-round
algorithm (when W = 1) and multi-round algorithm (when W > 1).

Theorem 1. The accuracy δ of the approximate kNN query result satisfies

Pr(δ < 1 − ε) ≤ 2 exp(
−2Wε2

n
),
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Table 4. Values of some intermediate variables of the 2nd round in Example 3

S1 S2 S3

ID of NewadSet {3} {2} {3}
ID of AdSet {3} {3,2} {2,3}
ID of UnadoptedSet {1,2,4,5,6} {1,4,5} {1,4,5,6,7}

where W ,n, and k represent the query round, the number of data owners, and
the number of objects to be queried respectively.

Proof. Assume that the spatial objects owned by data owners S1, S2, · · · , Sn

roughly follow the uniform distribution in each round. Denote the density of
objects in Si as ρi. We have E[ρi] = k/W

areai
, where areai is the circle’s area of

local k
W NN in data owner Si. Thus, the expected area of the circle of global

k
W NN is

E[area] =
k/W

∑n
i=1 E[ρi]

=
1

∑n
i=1

1
areai

.

Denote the contribution ratio of the data owner Si as ratei. We have

E[ratei] =
1

areai∑n
i=1

1
areai

.

Then, by applying the Hoeffding’s inequality [23], we can derive that for the
data federation F ,

Pr(
W∑

j=1

n∑

i=1

|rateji − E[rateji ]| > ε) ≤ 2 exp(
−2ε2

Wn
).

And the accuracy δ of the approximate kNN query result is

δ = 1 − (
∑W

j=1

∑n
i=1 |rateji − E[rateji ]|) · k

W

k
.

Therefore, the accuracy δ of the approximate result satisfies

Pr(δ < 1 − ε) ≤ 2 exp(
−2Wε2

n
).

4 Experimental Evaluation

This section presents the experimental setup in Sect. 4.1 and results in Sect. 4.2.



362 K. Zhang et al.

4.1 Experimental Setup

Datasets. Both real dataset (MBJ) and synthetic dataset (OSM) are used in
our experimental evaluation.

– Multi-company Spatial Data in Beijing (MBJ). We randomly select 106

pieces of spatial data records from the original dataset comprising 1,029,081
pieces of records from 10 companies in Beijing. Each company is regarded as
a data owner.

Table 5. Parameter settings

Parameter Setting

#(Nearest neighbors) k 4, 8, 16, 32, 64

#(Data onwers) n 2, 4, 6, 8, 10

Data size |D| 104, 105, 106, 107, 108

– OpenStreetMap (OSM). This dataset is widely used in large-scale spatial
data systems [20,27]. We randomly select 104, 105, 106, 107, and 108 pieces
of location records and assign each record a random data owner number so
that data owners have the same number of objects.

Parameter Settings. Referring to the parameter settings in [9,20], we vary k,
|D|, and n from 4 to 64, 104 to 108, and 2 to 10, respectively. The parameter
settings are summarized in Table 5, in which default parameters are in bold.

Compared Algorithms. We compare the performance of our algorithms and
the following baselines (i.e., SMCQL [2], which is developed by ObliVM [15],
and Conclave [24], which is developed by MP-SPDZ [11]).

For our proposed algorithms, we use OR and MR to denote the one-round
algorithm (i.e., Algorithm 1) and multi-round algorithm (i.e., Algorithm 2),
respectively.

For the compared baselines, we make extensions on supporting approximate
kNN queries as follows. Each data owner calculates its local approximate kNN
by a seminal indexing approach, the ANN library [16]. Then the final kNN is
derived by a secure sorting over the union of local kNN computed by data owners.
Notice that SMCQL only supports queries over a federation of two data owners.

Evaluation Metrics. We use running time and communication cost to test the
efficiency and result accuracy (“accuracy” as short) to test the effectiveness.

Experimental Environment. The experiments are conducted on 10 docker
containers (i.e., up to 10 data owners), each with 16 AMD Ryzen 3.4GHz CPU
cores. Each docker container can be regarded as a data owner. The experimental
results are the average of 50 repetitions.



Approximate k-Nearest Neighbor Query over Spatial Data Federation 363

4.2 Experimental Results

Note that the results of SMCQL are only available when n is 2, since its adopted
security technique, ObliVM [15], is only applicable for 2 data owners.

Effect of k. Figure 3-4 illustrate the results when varying k on MBJ and OSM,
respectively. We can first observe that our solution always achieves a better
efficiency than Conclave. For example, on the real dataset (MBJ), Conclave can
be 4 orders of magnitude slower than our one-round (OR) and multi-round (MR)
algorithms, and its communication cost is at least 5 orders of magnitude higher
than that of our solution. In terms of result accuracy, our solution is often better
than Conclave. For instance, the accuracy of MR is up to 13% higher than that
of Conclave. The error of Conclave is mainly caused by the accumulative errors
of its local approximate kNN queries (O(n) in total). By contrast, the error of
our solution is only produced in one operation, i.e., contribution estimation.
Moreover, the results also show that MR can effectively improve the accuracy
with only marginal sacrifice in the efficiency.

Fig. 3. Results when varying k on the MBJ dataset

Fig. 4. Results when varying k on the OSM dataset

Effect of n. Figure 5-6 present the results when varying n on MBJ and OSM,
respectively. In terms of efficiency, the running time and communication cost of
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our algorithms are still significantly lower than those of SMCQL and Conclave.
For instance, OR and MR are up to 4 orders of magnitude faster than the
baselines. The communication cost of Conclave is up to 1.6 TB per query, while
that of ours is below 0.27 MB. Besides, the running time and communication
cost of all algorithms show an upward trend, when the number n of data owners
is increasing. This is because (1) the secure operations are efficiency bottleneck
of the baselines and (2) the efficiency of secure operations is sensitive to n. In
terms of effectiveness, the result accuracy of our algorithms is higher than that
of baselines in most cases. For example, the accuracy of OR and MR is up to
26.25% and 31.25% higher than that of SMCQL and Conclave, respectively.

Effect of |D|. Figure 7 shows the results when varying the data size |D| on
OSM. When varying the data size, the running time and communication cost of
our algorithms are constantly lower than those of Conclave. For instance, OR
is usually 3 orders of magnitude faster than Conclave. Between our algorithms,
MR is slightly less efficient than OR. Overall, the results show that our solution
is much more scalable than the state-of-the-art. As for the result accuracy, our
algorithms are more stable than Conclave. Specifically, the accuracy of OR and
MR is usually above 83% and 90%, respectively. By contrast, the accuracy of
the baseline can be as low as 75%.

Fig. 5. Results when varying n on the MBJ dataset

Fig. 6. Results when varying n on the OSM dataset
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Summary of results. The experimental findings are summarized as follows.

(1) Our solution is notably more efficient than the baselines in query efficiency.
It can be 2–4 orders of magnitude faster and take 2–6 orders of magnitude
lower communication cost than that of SMCQL and Conclave.

(2) The result accuracy of our solution is often higher than that of baselines.
For example, the result accuracy of our solution can be up to 31.25% higher
than the accuracy of SMCQL and Conclave.

(3) Our multi-round algorithm can effectively improve the accuracy of one-round
algorithm by sacrificing only a little efficiency.

5 Related Work

Our work is related to the domains of Querying over Data Federation and
Approximate kNN Query.

Querying over Data Federation. Existing algorithms perform queries over
a data federation by utilizing the Secure Multiparty Computation (SMC) [8]
technique, which protects the input and intermediate data from leaking. After
receiving a query request submitted by the user, the data federation parses the
query into a series of secure and plain-text operations and coordinates multiple
data owners to get query results based on the union of their local datasets.

Hu-Fu [17,20] is a spatial data federation system that supports spatial queries
with exact results. However, unlike SMCQL [2] and Conclave [24], it is non-
trivial to extend Hu-Fu to support approximate kNN queries. This is because
(1) the query rewriter of Hu-Fu decomposes a kNN query into a series of range
counting queries and one range query (instead of several kNN queries on each
local dataset) and (2) the results of range counting and range query here must be
accurate to ensure the final answer has exactly k objects. Other data federation
systems, SAQE [4] and Shrinkwrap [3], consider the trade-offs among result
accuracy, query efficiency, and differential privacy. For example, SAQE improves
the query efficiency by sampling and protects the query result by differential

Fig. 7. Results when varying |D| on the OSM dataset
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privacy, while Shrinkwrap protects the intermediate results by using differential
privacy. However, since differential privacy is not the main concern of our work,
their solution cannot be extended to our problem setting.

Some recent work also studies graph (data) federation [28]. A typical appli-
cation of the graph federation is multi-modal route planning [14] over multiple
transportation networks. To solve this problem, Li et al. [14] proposed a novel
solution to achieve very high efficiency and low communication overhead.

Approximate kNN Query. Existing solutions to approximate kNN queries
can be divided into three categories: tree-based, graph-based, and hash-based
solutions. In tree-based solutions, the main idea is to divide the entire space
into multiple disjoint areas, and kNN often falls in the area that contains or
is adjacent to the query location [13]. For graph-based solutions, the core idea
is to construct a proximity graph based on the neighbor relationship between
objects and search for the “nearest neighbors” first [25]. As for hash-based solu-
tions, the basic idea is to map data objects to lower-dimensional hash values.
Then, the closer the distance between two objects is, the higher the probability
of being mapped to the same hash value [6]. These algorithms do not consider
data security/privacy and hence cannot be used as the solutions to our feder-
ated approximate kNN query problem. However, these algorithms can be used
in querying the local dataset in each data owner.

Some existing work [7,12], which considers data privacy, is mostly studied
under the scenario of outsourced databases. Although these solutions [7,12] can
protect security by searchable asymmetric encryption schemes, their application
scenario is quite different from ours (i.e., a data federation). For example, an
outsourced database assumes the raw data of one data owner is encrypted and
stored in the third party (e.g., a cloud server). By contrast, in a data federation,
the local dataset of each data owner does not need to be encrypted and stored
in a third party. Thus, queries can be securely executed in plaintext over each
local dataset, which is quite different from the scenario of outsourced databases.

6 Conclusion

This paper investigates efficient and secure approximate kNN query over a spatial
data federation. We propose two secure algorithms with low communication cost
and time complexity. We also prove that their approximation guarantees (i.e.,
the accuracy of the query results) have non-trivial bounds. The experimental
results on both synthetic and real datasets show that the query efficiency of our
algorithms is significantly better than that of state-of-the-arts by a large margin.
Results also show that our algorithms can often achieve a higher result accuracy.
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