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ABSTRACT
Personalized federated learning collaboratively trains client-specific

models, which holds potential for various mobile and IoT appli-

cations with heterogeneous data. However, existing solutions are

vulnerable to distribution shifts between training and test data,

and involve high training workloads on local devices. These two

shortcomings hinder the practical usage of personalized federated

learning on real-world mobile applications. To overcome these

drawbacks, we explore efficient shift-robust personalization for

federated learning. The principle is to hitchhike the global model

to improve the shift-robustness of personalized models with min-

imal extra training overhead. To this end, we present DM-PFL, a

novel framework that utilizes a dual masking mechanism to train

both global and personalized models with weight-level parameter

sharing and end-to-end sparse training. Evaluations on various

datasets show that our methods not only improve the test accuracy

in presence of test-time distribution shifts but also save the com-

munication and computation costs compared to state-of-the-art

personalized federated learning schemes.
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1 INTRODUCTION
Federated Learning (FL) [19, 48] is an emerging paradigm that

enables multiple clients to train models collaboratively without

directly accessing their local data. It enables a wide spectrum of

novel mobile and IoT applications including personal voice assistant

[24], image recognition [16], next-word prediction on keyboard [46],

human activity recognition [27], etc.

Data heterogeneity is a primary challenge when deploying FL to

real-world mobile and IoT applications, where each client (often a

resource-limited platform such as a smartphone, a smart-watch, a

smart speaker, etc.) holds data partitions whose distributions differ

from each other. For high-quality services on such personalized data,

training client-specific models is necessary, which is known as per-

sonalized FL [11, 30, 46]. Unlike the generic FL [29, 33] that learns

a global model for all clients, personalized FL trains customized

models catered to better fit client-specific data distributions for

high test accuracy at each client [46].

Despite extensive personalized FL proposals [7, 9, 28, 46], two

drawbacks impede their practical usage for mobile applications.

• Vulnerable to Test-Time Distribution Shifts. Most personal-

ized FL solutions [7, 9, 28, 46] implicitly assume that the

training and test dataset at each client share the same distri-

bution. This assumption often breaks for mobile applications,

where user-specific training and testing are conducted in

diverse contexts and environments. For example, the human

activity recognition model on a smart-watch may be mainly

trained for activities in the residential areas but tested for

activities in the business areas. The model should yield con-

sistent accuracy for user activities across diverse contexts

and environments.

• High Local Training Workload for Mobile Devices. The clients
in mobile and IoT applications are resource-constrained. A

few personalized FL algorithms aim to reduce the communi-

cation cost [25, 30], yet the computation overhead of local
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training remains an efficiency bottleneck. This is because ex-

isting personalized FL methods [9, 12, 28, 42] often demand

additional training for personalization, which induces higher

computation costs.

In response, we explore efficient shift-robust personalization for

FL, which aims to train personalized models that are robust to

distribution shifts between training- and test-time with low local

training overhead. Our idea is to harness the global model that

often emerges during personalized FL to improve the robustness to

test-time shift through weight-level parameter sharing, and inject

end-to-end sparsity into the federated learning process. Realizing

this idea is challenging because existing schemes to combat distri-

bution shifts [41, 44, 52] may induce significant overhead, and it

is unknown how to enable sparse federated training dedicated to

shift-robust personalization.

In this paper, we propose DM-PFL, (Dual Masked Personalized

Federated Learning), an efficient and shift-robust personalized FL

framework. With a novel dual-masking design, we managed to

train both a global model and a set of personalized models for

each client for shift-robust personalization without extra training

workload. DM-PFL is also featured with a new federated training

framework that allows end-to-end sparse training of both the global

and personalized models. Our main contributions and results are:

• To the best our of knowledge, this is the first work exploring

the efficient shift-robust personalization problem, an over-

looked issue in practical FL for mobile and IoT applications.

• We propose DM-PFL, a new framework that efficiently hitch-

hikes generic FL for shift-robust personalization. We further

design an extension DM-PFL+ to adaptively ensemble the

global model and the personalized model for improved shift-

robustness at test-time.

• Extensive experiments on various datasets show that we

can outperform state-of-the-art personalized FL schemes

[4, 7, 9, 28, 30, 46] by up to 31.67% in terms of test accu-

racy in presence of severe distribution shifts, and save the

communication and computation cost by 26.6% and 37.1%.

2 PROBLEM STATEMENT
This section provides a quick review of generic and personalized

federated learning (Sec. 2.1) and then presents the efficient shift-

robust personalization problem (Sec. 2.2).

2.1 Federated Learning Basics
Federated learning allows distributed clients to collaboratively train

models via the coordination of a central server. The objective is

to improve the model accuracy at each client by exploiting data

from other clients without direct access to their local datasets. The

standard approach is generic FL, which trains a global model with

the expectation to perform well for all clients by optimizing perfor-

mance on the aggregation of large amounts of data across clients.

However, since a client’s local data distribution may notably deviate

from the aggregated (global) data distribution, an averaged model

can be sub-optimal. Accordingly, personalized FL is preferred in

case of high data heterogeneity, which trains client-specific models

to better fit the clients’ local data distribution. Specifically, generic

and personalized FL are defined below.

Generic FL. Given clients {1, 2, . . . ,𝐶} with local training datasets

{𝐷1, 𝐷2, . . . , 𝐷𝐶 }, generic FL aims to train a global model 𝜃𝑔 with

the following objective.

min

𝜃𝑔
𝑙 (𝜃𝑔) =

𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | E[L(𝜃𝑔 ;𝐷𝑐 )] (1)

where 𝜃𝑔 is the global model parameters to be learned, |𝐷𝑐 | is the
size of client 𝑐’s training dataset, |𝐷 | = ∑𝐶

𝑐=1 |𝐷𝑐 | is the total size of
training dataset, and E[L(𝜃𝑔;𝐷𝑐 )] is the expected empirical risk

computed using model 𝜃𝑔 when data is sampled from client 𝑐’s

training dataset 𝐷𝑐 .

Personalized FL. Given clients {1, 2, . . . ,𝐶} with local training

datasets {𝐷1, 𝐷2, . . . , 𝐷𝐶 }, personalized FL aims to train a set of

personalized models {𝜃1, 𝜃2, . . . , 𝜃𝐶 }, where personalized model 𝜃𝑐
for client 𝑐 , with the following objective.

min

𝜃1,𝜃2,...,𝜃𝐶
𝑙 (𝜃1, ..., 𝜃𝐶 ) =

𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | E[L(𝜃𝑐 ;𝐷𝑐 )] (2)

where a key distinction from Eq.(1) is that the expected empirical

risk E[L(𝜃𝑐 ;𝐷𝑐 )] is calculated with the personalized model 𝜃𝑐
rather than the global model 𝜃𝑔 on training dataset 𝐷𝑐 .

Discussions. Both generic and personalized FL aim to train models

in presence of data heterogeneity. Personalized FL is more chal-

lenging because (i) it assumes a higher level of data heterogeneity,

which is the primary motivation of personalized FL [17]; and (ii) it
often incurs higher costs, as it usually requires additional training

to personalize the models [9, 11, 28, 42]. In this work, we explore

efficient personalized FL algorithm design, yet focus on an overlooked
aspect of data heterogeneity, as explained next.

2.2 Efficient Shift-Robust Personalized FL
Despite extensive research on personalized FL [2, 7, 9, 11, 12, 28, 39],

we argue that there are two opportunities for improvement in terms

of robustness to data heterogeneity and training efficiency.

• Prior studies [9, 12, 28, 39] mainly handle data heterogeneity

across clients yet ignore that within clients. However, the

data within clients can also be heterogeneous in the form of

distribution shifts between training- and test-time. Enabling
shift-robustness in personalized FL would deliver consistent

user-specific test-time accuracy across diverse contexts or

environments.

• Enforcing model sparsity proves effective to reduce the train-

ing workload by learning a sparse sub-network [10, 34].

Existing work [5, 35] has shown the feasibility of sparse

training in generic FL. We aim to bring sparse training to

the more challenging problem of personalized FL, so as to

deploy personalized FL to low-resource devices.

We articulate the above two opportunities into the efficient shift-

robust personalized FL problem below.

Definition 1 (Efficient Shift-Robust Personalized FL). Given
clients {1, 2, . . . ,𝐶} with local training datasets {𝐷1, 𝐷2, . . . , 𝐷𝐶 }, we
aim to train personalized models {𝜃1, 𝜃2, . . . , 𝜃𝐶 } with sparsity ratio
S for each client 𝑐 , with the objective to minimize the expected empir-
ical risk on the unknown local test datasets {𝐷1, 𝐷2, . . . , 𝐷𝐶 }, where
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𝐷𝑐 can deviate from 𝐷𝑐 in distribution. Formally, our objectives and
constraints are as follows.

min

𝜃1,𝜃2,...,𝜃𝐶
𝑙 (𝜃1, ..., 𝜃𝐶 ) =

𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | E[L(𝜃𝑐 ;𝐷𝑐 )]

𝑠 .𝑡 . ∥𝜃𝑐 ∥0 ≤|𝜃𝑐 | ∗ (1 − S),∀𝑐 ∈ {1, 2, . . . ,𝐶}
(3)

where ∥𝜃𝑐 ∥0 and |𝜃𝑐 | are the 𝐿0 norm and the total number of pa-
rameters in personalized model 𝜃𝑐 , respectively. S is a given sparsity
ratio (the percentage of zero parameters for all clients).

We make the following notes on the efficient shift-robust per-

sonalized FL problem.

• Unlike previous studies [9, 12, 39] that implicitly assume

the same distribution of 𝐷𝑐 and 𝐷𝑐 , we allow distribution

shift between the local training dataset 𝐷𝑐 and the local test

dataset 𝐷𝑐 . Hence, we account for data heterogeneity both

across and within clients.

• We can assume both {𝐷𝑐 } and {𝐷𝑐 } are sampled from a

meta-distribution, which is common in cross-device FL with

large numbers of participants [51].

• For ease of presentation, we will use 𝐷 as either a dataset or

its distribution interchangeably if there is no confusion.

• We mainly improve training efficiency by enabling sparse

training on clients. Given a sparsity rate S, both the commu-

nication and the computation cost in federated learning will

roughly reduce by S percent since they are proportional to

the number of parameters [5, 10].

Challenges. Algorithms for the optimizations in Eq.(3) face two

non-trivial challenges.

• How to enable shift-robust personalized FL with minimal extra
training efforts? Existing methods to improve the robustness

to distribution shifts [41, 44, 52] often induce considerable

overhead. For example, they may generate specific datasets

for extra training [44] or require test-time training on auxil-

iary tasks [41, 52].

• How to design sparse training schemes dedicated to shift-
robust personalized FL? Existing sparse training strategies

for generic FL [5, 35] are not directly applicable for Eq.(3)

because generic FL only optimizes the average performance

of a single model whereas we simultaneously optimize the

performance of multiple models on different datasets that

are potentially shifted.

3 METHOD
This section presents DM-PFL (DualMasked Personalized Federated

Learning), our efficient and shift-robust personalized FL framework.

3.1 DM-PFL Overview
This subsection shows an overview of DM-PFL. It trains shift-robust

personalized models by hitchhiking generic FL without extra train-

ing overhead, and it is featured with a novel dual-mask-based

scheme for end-to-end sparse training. We explain the high-level

design rationales and the workflow of DM-PFL below.

Rationales. The design rationales of DM-PFL are two-fold.

• Hitchhike Generic FL. We train both a personalized model

𝜃𝑐 that optimizes Eq.(2) for each client 𝑐 , and a global model

𝜃𝑔 that optimizes Eq.(1) and ensemble them into a final model

for inference. Since the global model is trained on the ag-

gregated dataset 𝐷 = ∪𝐶
𝑐=1

𝐷𝑐 , it is likely to perform well on

{𝐷̃𝑐 } if the distribution shifts are seen in the local training

datasets of other clients (Note that we can assume both {𝐷𝑐 }
and {𝐷𝑐 } are sampled from the same meta-distribution [51]).

Furthermore, training and maintaining additional global

weights may only incur minimal extra overhead because

we can leverage the locally trained personalized models to

construct a global model (see our dual masking scheme in

Sec. 3.2).

• Mask-based Sparse Training. We adopt mask-based train-

ing because it not only allows us to reduce the communica-

tion and computation cost by introducing sparsity [5], but

also offers a natural option for fine-grained parameter shar-

ing among multiple models, which is crucial because we aim

to train both personalized and global models on clients with

high efficiency. Parameter sharing across models may also

help reduce training overhead than training the two models

separately.

Workflow. We implement the above rationales into DM-PFL, a

new personalized FL framework. It consists of a novel dual mask-

ing mechanism (Sec. 3.2), a dual-masked sparse training algorithm

(Sec. 3.3), and an adaptive inference scheme (Sec. 3.4). The dual

masking mechanism injects sparsity into the models and allows

weight-level parameter sharing between the personalized and the

global model. Under such a mechanism our dual-masked sparse

training algorithm can perform end-to-end sparse training of both

models efficiently and robustify the personalized models. The adap-

tive inference scheme can further enhance shift-robustness by dy-

namically ensembling the learned dual models for inference.

We introduce the principles and details of each module below.

3.2 Dual Masking Mechanism
We first propose a masking mechanism for joint training of person-

alized and global models under the sparsity constraint.

For our masking scheme, we maintain a global mask 𝑚𝑔 and

a set of personalized masks {𝑚𝑐 }𝐶𝑐=1. During training, we learn a

global sparse model 𝜃𝑔 for all the clients, as well as a set of local

sparse models {𝜃𝑐 }𝐶𝑐=1 defined as follows.

𝜃𝑔 = 𝑤𝑔 ⊙𝑚𝑔, 𝜃𝑐 = 𝑤𝑔 ⊙ (𝑚𝑔 ∩𝑚𝑐 ) +𝑤𝑐 ⊙ (𝑚𝑐 −𝑚𝑔) (4)

where 𝑤𝑔 and 𝑤𝑐 are the corresponding global and personalized

weights in the common dense architecture shared by 𝜃𝑔 and 𝜃𝑐 .

We make the following notes on our masking scheme.

• The global model 𝜃𝑔 and the personalized model 𝜃𝑐 share the

same dense architecture, while their sparsity is separately

specified by two categories of masks𝑚𝑔 and𝑚𝑐 .

• For a given client, its personalized model 𝜃𝑐 and the global

model 𝜃𝑔 share parameters at the weight-level, i.e., controlled
by the overlap between𝑚𝑐 and𝑚𝑔 .

• The personalized model 𝜃𝑐 differs in both mask positions

and weights across clients. Each client inherits a different

portion of the global weights𝑤𝑔 according to its overlap in
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Figure 1: An illustration of the dual masking scheme.

mask positions with the global mask, i.e.,𝑚𝑔 ∩𝑚𝑐 . For the
remaining positions𝑚𝑐 −𝑚𝑔 in its personalized mask, each

client inherits weights from its own𝑤𝑐 .

Fig. 1 illustrates our masking scheme for Client 1. The person-

alized mask𝑚1 and global mask𝑚𝑔 are marked in red and green,

respectively. The globalmodel and the personalizedmodel for Client

1 share the same weights at positions𝑚𝑔 ∩𝑚1 as marked in yellow,

while the personalized model for Client 1 also has the client-specific

masks and weights at𝑚1 −𝑚𝑔 as marked in red.

Our dual masking scheme enables (i) weight-level parameter

sharing between the personalized and the global model, and (ii)
both the mask positions and weights in the personalized models to

differ across clients. Our dual masking design offers more flexibility

compared with coarse-grained parameter sharing schemes such

as [4, 7, 40], while still allowing efficient and effective federated

training of sparse dual models, as explained next.

3.3 Dual-Masked Sparse Training Algorithm
In this subsection, we introduce the federated training scheme of

the global sparse model 𝜃𝑔 and the personalized sparse models 𝜃𝑐 ,

where 𝑐 = 1, 2, . . . ,𝐶 , with the objectives specified in Eq.(1) and

Eq.(2), and 𝜃𝑐 are defined as in Eq.(4). It demands effective and

efficient learning of four parameter sets:𝑚𝑐 ,𝑚𝑔 ,𝑤𝑐 , and𝑤𝑔 for all

the clients. In essence, we need to carefully coordinate the training

of (i) masks vs. weights; as well as (ii) the global model vs. the

personalized models. In response, we propose a novel two-phased

sparse federated training pipeline, as explained below.

3.3.1 Two-Phased Training Pipeline. Fig. 2 shows our sparse fed-
erated training scheme. It consists of two phases by first training

masks and then refining weights, while each phase partially learns

the parameters of both the global and the personalized models. The

two phases are conducted iteratively for high accuracy.

• Phase 1: Train Dual Masks (details in Sec. 3.3.2). It aims to

learn which weights to share between the global and per-

sonalized models for each client by federated training of the

Initialize

Output 𝜃!, 𝜃"

Refine Dual Weights

Train Dual Masks

Iterations

Server 
Aggregation

Local Sparse 
Training

𝑚!, 𝑤!
Share

𝑚", 𝑤"

Refine 𝑤!
of 𝜃!

Refine 𝑤"
of 𝜃"to 𝜃!

Share w"

Figure 2: Two-phased sparse training pipeline.

global mask𝑚𝑔 and personalized masks𝑚𝑐 . At a high level,

we search and adjust mask locations based on weight im-

portance (by magnitude or gradient information), as in prior

sparse federated training schemes [5, 8]. However, our mask

training phase differs in the mechanisms that allow flexible

transitions between the global and personalized masks dur-

ing federated training. Specifically, in each round, we first

optimize𝑤𝑐 under𝑚𝑐 , then perform mask readjustment on

𝑚𝑐 during local training. We then obtain𝑤𝑔 and𝑚𝑔 at the

server by aggregating parameters from local training, which

are then disseminated to the clients for training the masks

in the next round.

• Phase 2: Refine Dual Weights (details in Sec. 3.3.3). We take

the weights from Phase 1 as initialization and refine the

global weight 𝑤𝑔 as well as the personalized weights 𝑤𝑐
under fixed masks𝑚𝑔 and𝑚𝑐 . At a high level, we first refine

𝑤𝑔 and then𝑤𝑐 to hitchhike the global weights to improve

the shift-robustness of the personalized models. Specifically,

we first train𝑤𝑔 under the fixed mask𝑤𝑔 ⊙𝑚𝑔 to obtain the

global model 𝜃𝑔 by federated training with all clients, and

then fix𝑤𝑔 ⊙ (𝑚𝑔 ∩𝑚𝑐 ) to refine𝑤𝑐 ⊙ (𝑚𝑐 −𝑚𝑔) for each
client locally.

Discussions. Our dual-masked sparse training algorithm has the

following features.

• We orchestrate the training of dual masks and dual weights.

The weights guide the search of the masks, while the masks

determine the position of weights as well as whether they

are shared between the global and personalized models.

• We efficiently train both the global and the personalized

models without doubling the training workload. Training 𝜃𝑐
locally is equivalent to training different parts of the 𝜃𝑔 , and

training 𝜃𝑔 is equivalent to training the shared overlapping

weights that make 𝜃𝑐 shift-robust.

• To the best of our knowledge, we are the first to train both

global and personalized models interactively with end-to-

end sparse training.

We explain the two training phases in detail below.

3.3.2 Train Dual Masks. The training of dual masks𝑚𝑔 and𝑚𝑐 is

conducted iteratively via local sparse training and server aggregation.
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Algorithm 1: Train Dual Masks

Input: Clients’ masks𝑚1, ...,𝑚𝐶 , weights𝑤1, ...,𝑤𝐶 , global

mask𝑚𝑔 , global weight𝑤𝑔
Output: Clients’ masks𝑚1, ...,𝑚𝐶 , weights𝑤1, ...,𝑤𝐶 ,

global mask𝑚𝑔 , global weight𝑤𝑔

1 for round t do
2 Sample clients C for this round;

3 for each client 𝑐 ∈ C do
4 Client 𝑐 receives𝑚𝑡−1𝑔 and𝑚𝑡−1𝑔 ⊙𝑤𝑡−1𝑔 ;

5 𝑤𝑡𝑐 ← 𝑤𝑡−1𝑐 ;

6 𝑤𝑡𝑐 ⊙ (𝑚𝑡−1𝑔 ∩𝑚𝑐 ) ← 𝑤𝑡−1𝑔 ⊙ (𝑚𝑡−1𝑔 ∩𝑚𝑐 );
7 for each epoch 𝑒 from 1 to 𝐸 do
8 𝑔𝑐 ← ∇L(𝑤𝑐 ⊙𝑚𝑡𝑐 ;𝐷𝑐 );
9 𝑤𝑡𝑐 ← 𝑤𝑡𝑐 − 𝜂𝑔𝑐 ⊙𝑚𝑐 ;

10 if readjust masks then
11 Prune 𝛼𝑠 -proportion of𝑚𝑡𝑐 with smallest weight

magnitude;

12 Regrow 𝛼𝑠 -proportion of𝑚𝑡𝑐 with largest

gradient magnitude;

13 Client 𝑐 uploads𝑤𝑡𝑐 ,𝑚
𝑡
𝑐 to server;

14 Server receives𝑤𝑡𝑐 ,𝑚
𝑡
𝑐 for all clients in C;

15 Server performs aggregation, updates𝑤𝑡𝑔 and𝑚
𝑡
𝑔 ;

Concretely, the dual masks training procedure at each round 𝑡 is as

follows (see Algorithm 1).

• Local Sparse Training. Given 𝑚𝑡−1𝑔 and the corresponding

global weight𝑤𝑡−1𝑔 received from the server (Line 4), each

client 𝑐 keeps its personalized weights unchanged (Line 5)

and sets weights at the overlapping position𝑚𝑔∩𝑚𝑐 to𝑤𝑡−1𝑔

(Line 6). It then conducts 𝐸 epochs of local training under

its sparse mask 𝑚𝑐 (Line 7-9). Afterward, each client can

readjust its mask𝑚𝑐 via pruning and regrowing [5, 10], with

a readjustment ratio of 𝛼𝑠 (Line 10-12). Our method slightly

differs from the original pruning and regrowing strategy

[5, 10] in that we allow the pruned mask to regrow back in

the same round, which allows the amounts of readjusted

masks to differ across clients.

• Server Aggregation. Unlike existing FL that only aggregates

weights in a dense model, we need to aggregate both 𝑤𝑔
and 𝑚𝑔 from 𝑤𝑐 and 𝑚𝑐 for the next round (Line 13-15).

Accordingly, we design a new aggregation scheme below.

– Aggregate𝑤𝑔 . We update𝑤𝑡𝑔 as Eq.(5).

𝑤𝑡𝑔 ⊙ (∪𝑐∈C𝑚𝑐 ) ←
∑
𝑐∈C |𝐷𝑐 | ∗𝑤𝑡𝑐 ⊙𝑚𝑡𝑐∑

𝑐∈C |𝐷𝑐 | ∗𝑚𝑡𝑐
(5)

For positions that are already covered by the sampled

clients’ masks, we update𝑤𝑡𝑔 by the mask-wise average of

weights adjusted by the dataset size. For other positions,

we keep the same weight𝑤𝑡−1𝑔 as in the last round. This

way, the server will not immediately discard the weights

and positions in the previous round.

– Aggregate𝑚𝑔 . After computing𝑤𝑡𝑔 , we select the top 1−S
percent of positions with the largest weights to create the

Algorithm 2: Refine Global Weights

1 for round t do
2 Sample clients C for this round;

3 for each client 𝑐 ∈ C do
4 Client 𝑐 receives𝑤𝑡−1𝑔 ⊙𝑚𝑔 ;
5 𝑤𝑡 ← 𝑤𝑡−1𝑔 ⊙𝑚𝑔 ;
6 for each epoch 𝑒 from 1 to 𝐸 do
7 𝑔𝑐 ← ∇L(𝑤𝑡 ⊙𝑚𝑔 ;𝐷𝑐 );
8 𝑤𝑡 ← 𝑤𝑡 − 𝜂𝑔𝑐 ⊙𝑚𝑔 ;
9 Client 𝑐 uploads𝑤𝑡 to server;

10 Server receives𝑤𝑡 for all clients in C;

11 Update𝑤𝑡𝑔 with standard weight aggregation;

Algorithm 3: Refine Personalized Weights

1 for each client 𝑐 do
2 Client 𝑐 receive𝑚𝑔 and𝑚𝑔 ⊙𝑤𝑔 ;
3 𝑤𝑐 ← 𝑤𝑔 ⊙ (𝑚𝑔 ∩𝑚𝑐 );
4 for each local epoch 𝑒 do
5 𝑔𝑐 ← ∇L(𝜃𝑐 ;𝐷𝑐 );
6 𝑤𝑡𝑐 ← 𝑤𝑡𝑐 − 𝜂𝑔𝑐 ⊙ (𝑚𝑐 −𝑚𝑔);

new global mask𝑚𝑡𝑔 . We will ignore positions selected by

no more than 30% clients to avoid using positions impor-

tant only for a small portion of clients in the global mask

𝑚𝑡𝑔 .

Discussions. A key feature of our dual mask training scheme is to

allow𝑚𝑔 and𝑚𝑐 to dynamically evolve, which enables personalized

and shared weights to transform into each other during training.

We highlight this property via two toy examples in Fig. 3.

• From personalized weight to shared weight (marked by blue
boxes in Fig. 3). Most clients find this position important

throughout their local training process, so in the round 2

server aggregation, the position is covered by the global

mask and turns into a shared weight afterward.

• From shared weight to personalized weight (marked by purple
boxes in Fig. 3). The server finds this position is unimportant

for most clients in round 2 based on the aggregated weight

magnitude and pruned it in the global mask, so the position

turns into a personalized weight for 𝐶𝐾 in round 3.

3.3.3 Refine Dual Weights. Given the four sets of parameters ob-

tained in Sec. 3.3.2, we now refine𝑤𝑔 and𝑤𝑐 . Specifically, we first

refine the global weights𝑤𝑔 in the federated setting and then refine

the personalized weights𝑤𝑐 locally at each client. Algorithm 2 and

Algorithm 3 illustrate the training of𝑤𝑔 and𝑤𝑐 , respectively.

• Refine Global Weights 𝑤𝑔 (Algorithm 2). We refine 𝑤𝑔 fol-

lowing a similar process as FedAvg [33] yet with masks on,

i.e., 𝑚𝑔 ⊙ 𝑤𝑔 . Specifically, in each round 𝑡 , clients receive

𝑚𝑔 ⊙𝑤𝑡−1𝑔 from the server (Line 4-5), perform 𝐸 epochs of

local training (Line 6-8), and upload the new weights 𝑤𝑡

to the server (Line 9). The server then performs standard
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Figure 3: An example of dual mask training.

weight aggregation as [33] to get the new global weight𝑤𝑡𝑔
for the next round.

• Refine Personalized Weights 𝑤𝑐 (Algorithm 3). Each client

sets the weights at the shared positions𝑚𝑐 ∩𝑚𝑔 with the

global weights 𝑤𝑔 (Line 2-3), and then locally retrains its

personalized weights𝑤𝑐 for positions𝑚𝑐 −𝑚𝑔 (Line 4-6).

Discussions. The workload of our weight training scheme is less

than that of training𝑤𝑔 and𝑤𝑐 independently. With our dual mask-

ing design, refining the global weight𝑤𝑔 can be viewed as refining

the shared weights of personalized models for each client. Accord-

ingly, we only need to train the personalized weights 𝑤𝑐 at the

personalized positions rather than all the weights in the model

when performing personalization.

3.4 Adaptive Inference
We can directly use 𝜃𝑐 for shift-robust personalization for inference

at client 𝑐 . However, we may further utilize 𝜃𝑔 to improve the shift-

robustness, which adaptively ensembles 𝜃𝑔 and 𝜃𝑐 based on the

estimated degree of test-time shift (see Algorithm 4). We adopt a

lightweight test-time shift estimation method using a combination

of two metrics: the entropy of output logits [13] and the cosine

similarity of the outputs from 𝜃𝑔 and 𝜃𝑐 .

Specifically, we first compute the entropy of the model’s output

to estimate how well 𝜃𝑐 and 𝜃𝑔 fit the given input 𝑥(Line 1-2). To

estimate the degree of shifts, the cosine similarity of the outputs

that will be lower when encountering shifted input is computed

(Line 3). The base entropy levels (i.e., the average entropy of models’

output logits when inputs are not shifted) of 𝐵𝐸 (𝜃𝑐 ) and 𝐵𝐸 (𝜃𝑔)
are also considered, to avoid 𝜃𝑐 being over-confident. 𝐵𝐸 (𝜃𝑐 ) is
typically lower than 𝐵𝐸 (𝜃𝑔), and we choose 𝜃𝑔 with higher 𝐵𝐸 (𝜃𝑔)
when the cosine similarity of outputs is lower (Line 4-7).

Discussions.We make two notes on the inference using models

obtained by our dual-masked sparse federated training scheme.

Algorithm 4: Adaptive Inference
Input: Personalized model 𝜃𝑐 , global model 𝜃𝑔 , base

entropy levels 𝐵𝐸 (𝜃𝑐 ), 𝐵𝐸 (𝜃𝑔), testing sample (𝒙, 𝑦)
from local testing dataset 𝐷̃𝑐

Output: One-hot prediction results for local test dataset 𝑦∗

1 𝐸𝑐 ← 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝜃𝑐 (𝑥));
2 𝐸𝑔 ← 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝜃𝑔 (𝑥));
3 𝑆𝑖𝑚 ← 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝜃𝑐 (𝑥), 𝜃𝑔 (𝑥));
4 if 𝐸𝑐 − (1 − 𝑆𝑖𝑚)𝐵𝐸 (𝜃𝑐 ) < 𝐸𝑔 − (1 − 𝑆𝑖𝑚)𝐵𝐸 (𝜃𝑔) then
5 𝑦∗ ← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝜃𝑐 (𝑥));
6 else
7 𝑦∗ ← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝜃𝑔 (𝑥));
8 end

• The personalized model 𝜃𝑐 trained by our scheme is already

more shift-robust than existing personalized FL algorithms,

as shown in our evaluations (Sec. 4.2.1).

• The adaptive inference method in Algorithm 4 mainly serves

as a proof-of-concept. One may apply more advanced strate-

gies to perform model ensemble [47] and OOD-detection

[15] for more accurate test-time shift adaptation.

4 EVALUATION
4.1 Experimental Setup
4.1.1 Compared methods. We present the experimental results of

various generic FL and personalized FL algorithms. For ease of

presentation, we denote generic FL and personalized FL as GFL

and PFL. For GFL, we report results of : FedAvg [33], FedProx [29]

and FedDST [5]. For PFL, we report results of: FedAvg+FT [46],

LG-FedAvg [30], FedPer [4], FedRep [7], Ditto [28] and APFL [9].

DM-PFL+ is the proposed method with adaptive inference. More

detailed introductions to the compared methods can be found in

the appendix A.1.1.
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Table 1: Accuracy with different degrees of shift on CIFAR10 in Dir(0.3) non-IID setting.

Type Methods w/o shift w/ 20% shift w/ 40% shift w/ 60% shift w/ 80% shift w/ 100% shift Averaged

Local Local 61.86±9.53 54.11±11.66 46.23±13.78 38.38±15.84 30.70±17.97 22.93±20.07 42.37±14.81

GFL

FedAvg [33] 60.16±8.21 59.84±8.84 59.53±9.49 59.20±10.14 58.88±10.78 58.56±11.42 59.36±9.81

FedProx [29] 58.61±10.60 58.52±10.55 58.43±10.5 58.33±10.46 58.24±10.41 58.15±10.36 58.38±10.48

FedDST [5] 60.13±6.76 59.25±8.70 58.89±8.84 58.52±8.97 58.15±9.11 57.79±9.24 58.79±8.60

PFL

FedAvg+FT [46] 79.33±8.68 72.12±10.72 65.34±12.68 58.41±14.67 51.50±16.69 44.60±18.68 61.88±13.69

LG-FedAvg [30] 69.50±13.29 60.53±14.52 51.09±15.76 41.83±16.96 32.80±18.20 23.62±19.42 46.56±16.36

FedPer [4] 76.57±12.27 68.08±14.45 59.69±16.53 51.02±18.67 42.54±20.74 34.13±22.87 55.34±17.59

FedRep [7] 76.85±11.31 67.40±13.00 58.49±14.80 49.28±16.51 40.24±18.24 31.20±19.95 53.91±15.63

Ditto [28] 79.70±8.59 73.17±10.24 67.56±11.68 61.40±13.22 55.11±14.74 49.04±16.25 64.33±12.45

APFL [9] 78.41±9.92 69.97±11.81 62.03±13.78 53.50±15.75 45.42±17.69 37.13±19.63 57.74±14.76

Ours

DM-PFL 79.93±8.61 75.36±9.55 70.75±10.53 66.09±11.46 61.38±12.39 56.79±13.34 68.38±10.98

DM-PFL+ 77.22±9.31 73.81±8.80 70.41±8.30 66.97±7.79 63.61±7.27 59.61±8.57 68.61±8.34

4.1.2 Datasets. We conduct experiments on three image classifica-

tion datasets MNIST [23], FEMNIST [6], CIFAR10 [22], and a smart-

phone HAR dataset [3]. Different non-IID settings are simulated,

including (i) Dirichlet distribution-based [16], (ii) pathological [33],
and (iii) realistic [6]. For Dirichlet distribution-based and patholog-

ical non-IID settings, we further partition the dataset so that the

data quantity at each client also differs. For the realistic non-IID

setting, the data quantity at each client naturally varies.

4.1.3 Metrics. We assess the effectiveness and efficiency of differ-

ent algorithms with the following metrics.

• Communication Cost: It measures the average total size (MB)

of parameters uploaded/downloaded during training.

• Computation Cost: It counts the average total number of

floating point operations (FLOP) per client.

• Accuracy without Shift: It measures the accuracy perfor-

mance on local testing datasets that have the same distribu-

tion as local training datasets.

• Accuracy with Shift: It measures the accuracy when the data

distribution is shifted at test time. We test different kinds

and degrees of shifts.

More experimental settings are provided in our appendix A.1.

4.2 Main Experimental Results
4.2.1 Effectiveness Results. We first report test accuracy varying

different degrees/kinds of shift and non-IIDness.

Accuracy under Different Degrees of Shifts. For ease of presen-
tation, we represent the degree of shift by the proportion of shifted

data, where the shifted data is randomly sampled from the hypoth-

esized unified meta-distribution [51]. Table 1 reports the results

on CIFAR10 in Dir(0.3) non-IID setting. It can be seen that most

PFL algorithms including ours can outperform GFL by about 20%

without shift, which verifies the effectiveness of personalization

schemes. With the increase of shift degree, the performance of PFL

goes down significantly while GFL remains relatively stable. But

our algorithms DM-PFL and DM-PFL+ still show superiority over

both PFL and GFL. The average advantages over the best GFL and

PFL baselines are 9.25% and 4.28% respectively. With 100% shift,

DM-PFL+ can outperform PFL by 10.57%. Meanwhile, it can even

outperform GFL by 1.05%, as our 𝜃𝑔 has strong generalization ability

which can be attributed to the in-time over-parameterization effect
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Figure 4: Accuracy under different kinds of shifts with 5
levels of severity on CIFAR10-C. More results under different
kinds of shifts can be found in the appendix A.2.2.

[32] brought by our dual-masked training scheme. We can also ob-

serve that DM-PFL+ can perform better than DM-PFL with higher

shift degrees, which validates the effectiveness of adaptive infer-

ence. Results under different degrees of shift on realistic datasets

FEMNIST and HAR are also reported and can be found in A.2.1.

Accuracy under Different Kinds of Shifts. We run experiments

on CIFAR10-C [14] to further evaluate the shift-robustness of our

personalization algorithm. The CIFAR10-C dataset contains images

from CIFAR10 that are corrupted or perturbated under various

settings with 5 different severity levels. We utilize CIFAR10-C as

the testing dataset and run the experiment on the models trained

on CIFAR10 Dir(0.3). The performance of DM-PFL and the best

performance of all PFL baselines are reported in Fig. 4 and in A.2.2.

DM-PFL consistently outperforms PFL baselines by 1.32% to 11.96%

across different kinds of shifts with 5 levels of severity. It veri-

fies that DM-PFL has strong shift-robustness compared with other

baselines and is resilient to various kinds of shifts.

Accuracy inDifferent Non-IID Settings.We further compare our

algorithm with other PFL baselines in different Non-IID settings.

Results on CIFAR10, HAR, FEMNIST are shown in Table 2 and

Table 3. Results on non-IID settings simulated on MNIST can be

found in A.2.3. Comparing with the best PFL baseline in various

non-IID settings, our methods have slight advantages without shift.

As the client’s data distribution becomes more heterogeneous, our

methods have larger advantages in terms of shift-robustness. With

100% degree of shift and highly heterogeneous data distribution

of clients, DM-PFL and DM-PFL+ can outperform the best PFL

baseline by at most 26.49% and 31.67%.
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Table 2: Accuracy with and w/o shift on CIFAR10 in Dir(0.1)
and pathological non-IID settings.

Non-IID Dir(0.1) Pathological

Methods w/o w/ 100% w/o w/ 100%

FedAvg+FT [46] 89.00±11.89 23.85±25.32 89.76±6.78 20.47±31.26

LG-FedAvg [30] 85.24±13.90 17.38±24.76 84.41±7.34 15.54±31.69

FedPer [4] 88.82±12.63 22.76±30.10 89.17±6.84 16.91±34.98

FedRep [7] 89.19±10.48 21.60±27.40 89.69±6.15 17.24±34.97

Ditto [28] 88.20±9.12 39.79±26.91 89.22±5.53 22.46±28.03

APFL [9] 89.18±9.76 22.15±29.28 89.41±6.87 21.48±34.69

DM-PFL 89.29±11.65 45.24±23.54 90.06±5.59 48.95±24.20

DM-PFL+ 88.16±12.46 47.33±16.53 88.59±7.65 54.13±23.44

Table 3: Accuracy with and w/o shift on HAR and FEMNIST
in realistic non-IID setting.

Dataset HAR FEMNIST

Methods w/o w/ 100% w/o w/ 100%

FedAvg+FT [46] 97.38±5.53 92.84±6.97 98.85±5.23 96.86±9.76

LG-FedAvg [30] 98.16±9.12 80.12±11.23 93.15±8.86 62.44±19.70

FedPer [4] 98.07±3.54 94.52±5.50 98.75±6.78 97.44±5.61

FedRep [7] 97.91±3.11 90.14±8.22 96.49±6.42 84.16±13.97

Ditto [28] 97.52±4.03 94.53±6.17 98.71±4.48 96.72±7.31

APFL [9] 95.51±5.62 87.47±10.19 98.49±3.76 96.55±8.05

DM-PFL 98.41±2.72 95.37±4.05 99.04±3.80 97.86±5.28

DM-PFL+ 97.93±3.46 95.58±4.76 98.62±4.63 98.10±5.01

Table 4: Averaged total communication and computation cost
per client for training on CIFAR10 with S = 0.5.

Methods

Comm

(MB)

FLOP

(1e12)

Local 0 0% 6.12 100%

FedAvg [33] 90.75 100% 6.12 100%

FedProx [29] 90.75 100% 6.12 100%

FedDST [5] 46.44 51.2% 3.90 63.7%

FedAvg+FT [46] 90.75 100% 6.32 103%

LG-FedAvg [30] 60.71 66.9% 6.12 100%

FedPer [4] 90.53 99.7% 6.12 100%

FedRep [7] 90.53 99.7% 8.28 131%

Ditto [28] 90.75 100% 12.27 201%

APFL [9] 90.75 100% 12.26 200%

DM-PFL 36.58 40.3% 3.91 63.9%

4.2.2 Efficiency Results. In Table 4 we present the averaged total

communication and computation cost per client for training on

CIFAR10 with sparsity S = 0.5. We will explore efficiency varying

different sparsity ratios in ablation studies(Sec. 4.3.1).

Communication Costs. Table 4 shows that comparing with Fe-

dAvg, we can save 59.7% of communication cost. Comparing with

another communication efficient PFL method LG-FedAvg, we can

save the communication cost by 26.6%. We also compare with Fed-

DST, which is a GFL method with sparse training. We observe that

with the same sparsity ratio, DM-PFL can still decrease the com-

munication cost by 10.9%. It is because that our method does not

need to upload/download parameters every round when refining

personalized weights.

Computation Costs. Comparing with FedAvg, we save 36.1% of

computation cost, which is roughly the same as FedDST. All the

PFL baselines have no lower computation cost than FedAvg. APFL

and Ditto even double the computation cost because they have to

maintain both the personalized and the global models separately.

Comparing with them, our method DM-PFL also obtains a well-

performed global model but requires much lower computation cost,

which verifies that we efficiently hitchhike the global model without

extra training overhead.

4.3 Ablation Studies
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Figure 5: Ablation results on impact of sparsity ratio (a)-(d)
and iterative training (e)-(f).

4.3.1 Impact of Sparsity Ratio. To investigate how different spar-

sity ratios will affect the effectiveness and efficiency of DM-PFL,

we run experiments on CIFAR10 Dir(0.3) with sparsity ratios rang-

ing from 0.3 to 0.8, which is a common setting in other sparse FL

algorithms [5, 8, 25].

Impact on Efficiency. Fig. 5(a) shows how different sparsity ra-

tios impact the upload/download size of parameters per round. We

can see that the reduction of communication cost is roughly pro-

portional to the degree of sparsity. Fig. 5(b) shows the results of

FLOPS needed per sample. The reduction in computation cost is

also proportional to the degree of sparsity, but slightly lower, since

our sparsity setting follows the ERK distribution [10] which assigns

lower sparsity to layers with fewer redundant parameters.

Impact on Effectiveness. Fig. 5(c) and (d) show the impact of

different sparsity ratios on accuracy with and without shifts. We

can observe that the performance with shift is more vulnerable

with the sparsity ratio going higher. The results verify that bal-

ancing the trade-off between efficiency and shift-robustness is still

challenging, since a higher sparsity ratio could easily result in

under-parameterized models.

4.3.2 Impact of Iterative Training. Next, we study how the two-

phased iterative training scheme affects the performance of our

method. In Fig. 5 (e) and (f) we show how DM-PFL performs under

different iterative training schedules. We divide 𝑇 = 300 rounds
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equally into each phase and test the performance of the algorithm

with different numbers of iterations. We also test the performance

of the algorithm without iteration (i.e., the algorithm only trains

for 300 rounds in the first phase and skips the refining weights

phase) at the same time, which we denote as 𝑖𝑡𝑒𝑟 = 0. We can see

that without iterative training, the accuracy decreases by 1.13%

without shift and by 14.14% with 100% shift. The results verify the

effectiveness of our two-phased training scheme.

4.3.3 Analysis of the Learned Masks. To better explain how our

dual masking scheme works, we conduct the following experiments

on CIFAR10.
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Figure 6: Analysis of the learned masks.

Effectiveness of Personalized Masks.We divide the 20 clients

into 5 groups. Clients share similar data distribution within groups.

In Fig. 6 (a) we show the similarity between the learned personalized

masks, and it validates that the similarity of masks𝑚𝑐 is strongly

correlated with the similarity of local training data distribution,

hence proving that the learned masks can successfully adapt to its

local data distribution for personalization.

Effectiveness of Weight Sharing. We divide the 20 clients as

follows: clients 0 to 14 have similar data distribution to the global

data distribution, and clients 15 to 19 have heterogeneous data dis-

tribution. Fig. 6 (b) shows the number of shared weights ∥𝑚𝑐∩𝑚𝑔 ∥0
in the fully-connected layer between the global and personalized

models. We can observe that clients with less heterogeneous data

will share more parameters with the global model, while clients

with higher heterogeneity will share fewer parameters. It validates

the effectiveness and flexibility of DM-PFL in terms of weight-level

parameter sharing.

5 RELATEDWORK
Generic and Personalized FL. FedAvg [33] is the standard algo-

rithm for generic FL. To combat data heterogeneity in FL, many

generic FL algorithms improve over FedAvg, such as using regular-

ization terms or control variables to correct drifts in local training

[1, 20, 29], performing server aggregation with weight matching

[45, 49] or knowledge distillation [31], etc. However, the problem

of data heterogeneity remains, as training a single global model

that generalizes well to heterogeneous clients is difficult [46, 50].

In response, personalized FL that adopts different strategies to

train client-specific models is proposed for better performance.

Methods such as local fine-tuning [46] and meta-learning [2, 11]

train a single global model for all clients and then perform personal-

ized local training on the client side, while multitask learning-based

[39, 42] and clustering-based [12, 38, 53] methods group the clients

and train multiple global models accordingly. Another more re-

lated category includes model interpolation methods [9, 28] and

layer-wised weight sharing methods [4, 7, 30] which we compared

empirically. For more details, we refer the readers to comprehensive

surveys in [19, 43].

Sparsity in FL. Sparse training can save computation and commu-

nication costs in FL. Some studies employ compression techniques

[21, 37] to lower the communication cost. But they do not sparsify

the models during training, and thus cannot save the computation

cost. Dense-to-sparse pruning techniques can be combined with

federated learning [18, 25, 26] to improve communication efficiency

during training and computation efficiency during inference. How-

ever, these methods first train dense models and then prune the

local models, which will increase the total computation costs for

training on mobile devices. A few recent studies [5, 8, 35] apply

end-to-end sparse training to FL, which can save both the total

communication and computation costs during training. For exam-

ple, ZeroFL [35] adopts sparse weight activation training [36] to

on-device FL, and empirically shows that sparsification in FL is

more challenging than in centralized settings. FedDST [5] utilizes

dynamic sparse training [10] in generic FL setting. It performs mask

readjustment locally, but the server will synchronize all clients with

the same weights and masks at the start of each round. DisPFL [8]

is a decentralized (peer-to-peer) sparse FL algorithm. It has similar

mask readjusting process to [5], but uses the sparse masks at the

clients for personalization.

We also employs the dynamic sparse training technique in FL

for end-to-end sparsification, but our focus is to improve the shift-

robustness efficiently with the proposed dual masking mechanism.

6 CONCLUSION
This work presents DM-PFL, a novel personalized federated learn-

ing framework for efficient shift-robust personalization. It hitch-

hikes the global model learned under the control of a dual masking

mechanism to make the personalized models less vulnerable to

test-time distribution shifts and enable end-to-end sparse train-

ing. Evaluations show that DM-PFL can improve on both the test

accuracy with and without test-time distribution shifts and save

communication and computation costs. We envision our work will

facilitate the practical adoption of personalized federated learning

in mobile and IoT applications.
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A APPENDIX
A.1 Additional Experiment Details
A.1.1 Compared Methods. The compared methods include:

• Local: Each client trains its model only with its local data.

• FedAvg [33]: It is the first GFL algorithm that learns a global

model by weighted averaging of the local models.

• FedProx [29]: It is another GFL algorithm that adds a proxi-

mal regularization term to FedAvg.

• FedDST [5]: It is the state-of-the-art sparse FL algorithm

that learns a sparse global model for all clients.

• FedAvg+FT [46]. It fine-tunes the global model obtained by

FedAvg for personalization.

• LG-FedAvg [30]: It is a PFL scheme that shares the weights

of the global head while learning different local feature ex-

tractors. It also improves communication efficiency.

• FedPer [4]: It is a layer-level weight sharing PFL algorithm

that allows clients to share a global feature extractor while

learning different local heads. It performs local updates on

the feature extractor and local heads simultaneously.

• FedRep [7]: It is similar to FedPer in terms of weight sharing,

but conducts local updates on the feature extractor and local

heads separately.

• Ditto [28]: It additionally trains a global model to regular-

ize the local updates of the personalized model for fairness

among clients and robustness against attacks.

• APFL [9]: It trains both the global and the personalized

models on each client, and adaptively tunes the interpolation

rate between the global and personalized models’ weights

for adaptive personalization.

• DM-PFL: It uses the personalized model 𝜃𝑐 learned by our

dual-masked sparse training algorithm for inference.

• DM-PFL+: It is the proposedmethodwith adaptive inference

on the global and the personalized models 𝜃𝑔 and 𝜃𝑐 .

A.1.2 Federation Configuration. We set the number of clients 𝐶 =

100 for MNIST/CIFAR10,𝐶 = 30 for HAR, and𝐶 = 500 for FEMNIST

(clients with only few samples are excluded). The join ratio of clients

is set to 0.1 for all datasets. We fix the training rounds 𝑇 = 300.

A.1.3 Datasets Partition. In the Dirichlet distribution-based set-

ting, we use the parameter 𝛼 to determine the label distribution

and data quantity skew of each client. Specifically, a𝐶-dimensional

vector is drawn from Dir(𝛼) for each class label, and the data be-

longing to that class has been assigned proportionally to each client

based on the drawn vector.

In the pathological distribution setting, each client is provided

with samples from only two classes. The data quantity for each

client is sampled using a uniform distribution, such that, in terms

of data quantity, 90% of the clients hold half of the total samples

while the remaining 10% of clients hold the other half.

For the HAR and FEMNIST datasets, which represent realistic

non-IID settings, the label and feature distributions naturally differ

among different smartphone users and writers, respectively. The

number of data samples for each client also varies naturally.

In all the aforementioned settings, each client’s data is randomly

split into a training set and a test set, with a fraction of 0.25 being

used for the test set.

A.1.4 Hyperparameters. Learning rate𝜂 are tuned in {0.1, 0.05, 0.01}.
We set weight decay to 0.0005 and learning rate decay to 0.99 if

can improve performance, otherwise are set to zero. For FEMNIST,

MNIST, and CIFAR10 the local batch size is 64 and for HAR it is 10.

For FEMNIST, MNIST, and CIFAR10 the number of local steps is

𝐸 = 5, and for HAR it is 𝐸 = 3.

For sparsity-based methods FedDST and DM-PFL, model sparsity

is fixed to 0.5 if not specified.

For methods that require additional epochs to train the global

and local models separately like APFL [9], FedRep [7], and Ditto

[28], the additional training steps is of the same number as local

training steps.

For baseline methods that require specific additional hyperpa-

rameters, we follow the setting below.

• FedProx [29]: Proximal regularization term is set to 𝜇 = 0.05;

• FedDST [5]: Mask readjustment ratio is set to 𝛼𝑠 = 0.01,

mask readjust interval is set to 10 by default;

• APFL [9]: The initial interpolation rate is set to 𝛼 = 0.5;

• Ditto [28]: The regularization term between the global and

personalized model is set to 𝜆 = 0.1.

A.1.5 Model configurations. Themodels we use are lightweight for

low-resource devices and are not over-parameterized specifically.

We use similar model configurations as [33] for MNIST, FEMNIST,

CIFAR10 datasets. For the HAR dataset, we employ DNN as [25].

Table 5: Accuracy with different degrees of shift on HAR.

Type Methods w/o shift w/ 20% shift w/ 40% shift w/ 60% shift w/ 80% shift w/ 100% shift Average

Local Local 91.95±16.31 89.00±16.65 85.55±16.94 82.28±17.27 79.17±17.58 76.02±17.90 83.99±17.11

GFL

FedAvg [33] 95.34±5.32 95.33±5.25 95.33±5.19 95.33±5.13 95.33±5.16 95.33±5.36 95.33±5.24

FedProx [29] 95.12±5.44 95.11±5.42 95.10±5.41 95.09±5.39 95.08±5.38 95.07±5.36 95.10±5.40

FedDST [5] 95.05±5.01 94.84±5.15 94.66±5.26 94.45±5.39 94.26±5.52 94.06±5.64 94.55±5.33

PFL

FedAvg+FT [46] 97.38±5.53 96.43±5.84 95.60±6.12 94.66±6.4 93.75±6.68 92.84±6.97 95.11±6.26

LG-FedAvg [30] 98.16±9.12 94.67±9.56 91.03±9.99 87.41±10.4 83.71±10.8 80.12±11.23 89.18±10.18

FedPer [4] 98.07±3.54 97.37±3.94 96.64±4.32 95.94±4.72 95.24±5.11 94.52±5.50 96.30±4.52

FedRep [7] 97.91±3.11 96.29±4.15 94.84±5.16 93.19±6.19 91.67±7.21 90.14±8.22 94.01±5.67

Ditto [28] 97.52±4.03 96.91±4.46 96.32±4.89 95.70±5.31 95.12±5.75 94.53±6.17 96.02 ± 5.10

APFL [9] 95.51±5.62 93.94±6.55 92.21±7.45 90.69±8.35 89.10±9.28 87.47±10.19 92.29±7.45

Ours

DM-PFL 98.41±2.72 97.78±3.00 97.16±3.27 96.58±3.52 95.98±3.79 95.37±4.05 96.88±3.39
DM-PFL+ 97.93±3.46 97.44±3.72 96.98±3.99 96.51±4.24 96.05±4.51 95.58±4.76 96.75±4.11
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Figure 7: More results under different kinds of shifts.

A.1.6 Implementation. All experiments are implemented with Py-

Torch 1.10 and conducted on a workstation with AMD Ryzen 9

5950X 16-Core Processor CPU, NVIDIA GeForce RTX 3090 GPU.

A.2 More Experiment Results
A.2.1 Different Degrees of Shifts on HAR/FEMNIST. We also report

the results under different degrees of shifts on HAR and FEMNIST

in Table 5 and Table 6. On both datasets, we consistently outperform

all PFL baselines. Our methods might not always outperform GFL

methods when with extreme degrees of shift because the shift-

robustness of our methods depends on the global model 𝜃𝑔 learned,

whichmight not always have a significant advantage over the global

models obtained by the GFL methods. Nevertheless, such a result

does not affect our conclusion and instead illustrates the rationality

of hitchhiking the GFL to improve the shift-robustness of PFL.

A.2.2 Different Kinds of Shifts on CIFAR10-C. We report more

results under different kinds of shifts with different levels of severity

in Fig. 7. We can observe that the results here are similar to the

results shown in Fig. 4.

A.2.3 Different Non-IID settings on MNIST. We report the test ac-

curacy on MNIST dataet in different non-IID settings in Table 7.

The results on MNIST are similar to results shown in Table 2.

A.3 Further Discussions
Due to the length limitations of the paper, certain contents and

discussions were not included. We will provide further discussions

in https://github.com/garyzhang99/DM-PFL.

Table 6: Accuracy with different degrees of shift on FEMNIST.

Type Methods w/o shift w/ 20% shift w/ 40% shift w/ 60% shift w/ 80% shift w/ 100% shift Average

Local Local 91.19±9.93 84.88±12.02 78.42±14.07 72.38±16.1 65.82±18.25 59.63±20.39 75.39±15.13

GFL

FedAvg [33] 98.33±4.99 98.33±5.01 98.32±5.03 98.32±5.04 98.31±5.06 98.31±5.08 98.32±5.04

FedProx [29] 98.21±4.73 98.21±4.72 98.21±5.32 98.21±5.32 98.20±5.52 98.20±5.67 98.21±5.21

FedDST [5] 98.16±5.49 98.15±5.34 98.14±5.19 98.12±5.05 98.11±4.89 98.10±4.75 98.13±5.12

PFL

FedAvg+FT [46] 98.85±5.23 98.45±6.14 98.07±7.03 97.66±7.89 97.26±8.84 96.86±9.76 97.86±7.48

LG-FedAvg [30] 93.15±8.86 87.03±11.02 80.99±13.27 74.61±15.47 68.57±17.55 62.44±19.70 77.80±14.31

FedPer [4] 98.75±6.78 98.49±6.54 98.24±6.31 97.98±6.09 97.72±5.85 97.44±5.61 98.10±6.20

FedRep [7] 96.49±6.42 94.01±7.91 91.62±9.44 89.10±10.89 86.65±12.50 84.16±13.97 90.34±10.19

Ditto [28] 98.71±4.48 98.32±5.05 97.92±5.60 97.52±6.19 97.12±6.78 96.72±7.31 97.72±5.90

APFL [9] 98.49±3.76 98.11±4.60 97.72±5.47 97.33±6.31 96.96±7.19 96.55±8.05 97.53±5.90

Ours

DM-PFL 99.04±3.80 98.80±4.09 98.57±4.39 98.34±4.68 98.10±4.97 97.86±5.28 98.45±4.54
DM-PFL+ 98.62±4.63 98.52±4.71 98.42±4.79 98.31±4.86 98.20±4.93 98.10±5.01 98.36±4.82

Table 7: Accuracy with and w/o shift on MNIST in Dir(0.3), Dir(0.1) and pathological non-IID setting.

Non-IID Dir(0.3) Dir(0.1) Pathological

Methods w/o w/ 100% w/o w/ 100% w/o w/ 100%

FedAvg+FT [46] 98.91±3.64 97.05±4.36 99.11±4.75 92.93±11.37 99.74±0.56 85.26±13.26

LG-FedAvg [30] 97.01±2.71 60.18±27.16 98.43±2.86 34.96±32.48 99.05±6.43 19.73±39.47

FedPer [4] 99.08±1.39 69.06±27.57 99.17±2.85 52.81±33.85 99.72±0.55 25.65±36.89

FedRep [7] 99.10±1.22 75.58±23.08 99.28±3.61 50.10±32.78 99.61±0.76 19.90±39.81

Ditto [28] 99.11±1.05 96.87±2.32 99.20±1.21 93.86±13.58 99.69±0.61 90.70±14.21

APFL [9] 99.22±1.14 97.14±2.52 99.35±1.10 95.47±4.82 99.70±0.61 68.93±25.97

DM-PFL 99.24±1.17 97.76±2.12 99.37±1.01 96.18±3.39 99.78±0.72 93.80±8.31

DM-PFL+ 99.05±1.41 98.22±1.96 99.10±1.62 97.04±2.55 99.30±0.75 96.17±4.71
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