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Abstract—Owing to the nature of privacy protection, feder-
ated recommender systems (FedRecs) have garnered increas-
ing interest in the realm of on-device recommender systems.
However, most existing FedRecs only allow participating clients
to collaboratively train a recommendation model of the same
public parameter size. Training a model of the same size for all
clients can lead to suboptimal performance since clients possess
varying resources. For example, clients with limited training
data may prefer to train a smaller recommendation model to
avoid excessive data consumption, while clients with sufficient
data would benefit from a larger model to achieve higher
recommendation accuracy. To address the above challenge, this
paper introduces HeteFedRec, a novel FedRec framework that
enables the assignment of personalized model sizes to partici-
pants. Specifically, we present a heterogeneous recommendation
model aggregation strategy, including a unified dual-task learning
mechanism and a dimensional decorrelation regularization, to
allow knowledge aggregation among recommender models of
different sizes. Additionally, a relation-based ensemble knowledge
distillation method is proposed to effectively distil knowledge
from heterogeneous item embeddings. Extensive experiments
conducted on three real-world recommendation datasets demon-
strate the effectiveness and efficiency of HeteFedRec in training
federated recommender systems under heterogeneous settings.

I. INTRODUCTION

Recently, there has been a significant surge in demand

for recommender systems in various online services [1]–[7],

since they can effectively alleviate information overload by

actively discovering users’ potential interests. Conventional

recommender systems are trained in a central server with

collected user private data, which takes risks of data leakage

and raises privacy concerns [8]. With the growing awareness of

user privacy protection and some recently released regulations,

such as GDPR1 in the EU, CCPA2 in the USA, and PIPL3

in China, it is becoming harder and even infeasible for

online platforms to learn recommendation models on centrally

collected user data [9].

Federated learning [10], as a privacy-preserving paradigm,

has achieved remarkable success across various scenarios [11].

In order to tackle privacy concerns, researchers have sought

to harness federated learning for the development of privacy-

aware recommender systems namely federated recommender

* Corresponding author.
1https://gdpr-info.eu
2https://oag.ca.gov/privacy/ccpa
3https://personalinformationprotectionlaw.com
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Fig. 1: The distribution of users’ item interaction numbers.

systems (FedRecs), where clients4 can collaboratively train a

global recommendation model on their local devices without

sharing their personal data with any other participants.

Ammand et al. [12] proposed the pioneering federated rec-

ommendation framework. In this framework, a recommender

system is divided into public and private parameters. Users and

a central server collaboratively learn a recommendation model

by transmitting and aggregating the public parameters using

specific aggregation strategies. Due to the advantage of privacy

protection, several extended versions [9], [13]–[16] have been

developed based on this fundamental framework to enhance

the performance of FedRec.

Although many achievements have been made recently,

almost all existing FedRecs operate under the setting where

clients collaboratively learn a global recommendation model

of the same size since their aggregation strategies (e.g.,

FedAvg [10]) can only process homogeneous public param-

eters, as shown in Fig. 2. This setting conflicts with the

real applications where clients often possess heterogeneous

resources, such as varying amounts of training data5. Fig. 1

depicts the user-item interaction number distribution on three

recommendation datasets derived from real-world platforms.

The standard deviation of interaction numbers is about 154.2,

79.8, and 105.2 for MovieLens-1M (ML) [17], Anime, and

Douban datasets, while the average of interaction amounts is

132.8, 96.1, and 143.7, respectively, indicating the substantial

difference of data size among clients. Under this circumstance,

training a global recommendation model of the same size

on all clients would fall short of achieving the true global

4In this paper, the terms “client” and “user” are used interchangeably, as
each client is solely responsible for one user to ensure privacy protection.

5While this paper emphasizes the necessity of model heterogeneity using
data size variance as an example, it’s crucial to recognize that such hetero-
geneity can also tackle some other resource diversity problems, including
disparities in computational power, energy constraints, bandwidth, and more.
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Fig. 2: Conventional Federated Recommender Systems v.s. Heterogeneous Federated Recommender Systems. Heterogeneous

federated recommender systems assign public parameters with customized sizes considering clients’ data amounts.

optimum [18]. Clients with limited data would struggle to

support the training of the large global model, and their

model updates might even have a negative impact on the

performance of the global model, as their local models can

only be updated for few times by gradient decent [19] on

insufficient data. Conversely, clients with abundant data would

prefer to train a larger model to obtain more appropriate

recommendations. Given these limitations, there is an urgent

need for a federated recommendation framework that enables

the collaborative training of heterogeneous models6, tailored

to the specific resource scale available to each client.

In federated learning, several endeavours have been under-

taken to achieve model heterogeneity [20]. These methods can

generally be classified into two categories. The first [21]–[23]

involves leveraging knowledge distillation [24] to exchange

knowledge over heterogeneous models via a public reference

dataset. Another solution entails designing new aggregation

strategies based on the model architecture, such as channel-

wise aggregation [25], [26] and layer-wise aggregation [27].

Some works mix elements from both of these solutions to

achieve their goals [28], [29]. However, all existing hetero-

geneous federated learning methods cannot be directly used

in FedRecs due to the inherent disparities between general

federated learning and FedRecs as displayed in Fig 3.

• Difference in Data Structures. In FedRecs, a data sam-

ple is formed as (user, item, rating) which is associated

with specific users. Consequently, constructing a public

reference dataset to facilitate knowledge distillation while

ensuring privacy protection becomes impractical.

• Difference in Model Architecture. In FedRecs, the item

embedding table plays a dominant role in determining

the size of the recommendation model. The distinction

between small and large models primarily lies in the

dimensions of the item embedding. However, the model

6In this paper, heterogeneous models refer to models with different sizes.

size in federated learning is mainly related to the depth

of layers and the widths of channels.

In this paper, we propose a novel federated recommendation

framework named HeteFedRec, which aims to facilitate col-

laborative learning across clients with heterogeneous models.

Since item embeddings significantly influence the entire rec-

ommendation model and user embeddings are typically private

parameters not shared among clients, HeteFedRec primarily

focuses on heterogeneous item embeddings. The conventional

idea is to employ the padding method to aggregate item

embeddings of different sizes. However, this aggregation

strategy suffers from a severe mismatch problem because

parameters at the same position but in different embedding

tables may represent different latent factors and meanings.

To address this issue, we propose unified dual-task learning,

ensuring that submatrices of large embedding tables and small

embedding tables share the same objective/task. Furthermore,

we design a novel decorrelation regularization to prevent large

item embeddings from degrading to smaller ones. Lastly, a

relation-based ensemble distillation is proposed to effectively

merge knowledge from embeddings of different sizes based

on the intuitive idea that the ensembled spatial information

derived from various types of item embeddings contains more

reliable and useful knowledge. To showcase the effectiveness,

efficiency, and generalization of HeteFedRec, we conduct

extensive experiments on three recommendation datasets using

two commonly used base recommendation models.

The main contributions of this paper are as follows:

• To the best of our knowledge, we are the first to explore

model heterogeneity in federated recommender systems.

• We propose a heterogeneous model aggregation strategy

tailored for FedRecs, which leverages a unified dual-

task learning mechanism with dimensional decorrela-

tion regularization to facilitate knowledge sharing among

recommender models of different sizes. Furthermore, a
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Fig. 3: The difference between federated recommender sys-

tems and federated learning in model architecture and data

structure.

relation-based distillation method is proposed to distill

knowledge from heterogeneous item embedding tables.

• Extensive experiments on three real-world recommenda-

tion datasets demonstrate that our proposed methods are

effective and efficient and outperform all baselines.

II. RELATED WORK

In this section, we briefly review the literature on most

related topics. Other involved topics such as general recom-

mender systems [30] and federated learning can be referred to

corresponding surveys [31]–[35].

A. Federated Recommender Systems

Due to the privacy-preserving ability, FedRecs have received

remarkable attention recently and have been widely deployed

in many recommendation scenarios [16] such as news [36],

social [37], and POI recommendation [38]. The pioneering

work by [12] introduced the first federated recommendation

framework that utilizes federated learning with collaborative

filtering models. Building upon this basic framework, exten-

sive research has been proposed to improve the performance

of FedRecs in a short time [39]. Some works aim to bridge

the performance gap between FedRecs and centralized rec-

ommender systems by using advanced neural networks [14]

and training techniques [40]. Others focus on reducing the

training costs associated with FedRecs. For example, [13], [41]

studies achieving convergence within fewer training epochs,

and [42] attempts to reduce communication costs each round.

Besides, some researchers propose personalized federated rec-

ommender systems [43], that attempt to balance the common-

sense knowledge from global models and the personalized

information from local updating. These personalized federated

recommender systems aim to address the content heterogeneity

in clients’ data, which is orthogonal to this work.

With the notable advancements of FedRecs, the security

concerns surrounding these systems have recently gained

attention. Studies such as [44]–[47] demonstrate that FedRecs

are susceptible to manipulation by malicious users who upload

poisoned model updates, resulting in unfair and inappropriate

recommendations. [48]–[50] reveal that FedRecs still suffer

potential privacy issues since adversaries can steal attribute

information [51] and the system cannot forget quit clients.

Although significant progress has been made in FedRecs,

existing approaches necessitate sharing a global model of the

same size among clients, leading to suboptimal performance.

To address this concern, this paper takes a pioneering step with

HeteFedRec, enabling clients to collaboratively learn global

models with varying sizes in FedRecs.

B. Heterogeneous Federated Learning

Generally, the heterogeneity research [52] in federated

learning can be classified into three scenarios: data hetero-

geneity, device heterogeneity, and model heterogeneity. Data

heterogeneity research focuses on learning a global model

with clients whose training data is non-IID [20], [53], [54].

These studies attempt to strike a balance between acquiring

common-sense knowledge and maintaining local personaliza-

tion. For instance, Zhao et al. [55] addressed this problem by

adding a small subset of global data shared among all the

clients. Li et al. [56] proposed FedProx, a re-parametrization

of FedAvg [10] that includes a regularization term to pre-

serve the local model’s personalization. Hermes [57] performs

partial parameter averaging to retain model personalization.

In addition, [58] incorporates contrastive learning to rectify

model representations among individual parties. On the other

hand, research on device heterogeneity considers variations in

computing power among different participants [59], [60].

Our work is more related to model heterogeneity federated

learning. Traditional federated learning makes an essential

assumption that all clients train a model with the same

architecture [35]. In model heterogeneity, this assumption is

relaxed and the main challenge lies in aggregating knowledge

from diverse models. One research line is to design specific

aggregation strategies based on target model architecture. For

example, [25], [61] design width-level aggregation for param-

eters with different channel scales. [27]–[29] control model

size by adjusting the number of neural layers, and they only

aggregate layers in the lower layers, as these layers capture

fundamental features. Based on layer-level aggregation, [26],

[59] applies neural pruning techniques to create heterogeneous

models. Another research direction involves using knowledge

distillation [24] to transfer knowledge among heterogeneous

models. [21], [22] construct a public reference dataset that

is accessible to all clients, leveraging soft label distillation to

aggregate heterogeneous local models.

However, the aforementioned methods for model hetero-

geneity cannot be directly applied to FedRecs due to the

notable distinctions between FedRecs and traditional federated

learning. In this paper, we take the initial stride toward

implementing model heterogeneity in the context of FedRecs.

C. Knowledge Distillation

Based on the types of knowledge being transferred, distil-

lation can be classified into response-based knowledge dis-

tillation, feature-based knowledge distillation, and relation-

based knowledge distillation. Response-based knowledge dis-
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tillation [62], [63] transfers knowledge from a teacher model

to a student model by utilizing the outputs of the final

layer. Feature-based distillation, on the other hand, focuses

on training a student model using features extracted from

intermediate layers, as these layers learn to discriminate

specific features [64]. Meanwhile, relation-based distillation

involves capturing the relationships between feature maps and

leveraging this knowledge to train student models [65]–[67]. In

this paper, we propose a novel relation-based ensemble self-

distillation method that allows for the fusion of knowledge

among item embeddings of varying sizes.

III. PRELIMINARIES

A. Federated Recommendation Settings

Let U = {ui}|U|
i=1 and V = {vj}|V|

j=1 denote the sets of

users and items, respectively, while |U| and |V| represent their

sizes. In the context of FedRecs, each user ui is a client

that possesses a local dataset Di with the size |Di| varying

among users as shown in Fig. 1. Note that to protect user

privacy, the private dataset Di will not be shared with any other

participants. Di consists of user-item interactions (ui, vj , rij),
where rij is implicit feedback in this paper. rij = 1 indicates

ui has interacted with item vj , and rij = 0 means no

interaction between ui and vj , i.e., vj is a negative sample.

The goal of FedRecs is to predict r̂i∗ between ui and non-

interacted items and subsequently recommend the top-K ones

with the highest predicted scores. To achieve this, FedRecs are

trained to optimize the following formula:

argmin
{u1,...,|U|,V,Θ}

∑

ui∈U
L(F(ui,V,Θ)|Di) (1)

where ui is a user embedding vector, V is a |V| × N
item embedding matrix which is the most memory-intensive

component in FedRecs. N is the embedding size (i.e., the

number of dimensions). The user embedding ui is an 1×N
vector. Θ is other trainable parameters such as the parameters

of feedforward layers. To optimize E.q. 1 with user privacy

protection, FedRecs set ui as private parameters which will

only store in corresponding local devices and will not be

accessed by any other participants. In contrast, V and Θ are

used as public parameters to achieve collaborative learning. F
is a base recommendation algorithm, in this paper, we tried

NCF [68] and LightGCN [69] which will be introduced in

the following subsection. L is a loss function, in this paper,

following [8], [46], [47], [49], [50], our loss function is:

L(ui,V,Θ)=
∑

(ui,vj ,rij)∈Di

−rij logr̂ij+(rij−1) log(1−r̂ij) (2)

In FedRecs, a central server coordinates all clients to

optimize E.q. 1 by transmitting and aggregating the public

parameters with the following federated learning protocol.

In the initial stage, the central server initializes all public

parameters V0 and Θ0, and each client independently ini-

tializes its private parameters u0
i . After that, the following

steps are iteratively executed until model convergence. At

time step t, the central server first selects a group of clients

U t−1 and distributes public parameters Vt−1 and Θt−1 to

these clients. The selected clients integrate the received public

parameters with their private parameters ut−1
i , forming local

recommenders, which are then trained to optimize E.q. 2 on

the respective local datasets. After several epochs of local

training, the client ui sends the updates of public parameters

∇Vt−1
i and ∇Θt−1

i to the central server and concurrently

updates its private parameters locally.

ut
i = ut−1

i − lr∇ut−1
i (3)

where lr is the learning rate. The server employs specific

strategies [10] to aggregate the updates of public parameters

and use them to achieve collaborative learning:

Vt = Vt−1 − lr
∑

ui∈Ut−1

∇Vt−1
i

Θt = Θt−1 − lr
∑

ui∈Ut−1

∇Θt−1
i

(4)

The above most widely used FedRec framework relies on

an important assumption that all clients possess ample re-

sources, such as sufficient training data, to support the training

of recommendation models of the same sizes. However, as

depicted in Fig. 1, users’ data size suffers substantial variance.

Consequently, the basic FedRec framework can only train a

recommender system that attains suboptimal performance.

B. Base Recommendation Models

The basic FedRec framework is compatible with the major-

ity of deep learning-based recommendation models. Among

these models, NCF [68] and LightGCN [69] are two most

widely used techniques. Hence, to demonstrate the gener-

alization of our proposed methods, we utilize these two

recommendation models as base models in this paper.

Neural collaborative filtering [68] (NCF) extends the

method of collaborative filtering by utilizing several layers of

feedforward network (FNN) to learn the complex patterns from

user-item interaction data:

r̂ij = σ(FFN([ui,vj ])) (5)

where FFN(·) is a feedforward network, and its parameters

are included in Θ, [·] denotes concatenation operation.

In LightGCN [69], users and items are treated as distinct

nodes and a bipartite graph is constructed based on user-item

interactions. Subsequently, a LightGCN propagation is applied

on the graph to compute user and item embeddings. To ensure

privacy, the propagation is only used in user’s local graph.

Finally, these user and item embeddings are used to predict

users’ preference scores via E.q. 5.

IV. METHODOLOGY: HETEFEDREC

As mentioned in Section III, the commonly used basic Fe-

dRec framework necessitates clients to share public parameters

of the same sizes, a.k.a. homogeneous FedRecs. However,

real-world scenarios often involve clients with varying data

sizes. For clients with limited data, their model updates

may be unreliable and hinder the convergence of the global
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Fig. 4: The framework of HeteFedRec. To facilitate presentation, we omit Θ in this figure.

recommender system. Conversely, clients with abundant data

would prefer to train larger models to obtain more accurate

recommendations, benefiting from the stronger representation

capabilities of larger models.
Based on the homogeneous FedRec framework, there are

two naive solutions to address the aforementioned dilemma.

One is to exclude the updates of public parameters from clients

with limited training data and only aggregate updates from

clients with sufficient data. However, as illustrated in Fig. 1,

this approach would result in the exclusion of a significant

portion of clients, severely compromising the recommendation

performance. Another intuitive method is to opt for smaller

models that are suitable for the majority of clients. Nev-

ertheless, these smaller models have limited representation

capabilities, thereby leading to unsatisfactory recommendation

performance.
In this paper, we introduce HeteFedRec, the first heteroge-

neous federated recommender system. HeteFedRec allows for

the customization of the recommendation model size for each

client based on their available resources. Clients with limited

data can train smaller models, while clients with abundant

data can still benefit from the services provided by larger

models. In the following subsections, we will first introduce

the fundamental settings of our HeteFedRec, which builds

upon the basic FedRec framework. Subsequently, we will

present the technical details of HeteFedRec, including (1)

a heterogeneous recommendation model aggregation strategy

that contains a unified dual-task learning and a dimensional

decorrelation regularization and (2) a relation-based ensemble

self-distillation. Fig. 4 presents an overview of HeteFedRec.

A. Settings of HeteFedRec
In HeteFedRec, the size of a client’s recommendation model

can be customized based on its specific situation. In this

paper, following [28], without loss of generality, we categorize

clients into three groups based on the scale of user-item

interactions: small clients Us, medium clients Um, and large

clients Ul, to convenient the introduction of our proposed

methods. Each group is assigned corresponding public param-

eters {V,Θ}s,m,l. Here, Vs,Vm,Vl are item embeddings of

sizes |V| × Ns, |V| × Nm, |V| × Nl, respectively, with the

relationship Ns < Nm < Nl. The size of Θ depends on

the dimension length of V as it primarily includes parameters

in feedforward layers. Note that the settings of division and

dimension sizes are hyper-parameters and can be adjusted

according to specific situations.

In general, item embedding table V dominates the number

of parameters in the entire recommender system. With these

settings, users in Us will have smaller models, while users

in Ul will have larger models. Under this heterogeneous

circumstance, FedRecs are trained to optimize the following

objective:

argmin
{u1...|U|,{V,Θ}s,m,l}

∑

a∈{s,m,l}

∑

ui∈Ua

L(F(ui,Va,Θa)|Di) (6)

One straightforward approach to optimize E.q. 6 is using

a clustered-aggregation method. In this approach, the central

server aggregates clients’ model updates separately based

on their respective model sizes. However, this method falls

short of achieving optimal performance due to two main

reasons: (1) the knowledge cannot be effectively shared across

different groups, hindering the ability to leverage collaborative

information; (2) since each training sample can only update

the corresponding item embedding vector, the item embedding

table becomes data-hungry, and it may not be well-trained

within each isolated group, leading to suboptimal performance.

Another method is to aggregate these heterogeneous models

based on some observations, which has proven effective in

general federated learning. For example, HeteroFL [25] di-
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rectly conducts parameter-averaging over heterogeneous mod-

els based on the observation that deep and wide neural

networks can drop a tremendous number of parameters per

layer. [27], [28] utilize layer-wise aggregation, focusing on

the lower layers that retain more pre-trained and fundamental

knowledge. However, all these preconditions are infeasible in

the context of FedRecs, rendering these methods inapplicable.

In light of this, HeteFedRec introduces a novel heterogeneous

aggregation tailored for federated recommender systems.

B. Heterogeneous Recommendation Model Aggregation

In FedRecs, the private parameters, specifically user embed-

dings, are updated locally and do not communicate with other

clients. As a result, the update of these private parameters

can still adhere to the protocol outlined in the basic FedRec

framework. Consequently, HeteFedRec primarily focuses on

the knowledge aggregation of the public parameters, namely

{V,Θ}s,m,l. Among these parameters, the item embeddings

{V}s,m,l play a particularly crucial role as they dominate

the number of parameters in a recommender system. In what

follows, we will first introduce the aggregation strategy design

for item embeddings and then provide a brief overview of the

aggregation of Θ.

Padding based Heterogeneous Item Embedding Ag-
gregation. At epoch t, for the uploaded item embedding

updates, HeteFedRec’s central server first pads the smaller

item embedding updates to align them with the largest one

using the following function:

∇pV← padding(∇V|Nl) (7)

where padding(·|Nl) is a padding function that transforms

the matrix updates ∇V to ∇pV of size |V| × Nl by filling

0 vectors. After padding, the central server performs the

summation operation on all received item embedding updates

and the aggregated updates for each type of embedding are as

follows:

∇Vt−1
agg =

∑

ui∈Ut−1
s

∇pV
t−1
s,i +

∑

ui∈Ut−1
m

∇pV
t−1
m,i +

∑

ui∈Ut−1
l

∇Vt−1
l,i

∇Vt−1
s = ∇Vt−1

agg[:Ns]

∇Vt−1
m = ∇Vt−1

agg[:Nm]

∇Vt−1
l = ∇Vt−1

agg
(8)

where U t−1
∗ is the selected clients in the group U∗ at epoch t.

∇V∗[:Nx]
refers to a submatrix of size |V| ×Nx.

Then, the aggregated updates are used to modify corre-

sponding item embeddings:

Vt
s = Vt−1

s − lr∇Vt−1
s

Vt
m = Vt−1

m − lr∇Vt−1
m

Vt
l = Vt−1

l − lr∇Vt−1
l

(9)

Note that we set the same learning rate lr for all types of

item embeddings since we do not want to introduce too many

hyperparameters and we find this setting is effective enough.

According to the aggregation, when HeteFedRec initializes

V0
s , V0

m[:Ns]
and V0

l[:Ns]
, V0

m[Ns:Nm]
and V0

l[Ns:Nm]
from the

same point respectively, we can get following relationship:

Vt
s = Vt

m[:Ns]
= Vt

l[:Ns]

Vt
m = Vt

l[:Nm]

(10)

Unified Dual-task Learning. However, the above naive

aggregation cannot effectively train usable FedRecs because

it suffers from severe mismatch problems of updates. Specif-

ically, during clients’ local training, the updates of ∇Vt−1
s,i ,

∇Vt−1
m,i , and ∇Vt−1

l,i are calculated by optimizing the loss

function E.q. 2. Hence, as a part of these updates, the meaning

of the subparts of updates, e.g., ∇Vt−1
m[:Ns],i

, ∇Vt−1
l[:Ns],i

, and

∇Vt−1
l[:Nm],i

, is unclear. In other words, the subparts of updates,

∇Vt−1
m[:Ns],i

and ∇Vt−1
l[:Ns],i

, or ∇Vt−1
l[:Nm],i

, are not computed

to guide Vt−1
s,i or Vt−1

m,i to solve the recommendation problem,

therefore, it would be difficult to get convergence by aggre-

gating using E.q. 8.

Inspired by [29] that leverages multiple the same objective

functions to optimize a deep model’s submodel with differ-

ent depths, HeteFedRec employs a unified dual-task learning

mechanism to ensure submatrices within larger item embed-

dings share the same objective as small item embeddings.

Specifically, each user ui will utilize one of the following loss

functions depending on the group Us,m,l it belongs to:

Ls,i = L(ut−1
i ,Vt−1

s,i ,Θt−1
s,i )

Lm,i = L(ut−1
i[:Ns]

,Vt−1
m[:Ns],i

,Θt−1
s,i ) + L(ut−1

i ,Vt−1
m,i ,Θ

t−1
m,i )

Ll,i=L(ut−1
i[:Ns]

,Vt−1
l[:Ns],i

,Θt−1
s,i )+L(ut−1

i[:Nm]
,Vt−1

l[:Nm],i
,Θt−1

m,i )

+ L(ut−1
i ,Vt−1

l,i ,Θt−1
l,i )

(11)

where L(ui,V,Θ) is the loss function defined in E.q. 2. Note

that in order to calculate E.q. 11, clients in Um will not only

receive Θm but also Θs, meanwhile, users in Ul will have all

the Θs, Θm and Θl. Since Θ mainly comprises parameters

from feedforward networks with 2 or 3 layers, these extra

communication costs will be negligible. Based on the above

equation, larger item embeddings’ submatrices updates, such

as ∇Vt−1
m[:Ns],i

, ∇Vt−1
l[:Ns],i

, and ∇Vt−1
l[:Nm],i

, can be directly

aggregated to optimize smaller item embeddings since these

updates are trained to minimize the same recommendation loss

function. Fig. 5 illustrates the unified dual-task learning.

Dimensional Decorrelation Regularization. Although

E.q. 11 fixes the updates mismatch problem, it may introduce

a new challenge known as dimensional collapse for larger

embeddings Vm and Vl. Specifically, by solely optimizing

the submatrices Vl[:Ns],i and Vm[:Ns],i, all terms in Ll or

Lm are reduced. This phenomenon causes the item repre-

sentation of larger models to be primarily confined to the

low-dimensional space, rendering the remaining parameters

Vm[Ns:],i and Vl[Ns:],i redundant. Consequently, HeteFedRec

degrades to homogeneous FedRecs that solely rely on Vs, thus

diminishing the benefits of model heterogeneity.
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Fig. 5: Overview of unified dual-task learning.

To maintain the importance of each dimension in a matrix,

one natural way is to retain their singular values of the covari-

ance matrix. Therefore, to prevent Vm,i and Vl,i collapsing

to small embedding Vt
s,i, we can add the regularization term

Lsingular(V
t−1
m,i ) and Lsingular(V

t−1
l,i ) in E.q. 11 to penalize

the variance among each dimension’s singular value:

Lsingular(V) =
1

N

N∑

i=1

(λi − 1

N

N∑

j=1

λj)
2 (12)

where λ is the singular value of V’s covariance matrix.

However, the computation of singular values is expensive.

[70], [71] have demonstrated that instead of penalizing the

variance of singular values, regularizing the Frobenius norm

of the correlation matrix can achieve the same effects. Thus,

in this paper, we employ the following decorrelation regular-

ization term to ensure that Vt
l[Ns:],i

or Vt
m[Ns:],i

encode unique

knowledge:

Lreg(V) =
1

N

∥∥∥∥∥corr(
V − V̄√
var(V)

)

∥∥∥∥∥
F

(13)

‖·‖F is Frobenius norm. corr(·) calculates the correlation

matrix. V̄ is the columns’ mean of V by default. var(·)
computes the variance of a matrix.

Then, the loss function for clients in groups Um and Ul is

transformed from E.q. 11 to:

L′m,i = Lm,i + αLreg(V
t−1
m,i )

L′l,i = Ll,i + αLreg(V
t−1
l,i )

(14)

where α is the factor that controls the importance of the

regularization term. We adopt the same α for both medium

and large item embeddings to minimize the number of hyper-

parameters. Through experiments, we have observed that this

setting proves to be sufficiently effective.

Now, after clients finish local training with the loss function

E.q. 14, HeteFedRec’s central server can conduct hetero-

geneous aggregation for item embeddings among different

models using E.q. 8.

{Θ}s,m,l Aggregation. For Θ, we simply aggregate them

with the same size:

Θt
s = Θt−1

s − lr
∑

ui∈Ut−1
s ∪Ut−1

m ∪Ut−1
l

∇Θt−1
s,i

Θt
m = Θt−1

m − lr
∑

ui∈Ut−1
m ∪Ut−1

l

∇Θt−1
m,i

Θt
l = Θt−1

l − lr
∑

ui∈Ut−1
l

∇Θt−1
l,i

(15)

Algorithm 1 HeteFedRec: Federated Recommender System

with Model Heterogeneity.

Input: global epoch T ; local epoch L; learning rate lr, . . .

Output: public parameters {V,Θ}s,m,l, local client embed-

dings ui|i∈U
1: Initialize public parameters {V0,Θ0}s,m,l

2: for each round t =1, ..., T do
3: sample a fraction of clients U t−1 from U
4: for ui ∈ U t−1 in parallel do
5: // execute on client sides

6: CLIENTTRAIN(ui)

7: end for
8: // the server executes heterogeneous aggregation

9: {∇Vt−1}s,m,l ← aggregate updates using E.q. 8

10: {Vt,Θt}s,m,l ← update public parameters using

E.q. 9 and E.q. 15

11: // the server executes distillation

12: {Vt}s,m,l ← update embeddings using E.q. 17

13: end for
14: function CLIENTTRAIN(ui)

15: download public parameters from the server

16: if ui ∈ Us then
17: calculate ∇ut−1

i , ∇Vt−1
s,i , ∇Θt−1

s,i using Ls,i in

E.q. 11

18: upload ∇Vt−1
s,i , ∇Θt−1

s,i to the server

19: else if ui ∈ Um then
20: calculate ∇ut−1

i , ∇Vt−1
m,i , {∇Θt−1

i }s,m using

L′m,i in E.q. 14

21: upload ∇Vt−1
m,i , {∇Θt−1

i }s,m to the server

22: else // ui ∈ Ul
23: calculate ∇ut−1

i , ∇Vt−1
l,i , {∇Θt−1

i }s,m,l using

L′l,i in E.q. 14

24: upload ∇Vt−1
l,i , {∇Θt−1

i }s,m,l to the server

25: end if
26: ut

i ← update local private parameter using E.q. 3

27: end function

C. Relation-based Ensemble Self Knowledge Distillation

Knowledge distillation has been used to facilitate knowl-

edge sharing among heterogeneous models in federated learn-

ing [52]. However, these works [21], [22], [28] require the

construction of publicly available reference datasets. In the

context of FedRecs, where data samples are sensitive and
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specific to users, these knowledge distillation methods cannot

be directly applied to heterogeneous FedRecs.

In this paper, we propose a novel relation-based ensem-

ble self-distillation mechanism to further enhance the per-

formance of heterogeneous FedRecs, eliminating the need

for constructing a reference dataset. The basic idea of our

method is that, when item embeddings are well-trained from

collaborative information, the similarity of items should be

consistent among different embedding sizes. Therefore, we

transfer knowledge by harmonizing the spatial information

across item embeddings of different sizes, i.e., keep the relative

distance relationship of item vectors consistent among item

embedding tables.

Specifically, after getting {Vt}s,m,l using heterogeneous

recommendation model aggregation at epoch t, the central

server conducts distillation with the following steps. First, to

avoid heavy computation costs, it randomly selects a subset of

items Vkd from the whole item set V as the target distillation

items. Then, it calculates selected items’ distance from each

other using {Vt}s,m,l and obtains the ensemble distance by

averaging:

dens(Vkd) = 1

3

∑

a∈{s,m,l}
d(Vt

a,Vkd) (16)

where d(·) calculates the distance among selected items. In

this paper, we use cosine similarity as the distance function.

Finally, for each embedding table in {Vt}s,m,l, the central

server computes distillation loss as follows:

Lkd(V) = ‖d(V,Vkd)− dens(Vkd)‖22 (17)

Algorithm 1 summarizes HeteFedRec using pseudocode.

V. EXPERIMENTS

In this section, we conduct experiments to answer the

following research questions (RQs):

• RQ1. How effective is our HeteFedRec compared to

homogeneous and heterogeneous FedRec baselines?

• RQ2. How efficient is our HeteFedRec compared to

the baselines in terms of model convergence speed and

communication cost?

• RQ3. How does HeteFedRec benefit from each key

component?

• RQ4. How does the ratio of client division affect Het-

eFedRec’s performance?

• RQ5. How does the model size affect HeteFedRec’s

performance?

• RQ6. How does the value of hyperparameter α affect

HeteFedRec’s performance?

A. Datasets

We conduct extensive experiments on three real-world rec-

ommendation datasets: MovieLens-1M (ML) [17], Anime,

and Douban [72], covering three different scenarios (movie

recommendation, anime recommendation, and book recom-

mendation) to evaluate the performance of our HeteFedRec.

The statistics of these datasets are presented in Table I. “Avg.”

is the average number of user-item interactions. “< 50%” or

“< 80%” represent 50% or 80% of users’ interaction numbers

that are less than certain values. In this paper, we use these

values to divide clients into Us,m,l without specific notation.

The ML dataset consists of users’ ratings for movies and in-

cludes 6, 040 users, 3, 706 items, and 1, 000, 209 interactions.

The Anime dataset contains user preference data crawled from

MyAnimeList7 and consists of 10, 482 users, 6, 888 items,

and 1, 265, 530 watching records. The Douban dataset is a

subset from Douban book, comprising 330, 268 interactions

between 1, 833 users and 7, 397 items. Following the settings

of recommendation with implicit feedback [44], [49], [68], we

binarize all datasets’ user ratings, transforming all ratings to

rij = 1, and negative instances are sampled with a ratio of

1 : 4. For each dataset, 80% of data and 20% of data are used

as training and test set. When a client is selected for training,

10% of its training data will be used as the validation set

to guide the local training. Note that to protect data privacy,

following [44], [49], [68], a user is a client, and users can only

use their own data during the training process.

TABLE I: Statistics of recommendation datasets

Dataset Users Items Interactions Avg. < 50% < 80%
ML 6,040 3,706 1,000,209 165 77 203
Anime 10,482 6,888 1,265,530 120 69 150
Douban 1,833 7,397 330,268 180 115 244

B. Evaluation Metrics

To evaluate the effectiveness of the proposed heterogeneous

federated recommendation framework, we employ the widely

adopted metrics [69], [73] Recall at Rank 20 (Recall@20)

and Normalized Discounted Cumulative Gain at Rank 20

(NDCG@20) to evaluate the recommender system’s perfor-

mance. Recall measures the average probability of relevant

items being successfully recommended to users, while NDCG

takes into account the position of relevant items in the rec-

ommendation list. These metrics provide a comprehensive

evaluation of the recommender system’s performance.

C. Baselines

Since this is the first work on federated recommender

systems with heterogeneous model sizes, we construct the

following baselines for comparison:

• All Small. This baseline deploys small recommenda-

tion models to all clients without considering their data

amounts. While this approach avoids the dilemma of

weak clients not being able to support larger models, it

limits the overall ability of FedRecs.

• All Large. This baseline deploys large recommenda-

tion models to all clients without considering their data

amounts. However, since clients with small amounts

of data cannot effectively support the training of large

models, their updates can even negatively impact the

overall performance of FedRecs.

7https://myanimelist.net/
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• All Large/Exclusive. This baseline deploys large rec-

ommendation models to all clients but only aggregates

updates from clients with sufficient data.

• Standalone. This baseline assigns heterogeneous recom-

mendation models to clients based on their data amounts.

Each client independently trains its model without collab-

oration or knowledge sharing with other clients.

• Clustered FedRec. Following the clustered scheme in

federated learning [74], [75], we construct Clustered

FedRec. It aggregates the same type of model.

• Directly Aggregate. This method directly aggregates het-

erogeneous recommendation model updates using E.q. 8.

However, since these updates are not guided by the

unified dual-task learning mechanism, it results in a

significant updates mismatch problem.

In general, the first three baselines, “All Small”, “All Large”,

and “All Large/Exclusive”, are homogeneous FedRecs, where

the recommendation models are either all small or all large,

regardless of the client’s data amounts. On the other hand,

the last three baselines, “Standalone”, “Clustered FedRec”,

and “Directly Aggregate”, are heterogeneous FedRecs in-

spired by corresponding federated learning schemes. These

heterogeneous FedRecs consider the varying data amounts of

clients and aim to address the challenges posed by resource

heterogeneity in the federated recommender system setting.

D. Parameter Settings

On ML and Anime datasets, the dimensions Ns, Nm, and

Nl are 8, 16, 32 for both Fed-NCF and Fed-LightGCN. For

the Douban, Ns, Nm, and Nl are set to 32, 64, and 128 for

both Fed-NCF and Fed-LightGCN as users in Douban have a

higher average number of interactions than the other datasets.

The proportion of Us, Um, and Ul is 5 : 3 : 2 without specific

noting. Both Fed-NCF and Fed-LightGCN models utilize three

feedforward layers with [2×N∗, 8, 8] dimensions for different

types of models. The layer of LightGCN propagation is 1.

Adam [76] with 0.001 learning rate is adopted as the optimizer.

At the beginning of an epoch, the server shuffles the queue of

clients. Then, at each epoch, there are several rounds for the

central server to traverse the client queue. During each round,

the central server selects 256 users for training.

E. The Effectiveness of HeteFedRec (RQ1)

Table II presents the comparison of HeteFedRec with six

baselines. Among homogeneous baselines, we can see that

“All Small” achieves better performance than “All Large”.

This phenomenon supports our argument that clients with

insufficient data cannot support large models’ training there-

fore even with stronger models, “All Large” cannot achieve

better performance. Besides, we can observe a significant

performance drop of the method “All Large/Exclusive”, since

it excludes the updates from Us which represent a large

proportion of the entire client set. In heterogeneous FedRecs,

“Standalone” exhibits the poorest performance due to the lack

of collaboration among clients. The clustered scheme, which

has been used in federated learning to address model hetero-

geneity, proves ineffective for training a usable recommender

system in “Clustered FedRec”. This could be attributed to the

fact that collaborative information is crucial in recommender

systems, and the clustered scheme hinders collaborative learn-

ing among clients. The “Directly Aggregate” method attempts

to fuse knowledge between heterogeneous models but suffers

from severe updates mismatch problems. Essentially, “Directly

Aggregate” can be viewed as HeteFedRec removed unified

dual-task learning, dimensional decorrelation regularization,

and knowledge distillation components. In baselines, all het-

erogeneous FedRecs fail to train a FedRec with compa-

rable performance to homogeneous baselines. As the first

heterogeneous method tailored for FedRecs, our HeteFedRec

outperforms all heterogeneous and homogeneous baselines

on all datasets using both Fed-NCF and Fed-LightGCN by

a significant margin, demonstrating the effectiveness of our

proposed methods.

To gain further insight into the performance gap, we analyze

the NDCG scores in detailed user groups as shown in Fig. 6.

We focus on analyzing the performance of “All Small”, “All

Large”, and HeteFedRec, as these two homogeneous baselines

achieve performances closest to our HeteFedRec. Overall, the

performance of all three methods follows a consistent trend:

NDCG scores are higher in Ul and Um compared to Us. This

is because that Ul and Um have more training data available

compared to Us. Specifically, on ML and Anime datasets,

“All Small” outperforms “All Large” in Us for both Fed-NCF

and Fed-LightGCN. However, in Ul, the performance of “All

Small” is generally worse than “All Large”. This intriguing

observation suggests that clients in Us struggle to train large

models effectively, while clients in Ul benefit from the larger

models with stronger learning abilities, aligning with our

motivation to introduce model heterogeneity in FedRecs On

the Douban dataset, “All Small” consistently outperforms “All

Large” in all user groups. This may be attributed to the large

model size (i.e., 128 dimension size) of the embedding tables,

making it challenging for all clients to handle the training. Our

HeteFedRec achieves the best performance across all client

groups and scenarios. This can be attributed to two factors: (1)

the assignment of models of different sizes based on clients’

data amounts, enabling clients to train appropriate models of

suitable sizes, and (2) the effective knowledge transfer among

heterogeneous recommendation models through our proposed

heterogeneous aggregation strategies, leading to performance

improvements in all user groups.

F. The Efficiency of HeteFedRec (RQ2)

Fig. 7 illustrates the convergence of HeteFedRec compared

to “All Small” and “All Large” as these two baselines achieved

comparable performance. Due to the limitation of space, we

only present the results on the ML dataset, similar trends can

be observed on other datasets. Generally, HeteFedRec achieves

better performance after about 10 epochs and 20 epochs in

Fed-NCF and Fed-LightGCN respectively. “All Small” is the

method that reaches convergence within the fewest epochs
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TABLE II: The comparison of the overall performance of HeteFedRec and baselines. The best values on each dataset are bold.

Underline indicates the best values in homogeneous methods.

ML Anime Douban
Type Methods Recall NDCG Recall NDCG Recall NDCG

Fed-NCF

Homogeneous
All Small 0.02203 0.04328 0.04301 0.04962 0.00759 0.01087
All Large 0.02558 0.04028 0.02727 0.04442 0.00726 0.00878
All Large/Exclusive 0.00956 0.01753 0.01199 0.02458 0.00702 0.00856

Heterogeneous

Standalone 0.00615 0.01108 0.00279 0.00411 0.00209 0.00295
Clustered FedRec 0.01712 0.02235 0.01508 0.01581 0.00248 0.00501
Directly Aggregate 0.01177 0.02207 0.01903 0.03151 0.00247 0.00502
HeteFedRec(Ours) 0.02662 0.04781 0.05855 0.05655 0.01101 0.01290

Fed-LightGCN

Homogeneous
All Small 0.02251 0.04232 0.02924 0.04824 0.00350 0.00530
All Large 0.02301 0.04197 0.02825 0.04788 0.00234 0.00378
All Large/Exclusive 0.00924 0.01891 0.01702 0.01467 0.00215 0.00363

Heterogeneous

Standalone 0.00605 0.01085 0.00278 0.00411 0.00190 0.00263
Clustered FedRec 0.01483 0.02633 0.01443 0.01379 0.00259 0.00480
Directly Aggregate 0.01454 0.02657 0.01450 0.01437 0.00257 0.00479
HeteFedRec(Ours) 0.02434 0.04313 0.03306 0.05177 0.00393 0.00639
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Fig. 6: Detailed performance of “All Small”, “All Large”, and “HeteFedRec(Ours)” in different user groups.

TABLE III: The cost of one-time transmitting between clients

and the central server.

Client Type All Small All Large HeteFedRec
Us size(Vs +Θs) size(Vl +Θl) size(Vs +Θs)
Um size(Vs +Θs) size(Vl +Θl) size(Vm + {Θ}s,m)
Ul size(Vs +Θs) size(Vl +Θl) size(Vl + {Θ}s,m,l)

because it averagely has the smallest recommendation models

and small models are usually easy to get convergence. The

convergence speed for “All Large” and our HeteFedRec is

similar, but the converged performance of HeteFedRec is much

better than these two baselines. In conclusion, HeteFedRec

achieves convergence within a reasonable number of epochs

compared to “All Small” and “All Large”.

The communication costs are another important consider-

ation when using a FedRec framework. Table III compares

HeteFedRec’s communication costs with “All Small” and

5 10 15 20
Epoch

0.
01
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04

N
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CG
@
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0 5 10 15 20 25 30
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0.
04

Fed-LightGCN on ML

All Small All Large HeteFedRec(Ours)

Fig. 7: The performance trend during the training process for

Fed-NCF and Fed-LightGCN on ML. A similar trend can be

seen in Anime and Douban.

“All Large” formally. The only additional costs incurred by

HeteFedRec are size(Θs) for clients in Um and size(Θs,m)
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TABLE IV: Ablation Study. “RESKD” is short for “Relation-based Ensemble Self Knowledge Distillation”, “DDR” is

abbreviation for “Dimensional Decorrelation Regularization”, and “UDL” indicates “Unified Dual-task Learning”.

ML Anime Douban
Recall NDCG Recall NDCG Recall NDCG

Fed-NCF

HeteFedRec 0.02662 0.04781 0.05855 0.05655 0.01101 0.01290
- RESKD 0.02620 0.04636 0.05696 0.05504 0.00956 0.01232
- RESKD,DDR 0.02390 0.04332 0.05766 0.05355 0.00797 0.01167
- RESKD,DDR,UDL 0.01177 0.02207 0.01903 0.03151 0.00247 0.00502

Fed-LightGCN

HeteFedRec 0.02434 0.04313 0.03306 0.05177 0.00393 0.00639
- RESKD 0.02332 0.04307 0.03282 0.05072 0.00372 0.00618
- RESKD,DDR 0.02231 0.04225 0.03129 0.04812 0.00351 0.00563
- RESKD,DDR,UDL 0.01454 0.02657 0.01450 0.01437 0.00257 0.00479

TABLE V: The variance of singular values in the covariance

matrix of the largest item embedding Vl. A higher value

implies a more severe dimensional collapse.

ML Anime Douban

Fed-NCF - DDR 0.4573 0.9190 0.0523
+ DDR 0.0974 0.0838 0.0167

Fed-LightGCN - DDR 0.0459 0.0421 0.0348
+ DDR 0.0208 0.0240 0.0171

for users in Ul. Considering our experimental settings and

taking the ML dataset as an example, the parameter numbers

of Vs,Vm, and Vl are 29648, 59296 and 118592, and the

parameters of {Θs,m,l} are generally from feedforward layers

and their sizes are no more than one hundred. Therefore, these

additional costs are negligible.

G. Ablation Study (RQ3)

HeteFedRec comprises three crucial components: a uni-

fied dual-task learning to address mismatch problems, a di-

mensional decorrelation regularization to prevent dimensional

collapse, and a relation-based self-knowledge distillation to

further merge knowledge among heterogeneous models. In this

part, we investigate the impact of each component. Specifi-

cally, we gradually remove knowledge distillation (RESKD),

regularization (DDR), and unified dual-task learning (UDL)

and present the experimental results in Table IV. When

RESKD is removed, there is a slight drop in the perfor-

mance of HeteFedRec, indicating the effectiveness of RESKD.

We then continue by removing the regularization term and

find that, HeteFedRec’s performance becomes similar to “All

Small” in Table II. This is because, without the dimensional

decorrelation regularization term, HeteFedRec experiences a

dimensional collapse problem, resulting in a degradation of its

model’s representation ability to that of small models. When

all three components are eliminated, HeteFedRec becomes

equivalent to “Directly Aggregate”, and the recommender

system’s performance is significantly decreased, highlighting

the crucial role of our unified dual-task learning mechanism.

To further understand the effectiveness of DDR, we calcu-

late the variance of singular values in the covariance matrices

of the largest item embeddings Vl, as shown in Table V. A

smaller variance indicates a more balanced importance among

dimensions, suggesting the alleviation of the dimensional

collapse problem. As displayed in Table V, after applying

DDR, the variance of singular values is reduced in all cases.

H. Impact of Client Division (RQ4)

In this part, we thoroughly investigate the influence of

client division. Specifically, we conduct experiments with three

different division ratios 5 : 3 : 2, 1 : 1 : 1, and 2 : 3 : 5.

The first division setting is the original one used in the main

experiments, which assumes that most clients cannot afford

the training of larger models. The 1 : 1 : 1 ratio is a

neutral strategy that evenly distributes clients into the Us, Um,

and Ul groups based on the number of users’ training data.

The 2 : 3 : 5 ratio is an optimistic division solution that

assumes only 20% of clients lack training data and most clients

have sufficient data to train stronger recommender systems.

Table VI presents the experimental results of HeteFedRec

under different client divisions. We also include “All Small”

and “All Large” in Table VI for comparison, as they roughly

correspond to the division ratios of 10 : 0 : 0 and 0 : 0 : 10,

respectively. Overall, HeteFedRec with the conservative ratio

setting (i.e., 5 : 3 : 2) achieves better performance among

these three division strategies. This result is consistent with the

interaction number distribution of ML, Anime, and Douban

as indicated in Fig. 1, where most users have insufficient

interaction data. In addition, as we move from the left to

the right in Table VI (i.e., 5 : 3 : 2 to “All Large”), more

and more clients are assigned with larger models, but the

overall performance continues to deteriorate. This observation

further supports the importance of model size heterogeneity in

FedRecs. It is important to note that in this paper, our focus

is on providing a framework to achieve model heterogeneity

in FedRecs, while the optimal client division estimation can

be explored in future research.

I. Impact of Model Size (RQ5)

Since this paper aims to propose a personalized model sizes

federated recommender system, the settings of model sizes

are important to be explored. In the main experiments, we set

{Ns, Nm, Nl} to {8, 16, 32}. In this part, we tried a smaller

setting (i.e., {2, 4, 8}) and a larger setting (i.e., {32, 64, 128}).
We only present the experimental results on ML in Table VII

due to space limitation. A similar conclusion can be obtained

from other datasets. At first, by comparing the homogeneous

FedRecs (“All Small” and “All Large”), we observed that
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TABLE VI: The performance of HeteFedRec under different client group division. “x:y:z” represents x
x+y+z , y

x+y+z , and
z

x+y+z proportions of users are classified into Us,Um, and Ul according to interaction amounts, respectively. From 5:3:2 to

2:3:5, more and more clients are assigned larger models. The best values on each dataset are bold.

Datasets Metrics All Small 5:3:2 1:1:1 2:3:5 All Large

Fed-NCF

ML Recall 0.02203 0.02662 0.02619 0.02576 0.02558
NDCG 0.04328 0.04781 0.04362 0.04197 0.04028

Anime Recall 0.04301 0.05855 0.05792 0.05602 0.02727
NDCG 0.04962 0.05655 0.05540 0.05431 0.04442

Douban Recall 0.00759 0.01101 0.00819 0.00756 0.00726
NDCG 0.01087 0.01290 0.00996 0.00893 0.00878

Fed-LightGCN

ML Recall 0.02251 0.02434 0.02335 0.02296 0.02301
NDCG 0.04232 0.04313 0.04233 0.04204 0.04197

Anime Recall 0.02924 0.03306 0.03233 0.03064 0.02825
NDCG 0.04824 0.05177 0.04838 0.04804 0.04788

Douban Recall 0.00350 0.00393 0.00360 0.00333 0.00234
NDCG 0.00530 0.00639 0.00528 0.00483 0.00378

TABLE VII: The performance (NDCG@20) of HeteFedRec

and baselines under different model size settings on ML. A

similar trend can be observed in Anime and Douban. {a, b, c}
represents the size of Ns, Nm and Nl. From the left to the

right part of the table, model sizes are increased. The best

values are bold.

{2,4,8} {8,16,32} {32,64,128}

Fed-NCF
All Small 0.03791 0.04328 0.04028
All Large 0.04328 0.04028 0.03903
HeteFedRec 0.03829 0.04781 0.04074

Fed-LightGCN
All Small 0.03813 0.04232 0.04197
All Large 0.04232 0.04197 0.03901
HeteFedRec 0.04017 0.04313 0.04093

as the model size increased from 2 to 128, the FedRec’s

performance initially improved and then decreased for both

Fed-NCF and Fed-LightGCN. For example, in Fed-NCF, when

Ns is 2, the NDCG score is 0.03791, indicating that such

a small model cannot capture the complex patterns of user-

item interactions. Then, when the model size increased to 8,

the performance improved to approximately 0.043. However,

when the model size continued to increase to 32 and 128,

FedRecs’ performance dropped to about 0.040 NDCG scores.

Comparing HeteFedRec with the homogeneous FedRecs,

when the setting is {2, 4, 8}, its performance is better than “All

Small” but is slightly behind “All Large”. This is because, in

such a range, the models are too small, and simply increasing

the model size can yield positive feedback. Under the setting

of {8, 16, 32}, HeteFedRec outperforms both “All Small” and

“All Large” due to its personalized model size assignment.

For {32, 64, 128}, where the model sizes are too large, “All

Small” achieves the best performance, but our HeteFedRec

still outperforms “All Large”. In this paper, our focus is on

providing a FedRec framework that enables heterogeneous

model sizes. The task of finding an optimal model size set

can be explored in future work.

J. Impact of Regularization Factor α (RQ6)

In this part, we explore the impacts of the dimensional

decorrelation regularization factor α. Fig. 8 shows the per-

formance changes as α increases from 0.5 to 2.0 on ML

due to space limitation. In both cases, the trends indicate that

0.5 1.0 1.5 2.0
Different α for Fed-NCF

0.0464

0.0468

0.0472

0.0476

N
D

CG
@

20

0.5 1.0 1.5 2.0
Different α for Fed-LightGCN

0.0424

0.0428

Fig. 8: The performance trend w.r.t. the change of α for Fed-

NCF and Fed-LightGCN on ML. Similar trends can be seen

on the other two datasets.

HeteFedRec’s performance initially increases to a peak point

and then decreases with a further increase in α.

VI. CONCLUSION

This paper introduces HeteFedRec, the first federated rec-

ommendation framework that allows personalized model siz-

ing for participants. HeteFedRec leverages unified dual-task

learning to facilitate additive aggregation of recommenda-

tion models with varying item embedding sizes. A dimen-

sional decorrelation regularization is employed to prevent

dimensional collapse. Additionally, HeteFedRec incorporates

a relation-based knowledge distillation approach to enhance

knowledge sharing from diverse recommendation models. Ex-

tensive experiments are conducted on three real-world datasets

using two widely used recommender systems. The results

demonstrate the effectiveness and generalizability of HeteFe-

dRec. However, HeteFedRec still requires the recommendation

model to have the same model architecture. Besides, how

to find the optimal solution of client group division and

model sizes for each group is also non-trivial as HeteFedRec’s

performance is very sensitive to these settings. In future work,

we would like to explore address these two problems.
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