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Abstract—Multi-task learning (MTL) has succeeded in various
industrial applications by utilizing common knowledge among
joint training tasks to enhance the generalization of MTL models,
resulting in improved performance across all training tasks
simultaneously. Unfortunately, training all tasks simultaneously
often causes performance degradation compared to single-task
models since different tasks might conflict with each other.
Despite existing MTL methods that aim to mitigate task conflicts
by manipulating task gradients at each iteration, they ignore
the potential influence of noisy data from different batches on
task gradients. Consequently, the current iteration’s task gradient
may not accurately reflect the task itself, leading to inadequate
alleviation of the dilemma of task conflicts. Moreover, existing
works seldom explore the potential source of task conflicts and
merely pose an assumption. In this paper, we conduct an in-depth
empirical investigation into the potential sources of performance
degradation of MTL and find that task gradient conflict is
one of the primary reasons for the performance degradation
of tasks. Then, to address the task conflicts problem, we propose
a novel gradient manipulation approach, namely MoCoGrad,
which manipulates task gradients by leveraging the momentum
information of the task to calibrate the gradients of conflicting
tasks. In addition, we derive theoretical guarantees for the con-
vergence of our proposed MoCoGrad and theoretically analyze
the convergence rate of MoCoGrad. Finally, to evaluate the
effectiveness of MoCoGrad, extensive experiments are conducted
on six real-world datasets from different domains. Our approach
yields the best performance across all tasks in all six MTL
benchmarks, demonstrating the effectiveness and superiority of
our method.

Index Terms—multi-task learning, gradient manipulation, task
conflicts

I. INTRODUCTION

Over the last decade, deep learning has brought tremendous

advantages in many fields. Many deep neural networks have

been proposed to solve a large variety of tasks, such as

image recognition [1], natural language processing [2], [3],

and recommendation systems [4], [5]. However, most of them

are designed to address one particular task. In many real-world

scenarios, it is crucial to solve multiple tasks simultaneously

while using limited computational or data resources. For

example, autonomous driving [6] requires perception/object

detection, path planning, and vehicle control task, which must

* Corresponding Author

(a) Trained with HPS architecture. (b) Trained with MMoE architecture.

Fig. 1. The performance of task A by using HPS and MMoE [18] architectures
trained on MovieLens dataset. The lower RMSE indicates better task
performance and more experimental details are introduced in Section V. A
denotes the single task learning, A+B denotes jointly training task A and B,
and A+B+C denotes jointly training task A, B and C.

all perform concurrently and in real-time. It is natural to solve

this situation via multi-task learning (MTL), where a single

model can tackle multiple tasks simultaneously [7]. Multi-

task learning aims to jointly train multiple tasks to improve

the generalization capability by exploiting general knowledge

shared among tasks. It benefits individual tasks more effi-

ciently and effectively [8]–[11]. It is vital to relieve researchers

from the time-consuming and laborious effort of constructing a

set of independent models [11]. MTL has achieved remarkable

success in various research fields, including social media

analysis [3], [12], [13], recommendation systems [5], [11],

[14], and computer vision [15]–[17].

Nevertheless, MTL often causes performance deterioration

compared to single-task models because optimizing multiple

tasks simultaneously is a challenging optimization problem.

Task conflict is a significant reason for such degradation [19]–

[22]. Due to the discrepancy between joint training tasks, tasks

in multi-task learning may correlate, conflict, or even compete

with each other. As a result, some tasks are learned well while

others are overlooked and far from being fully trained, leading

to performance degradation [8], [13], [23], [24]. To intuitively

illustrate our motivation, we give an example in Fig. 1,

where we select three tasks from MovieLens dataset to train

and present the performance of task A jointly. Joint training

of different tasks can cause the performance of task A to

fluctuate, and it degrades more as the number of training tasks
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increases, which experimentally demonstrates the existence of

task conflicts.

Some previous works have been proposed to design specific

MTL network architectures to reduce the interference from

task conflicts in a soft-parameter sharing way [18], [25]–[27].

However, this type of method is scenario-dependent and only

suitable for specific application scenarios, making it unable

to be extended to other large-scale real-world application

scenarios. Consequently, the generality of these methods is

quite limited. Currently, there has been a significant amount

of methods proposed to mitigate performance degradation

problems caused by task conflicts in MTL from an optimiza-

tion perspective [8], [9], [23], [28], using hard-parameters

sharing (HPS) architectures. They attribute task conflicts to

the optimization difficulty, especially the gradient conflicts be-

tween different tasks and propose to mitigate task conflicts by

balancing the task losses or avoiding undesirable interference

between task gradients.

However, there are two main limitations with existing MTL

methods: 1) Existing methods seldom carry out a quantitative,

in-depth exploration and analysis of the potential source of

task conflicts, and most of them hold a qualitative assumption

based on some empirical demonstrations, potentially leading

to a less comprehensive understanding of the motivation. 2)

They only consider the task gradient information at the current

iteration, derived from the current batch data, which can be

easily influenced by noisy data. Only considering current state

task gradient information is insufficient to capture an adequate

level of the informativeness that accurately reflects the current

task gradient. Additionally, it does not guarantee the robustness

of task gradients with regard to data noise. Therefore, it is

desirable to explore the potential causes of task conflicts,

making the existing assumption of task conflicts more explicit

and solid.

To this end, in this paper, to intuitively reveal whether

task gradient conflict is the major reason for task conflicts,

we dug deeper into the correlation between model perfor-

mance degradation and task gradient conflicts via detailed

experimental analysis (for Limitation 1). Based on the above

observations and analysis, only leveraging task gradient in-

formation in the current iteration may lead to interference

from noisy data. Therefore, we propose a more rational and

effective approach to alleviate the issue of task conflicts,

which involves utilizing historical task gradient information to

mitigate task gradient conflicts. In this paper, we propose a pre-

emptive multi-task learning approach to mitigate task conflicts,

referred to as Momentum-calibrated Conflicting Gradients

(MoCoGrad), which leverages the historical task gradients

information (also called momentum information1) to calibrate

conflicting task gradient, so as to improve all task performance

simultaneously (for Limitation 2). More concretely, we first

propose an effective algorithm to manipulate the conflicting

task gradients by leveraging the momentum information of

1Momentum information can be viewed the historical gradient information
of task [29]–[31].

tasks to pull conflicting task gradients closer to each other.

Then, we analyze our approach theoretically and establish

convergence guarantees. Finally, we empirically show that our

MoCoGrad approach achieves state-of-the-art results on six

MTL benchmarks on a variety of challenges ranging from

recommendation systems and quantum chemistry to computer

vision. The main contributions of our work are summarized

as follows:

• We qualitatively and quantitatively describe the task

conflicts problem characterized by Task Conflict Intensity
(TCI) and provide additional investigation and exploration

into the potential source of the task conflicts problem,

which has rarely been discussed in previous works.

• We propose a novel gradient manipulating algorithm

MoCoGrad to mitigate the task conflicts problem, which

is via leveraging the momentum information of tasks to

capture the practical relationship between different tasks

at the current iteration, so as to achieve a relative trade-off

between training tasks and effectively reduce the effects

caused by task conflicts.

• We give in-depth theoretical proofs and analysis of our

proposed MoCoGrad and establish converge guarantees

in the convex setting.

• We extensively verify the effectiveness of our MoCoGrad

on many real-world datasets on a variety of challenges

ranging from recommendation systems and quantum

chemistry to computer vision, such as click-through rate

(CTR) prediction tasks, pixel labeling tasks, image clas-

sification tasks, MTL regression tasks.

II. RELATED WORK

A. Multi-task Learning

Multi-task learning has been a vital research topic in the ma-

chine learning community over the last decade, through which

one can simultaneously solve several tasks by leveraging the

common knowledge contained in joint training tasks [7], [17],

[32]. To achieve this, most MTL methods hold an assumption

that all joint training tasks are related and the task parameter

space is closer [33]–[35]. However, most real-world tasks tend

to be unrelated and jointly training them is detrimental to the

performance of all tasks due to task conflicts [11], [17]. To

effectively mitigate task conflicts, significant efforts have been

invested in designing different network architectures, which

can be summarized into hard-parameter sharing [9], [19], [23],

[26], [36]–[41] and soft-parameter sharing [18], [25]–[27],

[42].

1) The hard-parameter sharing methods have the simplest

network structure and are the most widely used MTL meth-

ods [7]. They consist of a shared network at the bottom of

the overall network and branch out to several task-specific

networks at the top. For example, UberNet [36] designs dif-

ferent task-specific networks for different tasks across different

layers to improve the generalization of MTL. Long et al. [37]

leverage the relationship between task parameters derived from

task-specific networks to capture task correlations, so as to
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enable the sharing of useful information between all tasks.

MGDA [19] casts the multi-task learning problem as a multi-

objective optimization problem, leveraging the task gradients

derived from task-shared networks to find a Pareto optimal

solution to mitigate the task conflicts. PCGrad [23] proposes to

project the conflicting gradients into other gradients to mitigate

task conflicts in a hard-parameter sharing way.

2) The soft-parameter sharing methods mainly focus on

specific scenarios, where there is no specific task-shared

network and each task has its own unique network structure,

and cross-task information sharing can happen at any layer of

the overall network. For example, Misra et al. [25] propose to

adaptively fuse the features from different tasks by a learnable

linear combination mechanism, aiming to perform effectively

cross-task information sharing. Ma et al. [18] adopt a task-

gate mechanism to fuse the different part of expert networks

for each task adaptively. Liu et al. [26] adopt task-specific

attention modules to help each task select useful features. Tang

et al. [27] adopt a progressive routing mechanism for each task

to fuse useful semantic knowledge gradually. Sun et al. [42]

design an adaptive feature fusion mechanism to decide what

to share in the task-sharing network.

B. Applications of Multi-task Learning

MTL has achieved remarkable success in various research

and industrial applications, including social media analysis [3],

[12], [13], recommendation systems [5], [11], [14], [43], and

computer vision [6], [15]–[17]. For example, Liao et al. [3]

adopt a task-gate mechanism to filter noisy information from

cross-task information sharing in fake news detection tasks. A

multi-task interaction network is proposed to perform stance

detection and sentiment analysis tasks simultaneously [12].

Li et al. [12] propose a multi-task learning framework by

leveraging heterogeneous information of complex objects and

relations to improve recommendation system tasks. Teichmann

et al. [6] propose a multi-task network to simultaneously per-

form joint classification, detection, and semantic segmentation

tasks, which are essential tasks in autonomous driving field.

III. TASK CONFLICTS ANALYSIS IN MTL

In this section, we will give detailed definitions of MTL and

experimental analysis of the potential causes of task conflicts

in MTL.

A. Problem Formulation

Definition 1 (Multi-task Learning, MTL). Given K different
learning tasks {T k|k=K

k=1 } over one or multiple input space X
and a collection of task spaces {Yk}k∈[K], where each task
contains a set of i.i.d. training samples Dk = {xk

i , y
k
i }i∈[nk],

nk is the number of training samples of task T k, the goal
of multi-task learning is to improve the generalization per-
formance across all training tasks over X by utilizing the
knowledge contained in K tasks, formally,

min
θ1,...,θK

K∑
k=1

L̂k

(
xk
i , y

k
i ; θk

)
(1)

where L̂k (θk) is the empirical loss of the task T k which is
defined as L̂k

(
xk
i , y

k
i ; θk

)
� 1

|nk|
∑

i L
(
F

(
xk
i , y

k
i ; θk

)
, yki

)
,

θk is the task-shared and task-specific parameters of task T k.

Note that, in this paper, we only focus on supervised

learning tasks. Existing methods mainly consider a general

setting for multi-task learning (i.e., multi-label learning, multi-

domain classification, etc.), where all K tasks share the same

training datasets, and we term this type of multi-task learning

as Single-Input MTL. Differently, we consider a more practical

multi-task learning setting, Multi-Input MTL, in which each

task has individual and disjoint training datasets and only

shares the same task-shared network not training examples.

B. Task Conflicts in Multi-task Learning

Unfortunately, directly optimizing Eq.(1) using common

gradient descent optimization strategies may significantly de-

teriorate the model’s performance. A major source of this phe-

nomenon is that different tasks may compete with each other,

named task conflicts [11], [20]–[22]. To determine whether

task conflicts occur, we propose a quantitative measurement of

task conflicts to evaluate their influence on task performance,

defined as Task Conflict Intensity (TCI).

Definition 2 (Task Conflict Intensity, TCI). Denote the
model obtained by K tasks as F(T 1, ..., T K) and the model
obtained by single-task learning on task T k as F(T k). Let
RT k be the standard expected risk on the task T k. Then the
intensity of task conflicts about task T k on model F can be
evaluate by:

TCI(T k,F) = RT k(F(T 1, ..., T K))−RT k(F(T k)), (2)

where RT k can be defined by:

RT k(F) = Ex,y∼T k(L(F(x), y)), (3)

where L is the objective function.

Obviously, if the TCI is negative, the task conflict occurs,

and vice versa. To present the task conflicts problem quantita-

tively, we conduct an experiment to show the TCI of selected

tasks by evaluating some common MTL models on several

task sets. As shown in Fig. 2(a), it is evident that the joint

training of different tasks can cause significant task conflicts,

leading to a decrease in model performance. Note that we use

the RMSE as a metric on the MovieLens dataset, therefore

a lower value indicates better performance and a positive TCI
means the task conflict has occurred.

C. Analysis of Potential Source of Task Conflicts

Previous works hold the assumption that degraded perfor-

mance caused by task conflicts is owing to gradient conflicts

between different tasks [9], [23], [24]. They therefore ma-

nipulate task gradients to mitigate this situation. However,

existing works seldom carry out in-depth analysis of task

gradient conflicts, which hinders the acquisition of a clear

understanding of the correlation between gradient conflicts and

the decline in model performance.
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(a) TCI of HPS architecture. (b) Training with A and B (c) Training with A and C (d) Training with B and C
Fig. 2. The correlation between task conflict intensity (TCI) and gradient conflict degree (GCD) on selected tasks from MovieLens dataset (The details
are in experimental section). (a) TCI of task A, training with different tasks, task B and C. (b) TCI of task A, training with task A and B. (c) TCI of task
A, training with task A and C. (d) TCI of task B, training with task B and C.

Manipulate Conflicting Gradients

MoCoGrad

Multi-task Learning

Task-shared 
Layers

Task-specific 
Layers

… (a) Task gradient conflicts

(b) Manipulated task gradients

Fig. 3. Training process of using MoCoGrad algorithm. Left. The left part of
the figure is a common MTL architecture. Right. We show how to work our
proposed MoCoGrad algorithm in the case where gradients g1 and g2 in R

2

are conflicting. The blue arrows denote the momentum information of task
gradients, and the dashed arrows denote the manipulated task gradients, g′1
and g′2, by our MoCoGrad algorithm.

We now delve into a detailed exploration of the relationship

between task gradient conflicts and task conflict intensity. To

quantitatively analyze gradient conflicts, we define a metric to

measure the degree of gradient conflicts between two tasks,

referred to as Gradient Conflict Degree (GCD).

Definition 3 (Gradient Conflict Degree, GCD). Given two
different tasks, T i and T j , let φij be the angle between two
task gradients gi and gj . We define the degree of gradient
conflict as,

GCD(gi, gj) = 1− cosφij , (4)

where cosφij is the cosine similarity of gi and gj . The task
gradient conflicts occurs when GCD > 1, and a larger GCD
indicates more intense conflicts between gradients.

We plot the correlation curve between TCI and GCD in

Fig. 2(b-d). Note that we use RMSE as a metric and thus

a lower TCI value means better performance. It has been

observed that a strong positive correlation exists between TCI

and GCD. Specifically, a larger GCD value corresponds to

a larger TCI value. This implies that the more intense task

gradient conflicts are, the poorer the task performance will

be. Accordingly, we can solidify the hypothesis that the major

reason for task conflicts is task gradient conflicts.

IV. METHODOLOGY

Analysis in Section III reveals that the relationship between

task gradients plays a significant role, and task gradient

conflicts indeed deteriorate the MTL model generalization.

Based on it, in this section, we will give a detailed description

of the proposed multi-task learning method on how to alleviate

the dilemma of task conflicts in MTL, named Momentum-
calibrated Conflicting Gradients (MoCoGrad). We first

introduce the preliminaries and notations in Section IV-A.

Then, we discuss the overall MoCoGrad algorithm in detail in

Section IV-B. Finally, we prove and analyze the convergence

and effectiveness of our proposed MoCoGrad in Section IV-C.

A. Preliminaries and Notations

Gradient Manipulation-based Approaches. An existing

line of work [9], [23], [24], [44] has used gradient-based

methods to benefit MTL models. Notably, there are two works

most relevant to our work, PCGrad [23] and GradVac [9].

PCGrad assumes that negative cosine similarity indicates task

gradient conflicts, which is detrimental to the learning of

MTL models. Based on it, as illustrated in Fig. 4(b), PCGrad

proposes a gradient manipulating algorithm by replacing con-

flicting gradient gi by its projection onto the normal plane of

gj , defined by

g′i = gi −
gi · gj
‖gj‖2

gj . (5)

where gi and gj are the gradients of the i-th and j-th

task respectively at an arbitrary iteration, and g′i denotes the

manipulated gradient.

Besides, GradVac [9] proposes to set adaptive gradient

similarity objectives in a proper manner, aiming to capture

the complex inter-task relationships. As illustrated in Fig. 4(c),

where taking manipulating conflicting gradient gi as an exam-

ple, GradVac replaces the conflicting gradients gi with a vector

that is a linear combination of gi and gj , formally defined as

g′i = gi + α · gj , (6)

where α is the coefficient of linear combination calculated by

Law of Sines. Formally,

α =
‖gi‖

(
cos γ

√
1− cos2 φij − cosφij

√
1− cos2 γ

)
‖gj‖

√
1− cos2 γ

(7)

where cosφij =
gi·gj

‖gi‖‖gj‖ and cos γ =
g′
i·gj

‖g′
i‖‖gj‖

. φij is the

angle of gi and gj , and γ is the angle of manipulated gradients

g′i and gj .
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Fig. 4. The Comparison of PCGrad, GradVac, and MoCoGrad on a 2D multi-task learning system. (a) Tasks T i and T j have conflicting gradients, gi and gj
respectively, leading to destructive interference. (b) and (c) are the process of PCGrad and GradVac algorithm manipulating conflicting gradients, respectively.
(d) We illustrate how to work our proposed MoCoGrad algorithm in the case where gradients are conflicting, which is via leveraging the momentum information
of another gradient to calibrate the conflicting gradients. Note that, we only use the conflicting gradient gi as an example to illustrate our MoCoGrad. blue
arrow denote corresponding momentum of task gradient mj , and red dashed arrow denotes manipulated task gradient g′i.

However, in the above methods, the gradients are derived

from the data of the current batch only while the influence

of other batches is ignored, making the task gradient of the

current iteration not truly representative of the task itself.

Notations. Following existing MTL methods, we take the

hard-parameter sharing MTL architecture as an example to

present our MoCoGrad approach. As shown in Fig. 3, Fsh

and Fk are parameterized by heavy-weight task-shared pa-

rameters θsh and light-weight task-specific parameters θk,

respectively. Since all tasks take the identical intermediate

feature z = Fsh(x; θsh) as input, it is inevitable that different

tasks conflict with each other, leading to model performance

deterioration. Note that our proposed MoCoGrad is not only

applicable to hard-parameters sharing MTL architectures but

also to other sparse-parameters sharing MTL architectures,

such as MMoE [18], MTAN [26], and Cross-stitch [25]. In

other words, our MoCoGrad is a general and model-agnostic

approach that does not depend on specific architectures. For

simplicity of analysis, in the following section, we omit the

task-shared parameters θsh for the ease of notation, and only

use θk to denote the task-shared and task-specific parameters

of task T k. We use ‖ · ‖ to denote the spectral norm for the

matrix and �2-norm for the vector.

B. MoCoGrad

For an arbitrary task T k, we define its gradient as gk =
∇θkLk via back-propagation from the raw loss Lk, and gk
represents the optimal update direction of task k. Due to

the inconsistent optimal update directions of shared param-

eters for each task, conflicts can arise from the gradients

of different tasks. These conflicts may impede the training

process by causing networks to become excessively trained

on certain tasks while inadequately trained on others, causing

the model to deteriorate. As such, it is desirable to improve

the generalization of the MTL model via alleviating task

gradient conflicts, with the aim of benefiting all training tasks

simultaneously. In this section, we propose a novel gradient

manipulation algorithm to mitigate task conflicts by calibrating

the conflicting gradients.

Inspired by PCGrad and GradVac, we first propose a

measurement to quantitatively define task gradient conflicts,

GCD, defined in Definition 3. We hypothesize that a larger

GCD value is detrimental to multi-task optimization, espe-

cially when GCD > 1. In other words, when the GCD
value between the task gradients gi and gj is greater than 1,

GCD(gi, gj) > 1, task T i and T j compete with each other

intensively, and the multi-task learning network composed of

these two tasks exhibits task conflicts.

Existing gradient-based methods only use gradient infor-

mation of the task at an arbitrary iteration derived by the

current mini-batch data, and the gradients of tasks calculated

through this approach are easily influenced by noisy data. Con-

sequently, this leads to an inability to accurately capture the

relationships between tasks, making it difficult to determine

whether task conflicts have occurred. To address these limi-

tations, a natural idea is to accurately capture relationship of

the tasks by leveraging the historical gradient information. An

example is shown in Fig. 4(d), where we use the momentum

information of j-task to calibrate gi.
In particular, for task gradients gi and gj derived at the

t-th iteration, we first calculate the gradient conflict degree

GCD to determine if they are conflicting. If the GCD is

greater than 1, it indicates the occurrence of task gradient

conflicts. In such cases, we replace the conflicting gradient

gi with a vector derived from the vector space spanned by gi
and m

(t−1)
j , which prevents conflicts between task gradients.

To avoid the significant impact of momentum magnitude on

the magnitude of gradients in the current iteration, we propose

to leverage the relationship between task gradient gj and task

momentum m
(t−1)
j at t iteration to scale the task momentum

magnitude. We then derive the calibrated gradient for task T i

as:

ĝi = gi + λ
‖gj‖

‖m(t−1)
j ‖

·m(t−1)
j (8)

where λ ∈ (0, 1] is a pre-specified hyper-parameter and

controls the degree of calibration of conflicting task gradient

gi. Note that we omit the superscript (t) of gradient g
(t)
k

of k-task for the ease of notation. m
(t−1)
j denotes the first

momentum of j-task at t-1 iteration, which is updated by,

m
(t)
j = β1m

(t−1)
j + (1− β1) · ĝj (9)

where the hyper-parameters β1 ∈ [0, 1) control the exponential

decay rates of task gradients. In practice, β1 = 0.9 is a typical
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Algorithm 1 Training with MoCoGrad Algorithm

Input: Loss Li of task T i, Network parameters θ, Task set

T = {T i}Ki=1, First moment estimates of i-task mi,

Hyper-parameter λ, β1.

1: Initialize model parameters

2: Initialize moment of all tasks {m(0)
i }Ki=1 = 0

3: Initialize time step t = 0.

4: while not converged do
5: for T i ∈ T do
6: gi = ∇θLi

7: for T j ∈ T \T i in random order do
8: gj = ∇θLi

9: if GCD(gi · gj) > 1 then 	 using Eq. (4)

10: Set ĝi = gi + λ
‖gj‖

‖m(t−1)
j ‖

·m(t−1)
j .

11: end if
12: Update m

(t)
j = β1m

(t−1)
j + (1− β1) · gj

13: end for
14: end for
15: Update parameters with gNew =

∑i=K
i=1 ĝi

16: end while

setting [31].

Finally, the calibrated gradient ĝi replaces the original

gi. Eq.(8) allows us to capture more accurate relationships

between tasks at arbitrary iterations at the task gradient level,

thereby effectively alleviating task conflicts. Our MoCoGrad

repeats the conflicting gradient calibration process across all

tasks via randomly sampling two tasks each time from the

entire set of tasks. The detailed process of MoCoGrad is

described in Algorithm 1.

C. Theoretical Analysis of MoCoGrad

We theoretically analyze the convergence of our method

in the convex case. We first give some assumptions to help

establish the following convergence analysis. We emphasize

that these assumptions do not lose anything over typical SGD

assumptions since our assumptions can be obtained from

SGD [45].

Definition 4. Consider the loss functions of two tasks L1 :
R

n → R and L2 : Rn → R. We define the two-task learning
objective as L(θ) = L1(θ) + L2(θ) for all θ ∈ R

n, where
g1 = ∇θL1, g2 = ∇θL2, and g = g1 + g2.

Assumption 1 (Upper bound). Assume that the model F has
bounded diameter D and the gradients have bound G for all
t ∈ [T ], then, for all t ∈ [T ], ‖θ − θ′‖ ≤ D, and ‖g(t)‖ ≤ G.

Theorem 1. Suppose that Assumption 1 holds. Let ĝ be the
calibrated gradients obtained from Algorithm 1, then ĝ is also
bounded.

Proof. For any task i, j ∈ [K] at t-th optimization step, we

use the Assumption 1

‖ĝ‖ =
∑K

i=1
(gi + λ

‖gj‖
‖m(t−1)

j ‖
·m(t−1)

j )

=
∑

i
gi + λ

∑j=k

j=1
(
‖gj‖

‖m(t−1)
j ‖

·m(t−1)
j )

≤
∑

i
‖gi‖+ λ

∑j=K

j=1
‖ ‖gj‖
‖m(t−1)

j ‖
·m(t−1)

j )‖

≤
∑

i
‖gi‖+ λ

∑j=K

j=1
‖gj‖

≤ K(λ+ 1)G (using Assumption 1)
< 2KG (using λ ∈ (0, 1] in Eq. (8))

(10)

where K is the number of tasks. This inequality proves that the

calibrated task gradients generated by MoCoGrad is bounded.

Assumption 2 (L-smoothness). If L is differential and L-
smooth, then L(θ′) ≤ L(θ) +∇L(θ)�(θ′ − θ) + L

2 ‖θ′ − θ‖2

Theorem 2 (Convergence of Multi-task learning). Assume
loss functions Li are convex and differential, and ∇Li(θ

(t))
is L-lipschitz continuous with L > 0. The update rule is
θ(t+1) = θ(t) − μĝ, where ĝ is derived by using MoCoGrad
algorithm and μ > 0 is the step size. For μ ≤ 1

L , the
sequence {θ(t}∞t=1 can converges to a optimal point θ∗.
Moreover, all loss functions

(
L1(θ

(t)) · · · LK(θ(t))
)

converges
to (L1(θ

∗) · · · LK(θ∗)).

Proof. We note that θ(t) are the parameters of model at the

t-th optimization step. Without loss of generality, we consider

the two-task learning scenario based on Definition 4 and we

get calibrated gradients ĝ = ĝ1 + ĝ2. Then for each task T i

and the corresponding loss Li, we use Assumption 2

Li(θ
(t+1)) ≤ Li(θ

(t))−∇L(θ(t))� · μĝ + L

2
‖μĝ‖2

(expanding ĝ = ĝ1 + ĝ2 by using Eq. (8) )

≤ Li(θ
(t))− μg�(g1 + λ

‖g2‖
‖m(t−1)

2 ‖
·m(t−1)

2

+ g2 + λ
‖g1‖

‖m(t−1)
1 ‖

·m(t−1)
1 )

(expanding further and re-arranging terms )

≤ Li(θ
(t))−(μ− 1

2
Lμ2 − 1

2
Lμ2λ2)︸ ︷︷ ︸

1©

−(μλg−Lμ2λg)

(
‖g1‖

‖m(t−1)
1 ‖

m
(t−1)
1 +

‖g2‖
‖m(t−1)

2 ‖
m

(t−1)
2

)
︸ ︷︷ ︸

2©

−Lμ2λ2‖g1‖‖g2‖+Lμ2λ2 ‖g1‖‖g2‖
‖m(t−1)

1 ‖‖m(t−1)
2 ‖

m
(t−1)
1 m

(t−1)
2︸ ︷︷ ︸

3©
(11)
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Since μ ≤ 1
L and λ ∈ (0, 1], we have

1© ≤ −(μ− 1

2
μ− 1

2
μλ2)g2 = −1

2
μ(1− λ2)g2 ≤ 0, (12)

and

2© ≤ −(μλg−μλg)(
‖g1‖

‖m(t−1)
1 ‖

m
(t−1)
1 +

‖g2‖
‖m(t−1)

2 ‖
m

(t−1)
2 )

≤ 0. (13)

With the triangle inequality and μ ≤ 1
L , we have

3© ≤−(μλ2‖g1‖‖g2‖−
‖g1‖‖g2‖

‖m(t−1)
1 ‖‖m(t−1)

2 ‖
‖m(t−1)

1 ‖‖m(t−1)
2 ‖)

≤ 0. (14)

Then, we can submit Eq. (12), Eq. (13), Eq. (14) back into

Eq. (11) to get the following inequality,

Li(θ
(t+1))− Li(θ

(t)) ≤ 0 (15)

Therefore, the Li(θ
(t)) is bounded. As the sequence Li(θ

(t)) is

decreasing, the θ(t) is in the subset {θ : L(θ) ≤ L(θ(0))} that

is closed and bounded, thus compact. As such, there exists a

θ(ε) that converges to the point θ∗. Consequently, for t→∞,

we can get that Li(θ
(t))

t→∞−→ Li(θ
∗) to complete proof.

Moreover, we will explore the convergence rate of

MoCograd in Theorem 3. Let L(t) be the loss function at t
iteration. Then the regret of MoCoGrad at the end T iterations

of optimization process is given by

R(T ) =
∑T

t=1
L(t)(θ(t))−minθ

∑T

t=1
L(t)(θ) (16)

Let θ∗ = argminθ
∑T

t=1 L(t)(θ), we can get simplified form

of regret by R(T ) =
∑T

t=1(L(t)(θ(t))− L(t)(θ∗)).

Theorem 3 (Convergence rate of MoCoGrad). Let {θ(t)} be
the sequence obtained from Algorithm 1, μt > 0, λt > 0,
β1 = β11, β1t ≤ β1 for all t ∈ [T ]. Based on Assumption 1,
we have the following bound on the regret

R(T )≤
d∑

i=1

D2
i

2μT
+K

T∑

t=1

d∑

i=1

λtGiDi+

T∑

t=1

d∑

i=1

μt

2
(1 + kλt)

2G2
i (17)

Proof. We specifically split the upper bound of R(T ) onto

each dimensional variable, for all t ∈ [T ] and i ∈ [d],
according to Assumption 2, Eq. (16) can be transformed by

R(T ) ≤
d∑

i=1

T∑
t=1

gi,t(θ
(t)
i − θ∗i )︸ ︷︷ ︸

E0

(18)

where, for the sake of simplicity, gi,t, θ
(t)
i denotes the i-th

dimension of g and θ at t iteration. Since θ(t) is generated by

our MoCoGrad algorithm, we can get the update rule by

θ
(t+1)
i = θ

(t)
i − μt

(
gi,t + λt

K∑
k=1

‖gk,i,t‖
‖m(t−1)

k,i ‖
m

(t−1)
k,i

)
. (19)

For the sake of simplicity, we define rt =∑K
k=1

‖gk,i,t‖
‖m(t−1)

k,i ‖
m

(t−1)
k,i and expand Eq. (19) by

θ
(t+1)
i − θ∗i = θ

(t)
i − θ∗i − μt(gi,t + λtrt). (20)

For further bounding this inequality Eq. (18), we need to

calculate (θ
(t)
i − θ∗i )

2 and re-arrange terms to construct the

following equality.

E0 =
(θ

(t)
i − θ∗i )

2 − (θ
(t+1)
i − θ∗i )

2

2μt︸ ︷︷ ︸
E1

−λtrt(θ
(t)
i − θ∗i )︸ ︷︷ ︸

E2

+ μt/2(gi,t + λtrt)
2︸ ︷︷ ︸

E3

(21)

With Assumption 1, we bound term E1 in the following

manner:

E1 ≤
(θ

(1)
i − θ∗i )

2

2μ1
+

T∑
t=2

D2
i (

1

2μt
− 1

2μt−1
) ≤ D2

i

2μT
. (22)

According to Cauchy-Schwarz and Young’s inequality, the

E2 can be bounded as follows:

E2 ≤
T∑

t=1

λt

K∑
k=1

‖gk,i,t‖
‖m(t−1)

k,i ‖
m

(t−1)
k,i Di ≤

T∑
t=1

KGiDiλt. (23)

And the E3 can be bounded as follows:

E3 ≤
T∑

t=1

(
‖gi,t‖+

∥∥∥∥∥λt

K∑
k=1

‖gk,i,t‖
‖m(t−1)

k,i ‖
‖m(t−1)

k,i ‖
∥∥∥∥∥
)

≤
T∑

t=1

μt

2
(1 +Kλt)

2D2
i (24)

Finally, we submit Eq. (21), Eq. (22), Eq. (23) and Eq. (24)

back into Eq. (18), we then obtain that

R(T )≤
d∑

i=1

D2
i

2μT
+K

T∑
t=1

d∑
i=1

λtGiDi+

T∑
t=1

d∑
i=1

μt

2
(1+kλt)

2G2
i

Thus, the proof of Theorem 3 has completed.

Based on Theorem 3, the following result falls as an

immediate corollary of the convergence rate of MoCoGrad.

Corollary 1. Suppose μt = μ/tp, λt = λ/tp for all t ∈ [T ]
in Theorem 3, then we have

R(T ) ≤2D2 t
p

μ
+KGD

∫ T

t=1

λ

tp
dt

+
G2

2

∫ T

t=1

(
μ

tp
+K2λ2 μ

t3p
+ 2Kλ

μ

t2p
)dt

(25)

Then,
R(T )/T = O(Tmax(p,1−p,1−3p))/T (26)

when p = 1/2, the μt = μ/
√
t, we can get O(R(T )/T ) =

O(T 1/2) and R(T )/T
T→∞−→ 0.

Since existing optimization methods, like SGD [46],

Adam [31], Adagrad [47], have the same optimization upper

O(T 1/2) with our proposed MoCoGrad, the convergence rate

of MoCoGrad is acceptable in practice.
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V. EXPERIMENTS

We evaluate whether MoCoGrad could benefit the perfor-

mance of MTL models on a variety of MTL challenges,

including recommendation system tasks, quantum chemistry

molecule graph regression tasks, and computer vision tasks

(i.e., image recognition and scene understanding).

A. Datasets

Experiments are conducted on six widely-used real-world

MTL benchmark datasets:

• AliExpress dataset [48]: The AliExpress dataset2

is collected from real-world traffic logs of the search

system in AliExpress. This dataset is collected from 5

countries with more than 100M records and has two

prediction tasks: Click-Through Rate (CTR) and Click-

Through&Conversion Rate prediction (CTCVR). We se-

lect 4 countries, Spain (ES), French (FR), Netherlands

(NL), and America (US), and construct 4x2 tasks learning

scenarios. We randomly split 90% data in the time

sequence for training while the rest 10% for testing.

• MovieLens dataset [49]: This is a movie recom-

mendation dataset3 which contains 10M ratings from

71567 users on 10,681 movies from Jan. 1996 to Dec.

2008 in a total of 18 different genres. We select 9 genres:

Crime, Documentary, Fantasy, FilmNoir, Horror, Mystery,

Thriller, War, and Western. In this paper, following [10],

we treat the rating regression for movies in each selected

genre as different tasks and construct a multi-task regres-

sion dataset that contains 9 regression tasks. We randomly

split the whole dataset with 80% for training, 10% for

validation, and the remaining 10% for testing.

• QM9 dataset [50]: The QM9 dataset is a widely used

benchmark for graph neural networks, which consists

of ∼ 130K molecules represented as graphs. Follow-

ing [24], we select 11 properties of molecules QM9

dataset and construct 11 regression tasks. We use 110K

molecules for training, 10K for validation, and the rest

10K for testing. This is a multi-input MTL dataset.

• NYUv2 dataset [51]: The NYUv2 dataset is an indoor

scene understanding dataset, which consists of 1449

images and 464 diverse indoor scenes with detailed anno-

tations. We construct a three-task learning scenario: the

Depth Prediction, Semantic Segmentation, and Surface

Normal Estimation tasks. We adopt 13-class annota-

tion for Semantic Segmentation and follow the common

train/val splits: 795 images for training and 654 images

for validation.

• CityScape dataset [52]: The CityScapes dataset

focuses on the semantic understanding of urban street

scenes and contains 3,600 high-resolution street-view

images. We construct a two-task learning scenario using

Depth Prediction and Semantic Segmentation tasks. We

follow the standard dataset splitting, 2,975 images for

2https://tianchi.aliyun.com/dataset/74690
3https://files.grouplens.org/datasets/movielens/ml-10m.zip

training, 125 for validation, and 500 for testing, respec-

tively.

• Office-Home dataset [53]: The Office-Home

dataset contains four domains: Art (artistic images),

Clipart (collection of clipart images), Product (images

of objects without background), and Real-World (

images of objects captured with a regular camera). It

has 15,500 images in total, and each domain contains

65 categories. Based on it, we treat each domain as

a 65-way classification problem. Following [54], we

randomly divide the dataset into training, validation, and

testing sets, 60%, 20%, and 20%, respectively. Note that,

each task in Office-Home dataset has its own input data.

This is a multi-input MTL dataset.

B. Compared methods

To better illustrate the effectiveness of our proposed

MoCoGrad, we compare MoCoGrad with ten state-of-the-

art multi-task learning methods, especially those that attempt

to mitigate task conflicts and improve the ability of MTL

generalization.

• STL: Single-task learning (STL) trains individual tasks

with an independent model.

• DWA [26]: Dynamic weight average (DWA) is a simple

adaptive weighting method that can leverage the task loss

rates over time to set task weights adaptively.

• MGDA [19]: This method casts multi-task learning as

a multi-objective optimization problem and attempts to

optimize the upper bound of multi-objective loss by

searching a convex combination of task gradients in a

convex hull. The solutions generated by MGDA prove to

be a Pareto optimal solution.

• PCGrad [23]: PCGrad is a simple yet general approach

for avoiding the interference between task gradients,

via manipulating the conflicting gradients. Specifically,

when gradient conflicts occur, PCGrad removes conflict-

ing components of each gradient by projecting a task’s

gradient onto the normal plane of the gradient of any

other task, and then repeats this process over all tasks.

• GradDrop [41]: Gradient Sign Dropout (GradDrop) is a

probabilistic masking procedure. Specifically, GradDrop

algorithmically selects one sign based on gradient distri-

bution at the current iteration, and then masks out all task

gradient values that have the opposite sign.

• GradVac [9]: Gradient Vaccine (GradVac) is a gradient

manipulation MTL method that avoids task conflicts

by manipulating conflicting gradients. GradVac sets a

different task conflicts objective by considering more

complex inter-task relatedness, so as to adaptively align

task gradients.

• CAGrad [8]: Conflict-Averse Gradient descent (CAGrad)

method is proposed to solve the problem that average

gradient direction can harm specific tasks’ performance in

multi-task learning. CAGrad is a gradient-based optimiza-

tion method that searches for a convex combination of all
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task losses by maximizing the worst local improvement

of individual tasks nearby the average gradient.

• IMTL [55]: IMTL proposes an end-to-end learning frame-

work that can optimize the scaling factors to make equal

projections of the aggregated gradients onto individual

tasks and weigh task losses to simultaneously keep all

task losses at a comparable scale. It balances the gradients

and losses of all tasks simultaneously and is a fair

learning approach for jointly training tasks.

• RLW [54]: Random Loss Weighting (RLW) proposes to

balance all training tasks by sampling task weights from

a normal distribution and then minimizing the aggregated

loss weights based on sampled task weights.

• Nash-MTL [24]: Nash-MTL regards the gradient aggre-

gation process at each iteration as a bargaining game,

making task gradients negotiate to achieve a balance.

Specifically, Nash-MTL models the multi-task learning

problem as a bargaining problem and obtains the Nash

bargaining solution, which is used to scale all task losses.

C. Evaluation Metrics

Due to the difference in different datasets, we use different

evaluation metrics to measure the performance of comparison

methods.

• Recommendation system tasks. For recommendation sys-

tem tasks from AliExpress dataset, such as CTR and

CTCVR tasks, we follow [48] and use AUC (the area

under the curve) to evaluate the goodness of order by

ranking all the products with the predicted CTR and

CTCVR.

• Regression tasks. For regression tasks from MovieLens
and QM9 datasets, we use mean absolute error (MAE) and

root mean square error (RMSE) to evaluate the prediction

accuracy of comparison methods.

• Scene understanding tasks on NYUv2 and CityScape
datasets. Following [17], [54], we use the mean intersec-

tion over union (mIoU) and pixel accuracy (PixAcc) to

evaluate the semantic segmentation task and use absolute

error (Abs Err) and relative error (Rel Err) to eval-

uate the depth prediction task. For the surface normal

estimation task, we use the mean and median angle

distances of all the pixels (Rel Mean and Median)

and the percentage of pixels that are within the angles

of 11.25◦, 22.5◦, 30◦ for evaluation.

• Image recognition tasks on Office-Home dataset. We

use the average accuracy (Avg ACC) to evaluate the

performance of all comparison methods.

In addition, due to the difference in scale between different

per-task metrics, we define a common metric to evaluate each

task. We use the average of relative improvement of MTL

methods based on task conflict intensity (TCI) on each metric

of each task to evaluate the multi-task performance [24], [54],

defined as ΔM ,

ΔM =
1

K

∑K

k=1

(−1)sk(Mm,k −Mb,k)

Mb,k
, (27)

where Mb,k and Mm,k denote the value of metric Mk obtained

by the single-task learning method and multi-task learning

methods, respectively. sk is set to 0 if a higher value denotes

better performance for a metric Mk and otherwise 1.

D. Implementation Details

All of our experiments are conducted on the Workstations

of V100 with 32GB memory and Ubuntu 16.04 Server system

and implemented by PyTorch 3.7.9 based on LibMTL [56],

which is an open-source multi-task learning package. For a fair

comparison, we adopt the hard-parameters sharing network

architecture and set similar parameters for all the models.

Moreover, we also set the same task-shared and -specific

networks for all the models on the same tasks. For the

AliExpress dataset, we use an embedding layer followed

by two-layer MLP as task-shared layers. For the QM9 dataset,

we use graph convolutional neural networks as task-shared

layers, and Adam optimizer with learning-rate set to 0.003. For

the MovieLens dataset, we implement the BST model [57]

as task-shared layers. For the NYUv2 and CityScapes
datasets, we use ResNet-50 network as task-shared layers

and the Atrous Spatial Pyramid Pooling module [58] as task-

specific layers with hidden dimensionality set to 2048. For the

Office-Home dataset, we use ResNet-18 network as task-

shared layers. We use Adam optimizer with a learning-rate set

to 0.0001 and one-layer MLP as per-task task-specific layers

for all datasets. Experiments are executed for ten runs, and the

average results are reported.

E. Results of Multi-task Recommendation System

We evaluate MoCoGrad on predicting 2 tasks over 4 sce-

narios from AliExpress dataset, and the results of AUC
are reported in Table I where the best AUC scores are bold.

As well, the relative performance improvement of all MTL

methods is displayed. Obviously, our proposed MoCoGrad

outperforms both single CTR and CTCVR prediction methods

and multi-task learning methods across four different scenarios

in 8 out of 9 metrics, and obtains a 0.48% improvement

over the state-of-the-art methods. This should be attributed

to several factors. First, utilizing the momentum information

of the task, MoCoGrad can capture an adequate level of in-

formativeness that accurately reflects the current task gradient

at each iteration, not easily influenced by noisy data. Second,

leveraging momentum information can facilitate modeling the

relationship between tasks at each iteration, so as to provide

enough information to help MoCoGrad better alleviate the

dilemma of task conflicts. More concretely, some gradient

manipulation-based methods, such as PCGrad, GradDrop, and

GradVac, perform poorly in CTR and CTCVR prediction

tasks. The major reason may be that they can not accurately

capture the true task gradient of each task at each iteration,

influenced by the noisy data from some mini-batch data. The

Nash-MTL method obtains the worst overall performance,

although it has comparable performance in the CTR task. The

massive gap in performance between different tasks comes
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TABLE I
PERFORMANCE (AUC) ON ALIEXPRESS DATASET (2 X 4 TASKS IN TOTAL).

Methods ES FR NL US
ΔM ↑

CTR CTCVR CTR CTCVR CTR CTCVR CTR CTCVR

STL 0.7266 0.8855 0.7259 0.8737 0.7222 0.859 0.7061 0.8637 0.0%

DWA 0.7238 0.8847 0.7045 0.8669 0.7236 0.8576 0.6965 0.8744 -0.54%
MGDA 0.723 0.8782 0.7238 0.8691 0.7209 0.8581 0.7032 0.8759 -0.18%
PCGrad 0.7275 0.867 0.7152 0.8753 0.724 0.8542 0.6978 0.8721 -0.47%

GradDrop 0.7307 0.8705 0.7165 0.8759 0.7251 0.8464 0.6877 0.8744 -0.58%
GradVac 0.7299 0.8593 0.7054 0.8755 0.7233 0.8455 0.7039 0.8739 -0.71%
CAGrad 0.7256 0.8722 0.716 0.877 0.7237 0.8586 0.6967 0.8726 -0.35%
IMTL 0.7253 0.8677 0.7246 0.8639 0.7225 0.8563 0.6883 0.8788 -0.57%
RLW 0.7275 0.8846 0.7238 0.8717 0.7266 0.8562 0.6992 0.8757 +0.02%

Nash-MTL 0.7286 0.8546 0.7145 0.8672 0.7245 0.8445 0.6878 0.8692 -1.11%
MoCoGrad 0.7316 0.8870 0.7244 0.8783 0.7278 0.8614 0.7073 0.8764 +0.48%

TABLE II
PERFORMANCE (AVERAGE MAE AND RMSE) ON QM9 DATASET (11

TASKS) AND MOVIELENS DATASET (9 TASKS).

Methods
QM9 MovieLens

Avg MAE ↓ ΔM ↑ Avg RMSE↓ ΔM ↑
STL 0.7474 +0.00% 0.9009 +0.00%

DWA 0.6979 +20.49% 0.8841 +1.57%
MGDA 0.6813 +21.41% 0.8841 +1.56%
PCGrad 0.7514 +20.58% 0.8859 +1.36%

GradDrop 0.646 +24.02% 0.8862 +1.38%
GradVac 0.684 +24.56% 0.8826 +1.76%
CAGrad 0.7975 +21.36% 0.8867 +1.34%
IMTL 0.6372 +19.12% 0.8808 +1.89%
RLW 0.7961 +22.62% 0.8909 +0.75%

Nash-MTL 0.6744 +27.85% 0.9049 -0.50%
MoCoGrad 0.5864 +32.30% 0.8721 +2.93%

from task conflicts, and Nash-MTL can not deal with conflicts

well.

F. Results of Multi-task Regression Tasks

We conduct several experiments to evaluate the performance

of the proposed MoCoGrad on two multi-task regression

datasets, QM9 and MovieLens dataset. The results of average

MAE and RMSE metrics (lower value indicates better) are

reported in Table II, where the best results are highlighted

in bold type. It is observed that MoCoGrad significantly

outperforms other baselines throughout all datasets, especially

in the QM9 dataset that contains 11 tasks. More specifically,

our MoCoGrad obtains 0.5846 in Avg MAE metric, which

achieves a 4.45% improvement over state-of-the-art baselines

on the QM9 dataset. Due to the MovieLens dataset that

contains 9 tasks, with the number of tasks decreasing, the

degree of task conflict between tasks becomes less intense,

and consequently the performance of all comparison methods

slightly deteriorates. It is no surprise that our MoCoGrad out-

performs the baselines in the QM9 dataset more apparently than

in the MovieLens dataset, since MoCoGrad indeed mitigates

the task conflicts, especially when the number of joint training

tasks is large. This demonstrates that our MoCoGrad is still

effective in dealing with multi-task regression tasks, and it

Fig. 5. The comparison performance of our proposed MoCoGrad with other
baselines over four tasks on Office-Home dataset.

can better mitigate task conflicts, so as to improve the overall

performance of MTL models.

G. Results of Scene Understanding Tasks

We evaluate the effectiveness of our proposed MoCoGrad

in scene understanding tasks and report the performance of all

comparison methods on NYUv2 and CityScapes datasets in

Table III and Table IV. Obviously, our MoCoGrad achieves the

best performance in 7 out of 10 metrics and obtains a 9.65%

improvement over a single learning method in the NYUv2
dataset. The performance of MoCoGrad is well-balanced

across tasks. We find similar patterns as on NYUv2 dataset

in Table IV, but CityScapes dataset is more complex and

larger. It is observed that our MoCoGrad achieves the best

performance across all tasks. Existing gradient manipulation-

based methods, such as PCGrad and GradDrop, perform

poorly since they can not accurately identify the task gradients

in each iteration under complex datasets, leading to degraded

performance in Depth prediction task. This implies that our

MoCoGrad can better mitigate task conflicts and improve the

performance of all tasks and demonstrates the effectiveness of

948

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 02,2024 at 05:40:01 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
PERFORMANCE ON NYUV2 DATASET WITH THREE TASKS: SEMANTIC SEGMENTATION, SURFACE NORMAL ESTIMATION, AND DEPTH PREDICTION.

Methods

Segmentation Depth Surface Normal

ΔM ↑mIoU↑ PixAcc↑ Abs Err↓ Rel Err↓
Angle Distance Within t◦

Rel Mean↓ Median↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑
STL 0.5292 0.7437 0.4822 0.1669 23.1671 17.2378 0.2793 0.5137 0.6988 +0.00%

DWA 0.5323 0.7537 0.3814 0.1569 23.8444 17.3143 0.3468 0.6024 0.7143 +7.68%
MGDA 0.5041 0.7213 0.4104 0.1688 22.4232 16.9118 0.3469 0.6092 0.7137 +6.23%
PCGrad 0.5383 0.7537 0.382 0.1615 23.4739 17.0915 0.3508 0.6113 0.7219 +8.28%

GradDrop 0.5367 0.7522 0.3839 0.1590 23.6725 16.9916 0.3529 0.6091 0.7187 +8.30%
GradVac 0.5404 0.7543 0.3858 0.1637 23.5048 16.9492 0.3517 0.6113 0.7218 +8.21%
CAGrad 0.5388 0.7519 0.3936 0.1575 23.5877 17.9514 0.3522 0.6137 0.7016 +7.44%
IMTL 0.5422 0.7531 0.3972 0.1677 23.5643 17.0286 0.3411 0.6022 0.7197 +6.97%
RLW 0.5405 0.7546 0.3827 0.1599 23.4271 17.7078 0.3481 0.6152 0.7201 +8.00%

Nash-MTL 0.5329 0.7477 0.3832 0.1685 22.3121 16.9411 0.3486 0.6067 0.7214 +8.04%
MoCoGrad 0.5444 0.7566 0.3810 0.1579 22.3779 16.8209 0.3544 0.6141 0.7238 +9.65%

TABLE IV
EXPERIMENTAL RESULTS ON CITYSCAPES DATASET (2 TASKS IN TOTAL).

Methods
Segmentation Depth

ΔM ↑mIoU ↑ PixAcc ↑ Abs Err↓ Rel Err↓
STL 0.7401 0.9316 0.0125 20.777 +0.00%

DWA 0.7522 0.9337 0.0108 18.6485 +6.43%
MGDA 0.7352 0.9275 0.0101 21.1459 +4.08%
PCGrad 0.7512 0.9348 0.0115 21.5973 +1.47%

GradDrop 0.7518 0.9342 0.0112 22.1326 +1.43%
GradVac 0.7571 0.9356 0.0109 19.0876 +5.91%
CAGrad 0.7528 0.9342 0.0114 18.2485 +5.74%
IMTL 0.7439 0.9310 0.0115 18.9272 +4.34%
RLW 0.7450 0.9296 0.0118 22.3387 -0.37%

Nash-MTL 0.7499 0.9346 0.0102 18.6321 +7.59%
MoCoGrad 0.7568 0.9375 0.0106 16.2842 +9.93%

MoCoGrad in several real-world scene understanding scenar-

ios.

H. Results of Image Recognition Tasks

To verify the effectiveness of our proposed MoCoGrad in

image recognition tasks, we conduct a comparison experi-

ment on the Office-Home dataset and show the results

of comparison methods across four tasks in Fig. 5. It is

observed that our MoCoGrad achieves the best performance

compared with ten comparison baselines and the performance

of MoCoGrad is well balanced across all four tasks. We can

see some methods, such as MGDA and CAGrad, perform

worse than the single learning method and obtain imbalanced

performance across different tasks. The major reason is that

these methods can not handle task conflicts between different

tasks during training. This also demonstrates the effectiveness

of our proposed MoCoGrad, which can mitigate task conflicts

well and achieve better-balanced performance across all tasks.

VI. ANALYSIS

A. Empirical Analysis on Convergence

In the theoretical analysis part of Section IV-C, we theo-

retically prove the convergence of our proposed MoCoGrad

and analyze the convergence rate. Furthermore, we conduct

extensive experiments on the NYUv2 dataset to empirically an-

alyze the convergence of MoCoGrad. Fig. 6 shows the training

loss curves of Depth Prediction, Semantic Segmentation, and

Surface Normal Estimation tasks and the average loss values

of three tasks. It is clear that the loss value of our MoCoGrad is

constantly decreasing throughout the training process, and our

MoCoGrad converges to a lower average loss value on three

tasks compared to other MTL methods. More specifically, the

loss curves of some methods, such as DWA, MGDA, CAGrad,

Nash-MTL, and IMTL, fluctuate with the increasing number of

epochs, which illustrates that they can not handle task conflicts

throughout the training process. Fig. 6(d) shows the training

loss curves of average loss values of all three tasks. We can see

that some methods, such as PCGrad, GradVac, and GradDrop,

can not converge to the optimal objective value under the same

training epochs. This implies that the convergence rate of these

methods is slower than our proposed MoCoGrad. The major

reason is that they do not handle task conflicts well at each

iteration, leading to degraded MTL performance. Therefore,

compared with other baselines, our MoCoGrad can help MTL

models converge to the minimizer of objective functions and

has a faster convergence speed.

B. Effects of Different Architectures

We conduct experiments to illustrate that our MoCoGrad

can be seamlessly incorporated into other MTL architec-

tures while obtaining improved performance. We select

five MTL architectures, i.e., hard-parameters sharing (HPS),

Cross stitch network [25], Multi-Task Attention Network

(MTAN) [26], MMoE [18], and Customized Gate Control

network (CGC) [27] and use the performance of single task

learning method as the baseline to measure the relative im-

provement ΔM of our MoCoGrad with different MTL archi-

tectures on CityScapes dataset shown in Fig. 7. Obviously,

our MoCoGrad method outperforms the single task learning

method under all the five architectures. The combination of

our MoCoGrad and MTAN, or Cross stitch, or MMoE or

CGC outperforms MoCoGrad with HPS, which illustrates

the effectiveness of the combination of MoCoGrad and more
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(a) Semantic segmentation task. (b) Depth prediction task. (c) Surface normal estimation task. (d) Average performance.

Fig. 6. Learning curve of comparison methods about three learning tasks on NYUv2 dataset.

Fig. 7. The results of proposed MoCoGrad with different architectures on
CityScapes dataset.

complex architectures. Moreover, it implies the potential of

the proposed MoCoGrad in selecting appropriate MTL archi-

tectures.

C. Analysis on Backward Time

Most SOTA MTL methods require performing K backward-

propagation procedures to calculate the K task gradients at

each optimization step. This process is typically more expen-

sive, and here we replace task gradients with feature-level

gradients to speed up the optimization process. We conduct

experiments to compare the backward propagation time per

iteration in seconds of our proposed MoCoGrad with other

baseline methods at each optimization process. We train these

MTL methods with the same experimental setting for a fair

comparison. Fig. 8 shows the backward time of compari-

son methods on the AliExpress dataset. The Nash-MTL

method needs more time for backward-propagation, because

more time is needed to solve the Nash equilibrium at each iter-

ation. Moreover, we can observe that the proposed MoCoGrad

has a comparable backward time with GradVac and PCGrad

at each iteration, demonstrating that our MoCoGrad can easily

be applied in practice.

D. Parameters Analysis

The hyper-parameter λ is used to control the degree of

calibration of conflicting task gradient. To investigate the

impact of λ, we conduct experiments on the Office-Home

Fig. 8. The backward time of our
proposed MoCoGrad with other base-
lines.

Fig. 9. The impact of different val-
ues of different λ on Office-Home
dataset.

dataset, and the average results of all tasks are shown in

Fig. 9. Noting that MoCoGrad with λ = 0.12 performs overall

better than other values on the Office-Home dataset. The

MoCoGrad with a larger value of λ > 0.13 or lower value

of λ < 0.06, performs unsatisfactorily overall all tasks. One

possible reason is that larger or lower λ can cause excessive

pruning of conflicting gradients or insufficient pruning of

conflicting gradients by proposed MoCoGrad. Therefore, that

can be pretty detrimental to some tasks’ performance and

degrade the generalization capability of MTL models.

VII. CONCLUSIONS

In this paper, we propose a novel multi-task learning method

for mitigating task conflicts and improving the performance

of all tasks simultaneously, namely MoCoGrad. MoCoGrad

leverages the momentum information of tasks to calibrate

the gradients of conflicting tasks, which avoids the gradient

of tasks being significantly deviated from the normal value

due to the influence of noisy data from each mini-batch. We

also provide a theoretical analysis of the convergence and

convergence rate of our MoCoGrad. Sufficient experiments

on six public MTL benchmarks demonstrate the effectiveness

and superiority of our approach compared to all comparison

baselines.
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