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Reasoning has long been regarded as a distinctive hallmark of human cognition, and recent advances in the artificial intelligence community
have increasingly focused on the reasoning large language models ( ). However, due to strict privacy regulations, the domain-specific
reasoning knowledge is often distributed across multiple data owners, limiting the ’s ability to fully leverage such valuable resources. In
this  context,  federated  learning  (FL)  has  gained  increasing  attention  in  both  the  academia  and  industry  as  a  promising  privacy-preserving
paradigm for addressing the challenges in the data-efficient training of .
    In this paper, we conduct a comprehensive survey on federated  and propose a novel taxonomy based on training signals, including
training signals derived from raw data, learned representations, and preference feedback. For each category, we emphasize the emerging trends
according to how to use FL to enhance reasoning capabilities of  considering the model effectiveness, communication cost and privacy
preservation. Finally, we envision future research directions and challenges based on insights from existing studies.
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■ 1  Introduction
“Man is the only animal capable of reasoning,  though many others
possess the faculty of memory and instruction in common with him.”
　　　　　　　　　　　　　　　　　　　　　　—Aristotle

A = True A→ B

Associated  with  characteristically  human  activities,  reasoning  has
long  been  regarded  as  the  distinguishing  capability  of  humans  [1].
Specifically,  as  defined  in  the  Cambridge  Dictionary  [2],  the  term
reasoning refers to the process of thinking about something in order
to make a decision. For example, in classical deductive reasoning [3],
given  two  propositions  and ,  we  can  make  the
deduction to obtain the final answer as follows,
 

I f A = True and A→ B
︸                          ︷︷                          ︸

Reasoning Process

, then B = True
︸      ︷︷      ︸

Final Answer

. (1)

LLMs

LLMs

Reasoning is widely regarded as a fundamental capability that large
language  models  ( )  must  develop  on  the  path  toward  the
Artificial  General  Intelligence (AGI) [4–7].  Recently,  enhancing the
reasoning  capabilities  of  has  emerged  as  a  central  research
direction  in  both  academia  [8–10]  and  industry  [11–14].  For
example,  the  technical  reports  of  advanced  LLMs released  in  2025,
such  as  DeepSeek-R1  [11],  GPT-4.5  [12],  Claude  3.75  [13],  and
QwQ-32B  [14],  highlight  reasoning  as  both  a  central  goal  and  a

major achievement.

LLMs

rLLMs

Notably,  in  the seminal  work,  Wei  et  al.  [8]  introduced Chain-of-
Thought  (CoT)  as  a  mechanism  to  facilitate  reasoning  in ,
which enables the language model to “think more” through multiple
intermediate  steps  before  generating  a  final  output.  Given  the
remarkable  effectiveness  of  CoT-style  reasoning  in  complex  tasks
such  as  code  generation  and  mathematical  problem  solving,  the
prevailing  paradigm  of  the  language  model  is  increasingly  shifting
toward the reasoning-oriented LLMs ( ).

rLLMs

rLLMs

rLLMs

In  the  training  process  of ,  high-quality  data,  particularly
those  with  explicit  or  implicit  reasoning  paths,  serve  as  the
cornerstone.  However,  in  real-world  applications,  the  valuable
domain-specific  knowledge,  e.g.,  clinical  decision  records  in
healthcare  [15]  or  proprietary  codes  in  soft  engineering  [16],  is
typically  distributed  across  multiple  data  owners  due  to  the  strict
privacy  regulations  [17].  Therefore,  how  to  utilize  these  reasoning-
rich  training  signals  collected  from  human  experts  or  generated  by
LLMs in a privacy-preserving fashion is crucial to enhance reasoning
capabilities  of .  As  a  remedy,  federated  learning  (FL)
[18–23],  as  a  novel  distributed  learning  paradigm,  enables 
trained  on  domain-specific  reasoning  data  across  data  owners  while
preserving privacy and complying with constraints in data regulation.
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Different from previous smaller ,  the ’s unique features
(e.g.,  billion-scale parameters, in-context learning capabilities) bring
new challenges and opportunities for federated learning in accuracy,
privacy  and  communication,  which  largely  reshape  traditional  FL
approaches.  Researchers  have  developed  numerous  novel  FL-based
approaches  to  improve ,  including  federated  pre-training
[24–33],  federated  instruction  tuning  [34–38],  federated  prompt
learning  [39–48],  etc.  Therefore,  it  is  beneficial  to  conduct  a
systematic survey in this rapidly developing field, which can inspire
future  research  on  FL  of  by  providing  evolving  landscapes
and  understanding  unique  challenges  and  promising  opportunities
along this direction.

LLMs

LLMs

rLLMs

rLLMs

Related  surveys  on  FL of .  Existing  surveys  [49–53],  which
investigate the federated , mainly focus on FL techniques using
training  signals  from  raw  data  or  representations,  overlooking  the
flexible  training  signals  for .  In  contrast,  this  survey  paper
provides a more comprehensive survey covering used training signals
from raw data to preferences. We compare FL techniques of 
covered in this survey and the previous in Table 1.

Main  contributions.  In  this  paper,  we  presents  a  comprehensive
survey on the federated learning of reasoning LLMs. Specifically, the
main contributions of this survey are summarized as follows:

rLLMs

rLLMs

Firstly,  to  accommodate  the  shift  from  prior  small  language
models to large language models, we propose a novel taxonomy for
federated ,  organized  according  to  forms  of  training  signals.
Specifically, we categorize training signals fed into  into three
types: i.e., (i) signals derived from raw data, (ii) model-interpretable
representations and (iii) preferences from human or AI models.

rLLMs

Secondly,  for  each  class  of  FL  techniques,  we  discuss  the
challenges  or  opportunities  introduced  by  the  features  of 
concerning  model  accuracy,  communication  overhead,  and  privacy
preservation.  We  also  summarize  emerging  research  trends  and
highlight promising directions for future research.

Lastly,  we  envision  two  future  research  avenues  that  are
particularly  promising  for  enhancing  reasoning  capabilities  in
federated scenarios, both remaining in early stages: (i) Federated RL

rLLMs rLLMsenhanced  and (ii) Federated RAG enhanced .

rLLMs

rLLMs

rLLMs

Survey  structure  and  roadmap.  This  survey  provides  a
comprehensive overview for the federated training techniques, open-
source  platforms,  typical  applications  and  future  directions  for

. As shown in Fig. 1, this survey is organized as follows. We
firstly introduce our proposed new taxonomy for FL of  based
on training signals in Section 3. Section 4 presents the FL techniques
based  on  training  signals  from  distributed  raw  data,  which  mainly
utilizes  the  federated supervised learning and includes  the  federated
supervised  pre-training  in  Section  4.1  and  federated  instruction
tuning  in  Section  4.2.  Section  5  discusses  model-interpretable
training  signals  (i.e.,  learned  representation),  including  federated
prompt learning in Section 5.1, federated adapter learning in Section
5.2 and the federated knowledge distillation in Section 5.3. We then
review  the  studies  utilizing  preference  signals  from  human  or  AI
models, which primarily employ the federated reinforcement learning
in  Section  6.  Next,  we  review  the  open-source  platforms  for
federated  and  the  representative  applications  in  Section  7.
Finally,  we  envision  the  future  research  directions  in  Section  8  and
conclude this work in Section 9.
 

■ 2  Concepts: reasoning LLMs and FL
LLMsIn this section, we briefly review large language models ( ) and

compare  the  two  response  modes:  straightforward  question-
answering mode and multi-step  reasoning mode.  We then introduce
fundamental  concepts  of  federated  learning  (FL)  and  discuss
commonly used privacy-preserving techniques.
 

2.1  Language models and its reasoning
LM LMs

X = (x1, x2, . . . , xn) LMs

Language model ( ).  [81] define the probability distribution
over  a  sequence  of  tokens.  Given  a  sequence  of  tokens

,  the  model  their  joint  probability  and
support a series of of fundamental natural language processing (NLP)
tasks such as text summarization [82], machine translation [83], and
text  completion  [84]  through  next-token  prediction.  The  next-token
prediction process can be typically formulated as follows,
 

  
Table 1    Related surveys on federated reasoning large language models

Year
① Signal from raw data ② Signal from representation ③ Signal from preference

Pre-training Instruct.-tuning Prompt-tuning Adapter-tuning Know.-distil. Human-preference AI-preference

2023 [49] √ √ √

2024 [54] √ √ √

2024 [55] √ √ √ √ √

2024 [50] √ √ √ √

2024 [53] √ √ √ √ √

2025 [51] √ √ √ √ √

2025 [52] √ √ √ √

This survey √ √ √ √ √ √ √

Shuyue WEI et al.    Federated reasoning LLMs: a survey

 
Frontiers of Computer Science  | Issue 12 | Volume 19 | December 2025 | 1912613-2



P(y | X) =

T∏

t=1

P(yt | X,y1,y2, . . . ,yt−1), (2)

X Y = (y1,y2, . . . ,yT )where  is the input context sequence and  is the
target predicted sequence.

LLM

LLMs

LM

LLMs LLM

LLMs

LLMs

Large  language  model  ( ).  In  recent  years,  we  have  witnessed
remarkable progress in . With the scaling of model parameters
and  training  data,  LLMs  (e.g.,  GPT-4  [85],  PaLM-2  [86],  and
LLaMA-2 [87]) have demonstrated exceptional performance across a
wide  range  of  NLP  tasks,  surpassing  the  traditional ,  which  is
referred to the Emergent  Abilities of  [88].  For  example, 
first  exhibits  in-context  learning  abilities,  enabling  them to  perform
new tasks by following a few examples provided in the input context
without  relying  on  gradient-based  parameter  optimization.  Thus,

 are  also viewed as  zero-shot  learners  [89].  At  the same time,
 show emerging  reasoning  capabilities,  particularly  in  solving

complex  tasks  requiring  multiple  steps  of  processing,  such  as
mathematical  computations,  code  generation,  and  logical  inference
[4].

rLLMs

rLLMs

This  survey  focuses  on  reasoning-oriented  large  language  models
( ),  emphasizing  the  multi-step  reasoning  capability  in
complex  tasks.  Next,  we  introduce  the  multiple-step  reasoning  of

 from the perspective of Chain-of-Thoughts (CoT) [8].

rLLM

LLM

LLMs

LLM

Reasoning LLM ( ).  The Chain of  Thought  has  emerged as  a
novel  reasoning  paradigm  for  [90–92],  attracting  significant
attention  from  the  researchers  in  both  academia  and  industry
[10,86,93–96].  In  the  seminal  work  [8],  Wei  et  al.  have  observed  a
crucial insight in the reasoning process of , i.e., if we allow the
LLMs  to  think  or  reason  step-by-step  before  arriving  at  the  final
answer,  the ’s  performances  on  complex  tasks  such  as  math

LLMs

word problems from GSM8K [97] can be significantly enhanced. As
shown  in Fig. 2,  the  CoT  reasoning  paradigm  allows  the  to
generate  reasoning  tokens  before  output  the  answer  sequence.
Similarly, we can formalize the CoT reasoning process through next-
token prediction as,
 

P(y | X) =

Tr∏

t=1

P(yt | X,y1,y2, . . . ,yt−1)

=

k∏

t=1

P(rt | X,r<t)

︸             ︷︷             ︸

Reasoning Tokens

·

k+Tr∏

t=k+1

P(yt−k | X,r<k,y<t)

︸                        ︷︷                        ︸

Answer Tokens

, (3)

X = (x1, x2, . . . , xn)

R = (r1,r2, . . . ,rk)

Y = (y1,y2, . . . ,yTr )

R

Y

LLMs

rLLMs

where  is the given context tokens, the reasoning
tokens  forming  the  CoT  reasoning  path,  and

 is  the  final  answer  to  the  user’s  query.  In  an
explicit  CoT  reasoning  process,  both  the  reasoning  path  and  the
final  answer  are  generated  and  presented  to  the  user  by  the
reasoning LLMs. Compared with the standard  that respond to
the  user  queries  straightforwardly,  not  only  enhance  the
capability  to  handle  complex  tasks  but  also  improve  interpretability
by generating explicit reasoning tokens during the inference process.
We further illustrate the token generation process of standard LLMs
and reasoning LLMs through a toy example.

Example 1 As illustrated in Fig. 3, consider the following scenario: a
LLM  user  poses  a  mathematic  question,  i.e., “If  Person  A  has  5
apples,  Person  B  has  3  more  apples  than  Person  A,  and  Person  C
has  twice  as  many  apples  as  Person  B,  how  many  apples  does  C
have?” (i)  Straightforward Query: The LLM attempts to answer the
question directly without performing intermediate reasoning steps. It
incorrectly  output  13  apples  for  Person  C,  possibly  due  to  flawed

 

 
LLMsFig. 1    A taxonomy for federated reasoning  based on the nature of training signals

 

 
Fig. 2    The next-token-prediction in the Standard LLMs (a) and Reasoning LLMs (b)
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5+3×2

5+3 = 8

2×8 = 16

arithmetic such as misinterpreting the expression  as 11, or
other  erroneous  combinations.  (ii)  Chain-of-Thought  Query:  The
LLM follows a step-by-step reasoning process: it  first calculates the
Person B’s apples as , then computes Person C’s apples as
twice that amount, . Taking CoT-based reasoning enables
LLM  to  arrive  at  correct  answer  through  an  interpretable  and
logically grounded process.

rLLMsThe  training  of  requires  a  data-efficient  approach  heavily
relying on vast amounts of publicly available data from the internet,
however,  the  domain-specific  data  of  many  real-world  scenarios
(e.g.,  healthcare  [98–100]  and  software  engineering  [101]),  remains
limited  and  often  inaccessible  due  to  privacy  and  ownership
constraints.  As  shown  in Fig. 4,  it  is  estimated  that  only  less  than
10% of surface web data is publicly accessible, while the remaining
90% resides  in  the  access-controlled  deep  web  [102].  Due  to
stringent  privacy  regulations  such  as  the  GDPR  [17]  and  CCPA
[103],  data  owners  (e.g.,  institutions  or  companies)  are  restricted
from directly sharing their valuable and sensitive data. This leads to
the  phenomenon  called  data  silos,  i.e.,  large  volumes  of  valuable
datasets  remain  isolated  and  can  not  be  fully  leveraged  by  today’s
data-hungry  machine  learning  models.  In  this  context,  federated
learning, a distributed training paradigm without compromising data
privacy, has emerged as a crucial  technique to unlock the reasoning

rLLMspotential of . Therefore, if we aim to harness private, domain-
specific  valuable  data  from  the  deep  web,  FL  can  also  serve  as  a
privacy-friendly  learning  paradigm  and remains  alive to  AI
community  [104].  Next,  we  briefly  introduce  the  background  and
basic  concepts  of  FL  and  review  the  commonly  used  privacy-
preserving techniques. 

2.2  Federated learning
This  subsection  first  introduces  the  fundamental  concepts  of
federated learning and then presents a general FL framework. At last,
we  discuss  widely  used  privacy-preserving  techniques  in  FL
scenarios,  including  differential  privacy,  homomorphic  encryption,
and secure multi-party computation.

Federated learning (FL). As a response to data privacy regulations,
federated  learning  (FL)  [18–20]  has  emerged  as  a  novel  learning
paradigm that enables an easy use of distributed datasets across data
owners  without  compromising  the  privacy.  For  early  FL algorithms
(e.g.,  FedAvg  [105]),  FL  clients  updated  the  global  model  through
the shared local gradients. In recent years, researchers have explored
various  alternative  formats  of  local  knowledge  to  shared  across  FL
clients, such as logits [45,67,100] or small proxy models [73,75,106].
To this  end,  we introduce a general  FL framework in this  survey to
encompass  the  various  formats  of  knowledge  exchanged  across  the
FL clients  during  the  jointly  training.  The  general  FL framework  is
illustrated in Algorithm 1, which outlines the procedures executed at
the FL server and the FL clients.

C

Kc

G.aggregation
G.prepare

KG

- (i)  Acts  at  FL  server:  In  each  training  rounds  the  FL  server  will
receive knowledge shared by a set of FL clients  (in line 4). Then,
in line 5,  the FL server aggregates all  received local  knowledge 
from participating clients. The server aggregated all local knowledge
through  the  aggregation  function .  Finally,  the  FL
server  prepare  through  and  then  send  the  global
knowledge  for participating FL clients.

c

KG L

- (ii) Acts at FL client: In lines 9−10, the FL client  first downloads
the  global  knowledge  and  updates  its  local  model  using

 

 
Fig. 3    Two  types  response  modes  in  LLMs:  straightforward  query
answering (top) and multi-steps reasoning (bottom)

 

 
Fig. 4    The Data across both the surface web (freely indexed) and the deep
web (non-indexed or access-controlled)
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L.update Dc

KG

Kc L.prepare

 based on its  private  dataset  in  combination with  the
received global knowledge . Then, the FL client prepares its local
knowledge  using  for  aggregation and sends it  back
to the FL server.

The above actions and interactions between the FL server and the
participating FL clients are performed iteratively until the FL training
process converges or meets a predefined stopping criterion.

Privacy-preserving techniques for FL. In the following, we review
commonly  used  privacy  techniques  in  FL  setups,  including:  (i)
differential  privacy  [107,108],  (ii)  secure  multi-party  computation
[110], and (iii) homomorphic encryption [109].

M (ϵ,δ)

S

D D′

- Differential  privacy  (DP):  Proposed  by  Dwork  [107],  it  provides
formal guarantees by injecting calibrated noise into the private value.
Formally, we refer to a randomized mechanism  satisfying -
DP,  if  for  all  measurable  subsets  in  output  space  and  for  all
neighboring  datasets  and  (differing  in  at  most  one  element),
formally as,
 

Pr[M(D) ∈ S] ⩽ eϵ ·Pr[M(D′) ∈ S]+δ, (4)
ϵ δwhere  and  denotes the privacy budgets. In the context of FL, the

DP  is  typically  implemented  by  adding  noise  to  the  local  gradients
before they are shared with the FL server to make aggregation.

SUM MULT

- Secure multi-party  computation (SMC):  The concept  of  SMC was
first  introduced  by  Yao  [111],  enabling  multiple  parties  to  jointly
compute  arbitrary  functions  over  their  private  inputs  without
revealing  those  inputs  to  one  another  [110].  In  particular, secure
aggregation [105],  a  class  of  SMC protocols  tailored for  operations
such as  or , enhances the computational efficiency and
supports scalability to a larger number of participants.

SUM MULT

- Homomorphic encryption (HE): The HE [109] allows computation
to  be  performed  directly  on  encrypted  data  just  like  that  on  the
plaintext.  In  2009,  Gentry  [109]  proposed  the  fully  homomorphic
encryption  (Fully-HE)  that  supports  both  the  and  on

the  ciphertext,  particularly  suitable  for  use  in  FL  [19].  Specifically,
FL clients can encrypt their local updates and transmit them to the FL
server,  which  can  perform  aggregation  directly  on  encrypted  data
without the need for decryption.

Summary  of  privacy  techniques.  We  summarize  the  features  of  the
representative  privacy-preserving  techniques  commonly  used  in  FL
scenarios  from  five  dimensions  in Table 2,  including privacy
protection  level,  accuracy,  computation  cost,  communication  cost,
and supported operations. As no single privacy-preserving technique
universally outperforms others across all dimensions, i.e., there is no
free lunch in privacy preservation [112].  Thus,  it  is  crucial  to select
an  appropriate  method  based  on  the  specific  requirements  and
constraints  of  application  scenarios.  For  example,  a  recent  study
[113]  in  FL  demonstrates  that  federated  graph  learning  (e.g.,
ASTGCN  [114])  in  the  aggregation  phase  relies  solely  on  the
summation  operation,  making  it  well-suited  for  efficient  and  secure
training via secure aggregation. 

■ 3  Overview and taxonomy

LMs LLMs

rLLMs

This  section  introduces  prior  FL  approaches  for  language  models.
We  begin  by  comparing  FL  solutions  across  traditional  language
models  ( ),  large  language  models  ( ),  and  reasoning  large
language  models  ( ).  We  then  present  a  novel  taxonomy  of
federated training approaches based on the nature of training signals,
which  can  be  categorized  into  three  levels,  i.e.,  (i)  raw  data  level,
(ii)  model-interpretable  representation  level,  and  (iii)  human  or  AI
preference  level.  Finally,  we  review  representative  prior  studies
corresponding to each level of training signal in more detail.

LLMs rLLMs

LMs

LLMs rLLMs

As  aforementioned,  the  emergent  and  reasoning  abilities  of
/  enable these models to incorporate a broader range of

training  signals,  which,  in  turn,  opens  up  new  opportunities  to  use
diverse  federated  training  approaches  to  enhance  themselves.
Specifically, we summarize and compare the FL approaches for ,

, and  in Table 3.
  

⋆Table 2    Comparison of the representative privacy-preserving techniques for FL (more  denote better performance)

Techniques Privacy-level Accuracy Computation cost Commutation cost Supported operations

DP [107,108] ⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆

Fully-HE [109] ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆

General SMC [110] ⋆⋆⋆ ⋆⋆⋆ ⋆ ⋆ ⋆⋆⋆

Secure Agg. [105] ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆

  
Table 3    Federated learning of different language models, including LMs, LLMs and rLLMs (a.k.a. Reasoning LLMs)

① Signal from raw data ② Signal from representation ③ Signal from preference

Pre-training Instruct.-tuning Prompt-tuning Adapter-tuning Know.-distil. Human-preference AI-preference

LMs √ √ √

LLMs √ √ √ √ √ √

rLLMs √ √ √ √ √ √ √
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LLMs

LLMs

LLM

rLLMs

Evolution  of  training  signals.  Firstly,  a  central  research  topic  of
conventional  deep  learning-based  is  to  leverage  large-scale
datasets  to  pre-train  models  for  a  wide  range  of  downstream  tasks.
The training processes are typically driven by signals inherent in the
raw  data,  employing  supervised  or  self-supervised  learning
approaches  [115–117].  Additionally,  transfer  learning  techniques
(e.g.,  adapter  approach  [118]  or  knowledge  distillation  [119])  are
commonly  employed  to  enhance  model  performance  further.
Secondly,  are  widely  regarded  as  few-shot  or  zero-shot
learners [89,120], allowing them to learn from more abstract training
signals, such as prompts or proxy models, which has given rise to a
suite  of  novel  techniques  designed  for ,  such  as  instruction
tuning  and  prompt  learning  [5,7].  These  further  improve  the ’s
ability  to  understand  and  follow  user  instructions  during  query-
answering  interactions.  Finally,  in  the  era  of ,  researchers
have not only extended the use of the aforementioned techniques but
have also begun to incorporate preference-level signals sourced from
either  humans  or  AI  as  the  training  signals  to  further  enhance  the
reasoning capabilities of language models [11,85].

rLLMs

rLLMs

Taxonomy.  Similarly,  when  FL  meets  the ,  we  can  use  the
same  taxonomy  for  federated  training  techniques  designed  to
enhance the  reasoning capabilities  of  based on the  different
forms  of  training  signals.  Note  that,  these  categories  naturally  align
with  the  three  major  FL  paradigms,  i.e.,  (i)  federated  supervised
learning (Fed-ST) using training signal from raw data, (ii)  federated
transfer  learning  (Fed-TL)  using  training  signal  from  model-
interpretable  representation,  and  (iii)  federated  reinforcement
learning (Fed-RL) using training signal from preference. As next, we
further  illustrate  the  three  types  of  FL  approaches  in  lens  of  the
introduced general FL framework in Section 2.2 (shown in Table 4).

-(i)  Federated  supervised  learning  using  training  signal  from  raw
data.  It  is  currently  the  most  widely  used  FL  paradigm.  Firstly,  for

L.update

L.prepare

G.aggregate

the ,  each  FL  clients  update  its  local  model  using
optimization  methods  such  as  SGD  [124]  or  Adam  [125]  on  its
private  dataset.  Then,  the  FL  clients  share  their  gradients  or  model
parameters  to  the  Fed-ST  server,  before  which  the  FL  client  can
apply the privacy mechanism in the .  After  that,  the FL
server  performs  weighted  aggregation  (i.e., ),  where
the  weights  for  FL  clients  are  typically  based  on  the  size  of  their
datasets. Finally, the FL server broadcasts the updated global model
back to all participating FL clients.

L.update

G.aggregation

-(ii)  Federated  transfer  learning  using  training  signal  from
representation:  It  enables  FL  clients  to  use  diverse  model-
interpretable  training  signals  (e.g.,  logits,  embeddings  and  proxy
model) during the local update . For example, in federated
knowledge distillation [126], the local update process can incorporate
the discrepancy between the local model and the global model as an
additional  supervisory  signal.  The  Fed-TL  also  allows  a  more
flexible  aggregation  on  the  FL  server.  As  the
example  in Fig. 5(b),  when  the  FL  clients  upload  the  prompt
embeddings  in  high-dimensional  vector  form,  the  FL-TL server  can
utilize  an  attention  mechanism  [127]  to  assign  weights  to  each
embedding  and  then  compute  their  clustering  center  to  obtain
aggregated results.

G.aggregation

-Federated  reinforcement  learning  using  training  signal  from
preference: It provides a way to align the heterogeneous preferences
from  FL  participants.  In ,  the  Fed-RL  can  either
aggregate  the  decision  policies  (e.g.,  Q-tables)  or  just  follow  the
parameter aggregation approaches as Fed-ST. The Fed-RL facilitates
using  high-level,  abstract  preference  signals  to  improve  reasoning
capability  for  large  models.  For  instance,  reinforcement  learning
from human feedback (RLHF) [128] can train the LLMs through user
preferences (users select one of two LLM outputs as the preference).
In  the  LLM-as-Judger  system  [129],  Fed-RL  can  also  take  the

  
Table 4    Comparison of the three federated training paradigms through the FL framework in Section 2.2

L.update L.prepare G.aggregation

Fed-ST [19,121] SGD, Adam, etc. Gradients, Random Seeds, etc. Weighted Average

Fed-TF [46,122] KD, CLIP, etc. Logits, Models, etc. Weighted Average

Fed-RL [76,123] Q-learning, DPO, etc. Q-table, RL models, etc. Weighted Average

 

 
Fig. 5    Examples  for  training  signals  from  raw  data,  learned  representation  and  preference.  (a)  Signal  from  Raw  Data  (federated  supervised
learning); (b) signal from Representation (federated transfer learning); (c) signal from preference (federated reinforcement learning)
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assigned  credits  of  tokens  from  AI  models  to  improve  reasoning
capabilities of .

To  summarize,  we  introduce  a  novel  taxonomy  for  federated
training  of  reasoning-oriented  LLMs,  grounded  in  the  nature  of
training  signal  formats.  The  proposed  taxonomy  encompasses  three
typical  FL  paradigms,  i.e.,  federated  supervised  learning  based  on
training  signals  from  raw  data,  federated  transfer  learning  which
leverages  learned  representations,  and  federated  reinforcement
learning driven by preference-based signals. In addition, we facilitate
a comparative understanding of these approaches through the general
FL  framework  introduced  earlier  in  the  survey.  In  the  following
sections,  we  examine  the  representative  studies  corresponding  to
each training signal in more detail. 

■ 4  Training signal from raw data
In  this  subsection,  we  introduce  representative  FL  approaches  that
take  training  signals  derived  from  raw  datasets  and  usually  share
gradients  during  training,  i.e.,  federated  supervised  learning  (Fed-
SL).

rLLMs

rLLMs

rLLMs

The Fed-SL can mainly enhance reasoning capabilities  of 
from  two  key  perspectives:  (i)  Domain-specific  reasoning.  In
domain-specific scenarios, such as industrial code generation, access
to high-quality private datasets is essential for enabling the effective
domain-specific  reasoning  [130].  However,  such  datasets  cannot  be
shared  directly  due  to  privacy  constraints.  Fed-SL offers  a  practical
solution by allowing  to  learn from distributed,  high-quality,
private data while preserving data privacy. (ii) Instruction following.
A  presupposition  for  reasoning  is  to  understand  the  user’s
instructions.  However,  user  instructions  usually  vary  significantly
from  application  to  application  [131].  Fed-SL  can  facilitate
adaptation to such heterogeneity by enabling  to better exhibit
instruction following behaviors in a federated manner.

In  the  following,  we review two representative  categories  of  Fed-
SL  techniques  in  federated  supervised  pretraining  and  federated
supervised  instruction  tuning  from  three  aspects,  i.e.,  model
capability,  communication  cost  and  privacy  protection.  It  is  worth

noting that the pre-training can also serve as the full-parameter fine-
tuning  from  the  technique  perspective  and  we  do  not  explicitly
distinguish these approaches within the context  of  Fed-SL based on
training signal from raw data.
 

4.1  Federated supervised pre-training

rLLMs

This category of approaches primarily aims to pre-train LLMs using
Fed-SL  approaches  or  to  fine-tune  them  in  a  pretraining-style
manner.  The  challenges  in  this  setting  align  with  those  encountered
in previous Fed-SL research for smaller language models, including:
(i)  data  heterogeneity,  (ii)  privacy  preservation,  and  (iii)  communi-
cation  overhead.  In  particular,  the  massive  scale  of  LLMs —often
reaching  billions  of  parameters —makes  transmitting  full  model
updates  prohibitively  expensive  in  terms  of  communication
overhead. Consequently, existing studies on the federated supervised
pre-training  of  primarily  focus  on  mitigating  significant
communication  bottlenecks  through  novel  federated  algorithmic
designs (shown in Table 5).

From federated SGD to federated ZOO. Firstly,  one line of  work
in  Fed-ST  approaches  build  upon  conventional  FL  algorithms  by
either  directly  adopting  existing  methods  [24]  or  proposing  new
model aggregation techniques [25]. A key feature of these methods is
that  they  continue  to  rely  on  optimization  techniques  such  as
stochastic  gradient  descent  (SGD)  [124],  which  implies  that  such
methods  have  to  transmit  gradients  or  parameters  at  a  scale
comparable  to  the  full  model  size,  leading  to  prohibitive
communication costs. Consequently, they face significant scalability
bottlenecks,  particularly  when  applied  to  large-scale  models  or
federated  learning  scenarios  involving  numerous  clients.  In  [25],
Yang et  al.  investigate the cross-cloud federated training (CCFT) of
LLMs  using  an  SGD-based  optimization  framework.  The  authors
proposed an asynchronous gradient update approach to optimize the
communication  cosh,  which  takes  the  FL  client’s  loss  value  as  the
weight  for  aggregation.  The  asynchronous  updates  can  be  formally
described as,
 

  
Table 5    Summary of the representative federated supervised pre-training approaches

FL-Setup #Client G.aggergation G.update L.update L.prepare Basic Model Comm. Tech. Privacy Tech.

LLaVAFL [24] Cross-Devices 20 FedAvg SGD SGD − Resnet-50 − −

CCFT [25] Cross-Silos 3 Softmax Loss SGD SGD − − Async. Update DP

Photon [26] Cross-Silos 16 FedAvg SGD SGD Grad-Clipping 7B Model RDMA DP

FedRDMA [29] Cross-Silos 16 FedAvg SGD SGD − GPT-2 RDMA −

Ferret [27] Cross-Devices 200 FedAvg FOO SGD Projection LLaMA-3B Random Seeds −

FedCyBGD [31] Cross-Devices 64 FedAvg CyBGD CyBGD Block-Pruning LLaMA-7B − −

FedMeZo [32] Cross-Silos 8 FedAvg ZOO − ZOO LLaMA-7B Random Seeds −

FedKSeed [33] Cross-Devices 738 FedAvg ZOO ZOO Random Seeds LLaMA-3B Random Seeds −

FedFeedSign [28] Cross-Devices 25 FedAvg ZOO ZOO Random Seeds RoBERTa Random Seeds −

FwdLLM [30] Cross-Devices 500 FedAvg ZOO ZOO Random Seeds LLaMA-7B Random Seeds −
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where  is the loss value from local FL clients and  and 
are  the  model  parameters  in  the  and  training  round,
respectively.  They  conduct  experiments  on  three  major  cloud
platforms, including AWS, Google Cloud, and Azure.

C(·)

Secondly, to  address  the  communication  bottleneck  of  previous
SGD-based  FL-ST  approaches  that  require  the  aggregation  of  all
model  parameters,  Wang  et  al.  [31]  proposed  a  communication-
efficient  approach  that  selectively  updates  a  subset  of  parameters.
They  replace  the  standard  SGD  with  a  Cyclic  Block  Gradient
Descent  (CyBGD)  strategy,  which  can  reduce  communication
overhead  while  maintaining  competitive  model  performance.
Specifically,  FedCyBGD  assigns  each  FL  client  a  distinct  block  of
model  parameters,  and  the  FL  clients  update  in  a  predefined  cyclic
order.  Then,  updated  parameter  blocks  are  aggregated  to  refine  the
global model. The authors further reduce the communication cost by
a  hybrid  parameter  compression  approach  for  LLMs,  which  is
formally as,
 

C(Θ
(t)
c ) = {P1(Θ

(t)

1
), . . . , (Θc−1),Θc, . . . , InΘn}, (6)

P Iwhere  is  a  standard  compression  method,  and  is  an  indicator
variable for the randomly dropping.

Recently,  to  further  reduce  the  communication  cost,  researchers
[33]  have  utilized  the  zero-order  optimization  (ZOO)  strategies,
which  takes  the  function  values  to  approximate  the  gradients  as
follows,
 

∇L(x) ≈
1

m

m∑

i=1

L(x+az)−L(x−az)
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az, (7)

L(·) z ∈ Rd
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=
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where  is  the  loss  function  and  is  the  random
perturbation from a normal Gaussian distribution . As the 
is  indeed the  basis  for  parameter  updates.  In  ZOO strategies,  as  the
gradient  estimation  is  performed  based  on  a  set  of  biases  random
sampled  from  the Gaussian distribution,  we  can  leverage  this
property  in  FL  and  only  transmit  scalar  values  for  aggregation.
Specifically,  the  FL  server  first  generates  a  set  of  random  seeds

, which are shared with all FL clients. Then, each FL
client uses these seeds to deterministically sample a set of Gaussian
basis vectors . By ZOO, each FL client can perform
a  local  update  and  estimate  the  corresponding  gradient  coefficients

 based on basis vector . Finally, the FL server
aggregates  the  scalar  coefficients,  i.e., 
from all clients to obtain a global gradient estimation. As only scalar
values,  instead  of  full  gradient  parameters,  are  transmitted  during
training,  the  communication  cost  in  Fed-ST  for  can  be
significantly  reduced.  Addressing  communication  overhead,  the
ZOO-like  FL  has  emerged  as  a  promising  paradigm  for  federated
supervised learning within the context of  [28,30,32,33].  We
also compare these techniques in terms of communication efficiency
in Fig. 6.

Next,  we  briefly  review  and  discuss  the  privacy  risks  and
corresponding  countermeasures  for federated  supervised  pre-

rLLMs

rLLMs

LMs

training. On the one hand, federated pre-train approaches [24–26] are
subject to privacy risks similar to those in conventional FL, including
gradient leakage attacks [132] and backdoor attacks [133]. As limited
research have been done on privacy risks for full-parameter federated
training  for ,  we  provide  a  preliminary  analysis  of  potential
vulnerabilities in this context. Notably, experimental results in [134]
suggest  that  when  the  FL  models  are  initialized  with  pre-trained
parameters,  the  risk  of  gradient  leakage  from  gradients  can  be
significantly reduced, indicating that  may be inherently more
robust  to  gradient-based  privacy  attacks  than  smaller  during
supervised  fine-tuning.  On  the  other  hand,  federated  training
approaches based on Zero-Order Optimization (ZOO) only transmit a
limited  number  of  scalar  values  (i.e.,  random  seeds)  during  the  FL
training  process  [32,33],  which  contrasts  with  the  previous  SGD-
based methods.  In  this  case,  whether  it  is  possible  to  reconstruct  an
FL client’s private data through transmitted random seeds (similar to
gradients) remains an open research question. 

4.2  Federated supervised instruction-tuning
rLLMs

MΘ

Y I X

Federated  instruction  tuning  (FIT)  enhances ’ ability  to
handle diverse user instruction tasks based on Fed-ST. The objective
of  FIT  is  to  enable  the  model  to  reason  and  then  output  the
answer  tokens ,  given an  instruction  and a  contextual  input ,
which can be formally described as,
 

Θ
∗
= argmin

Θ

E(I,X,Y)∼DInstr
[L(MΘ(I,X),Y)], (8)

I X Y

rLLMs MΘ rLLMs

rLLM

(I,X,Y)

rLLM

where  is the user’s task instruction,  is the input context and 
denotes  the  output  answer  of  .  Enabling  to
generalize to unseen instructions is fundamental to developing robust
reasoning  capabilities  for  diverse  real-world  tasks.  However,
instruction data  provided by  users  is  often fragmented across
numerous end-user  devices and exhibits  substantial  heterogeneity in
quality  and intent  across  different  application scenarios  [34].  In this
context, it is crucial to utilize the federated instruction tuning to learn
as  more  as  the  private  instruction  triples  across  numerous

 users. Therefore,  existing studies  in  this  area primarily  focus
on improving model capability.

From  data  heterogeneity  to  data-diversity-aware. Firstly,  in  the
seminal  work  [34],  Zhang  et  al.  extended  the  Fed-ST  approach  to

 

 
Fig. 6    Federated  Supervised  Learning:  From  SGD  to  ZOO.  (a)  Fed-SGD;
(b) Fed-CyBGD; (c) Fed-ZOO
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instruction tuning by leveraging distributed user instructions, thereby
avoiding  the  expensive  costs  of  instruction  collection.  They  also
revealed  the  typical  data  heterogeneity  in  user  instructions.  For
example, QA tasks usually require concise and fact-based responses,
whereas  writing  instructions  prioritize  coherent  and  logical  text.
Though  data  heterogeneity  is  typically  regarded  as  the  key  obstacle
to  effective  FIT  [34],  Wang  et  al.  [135]  have  experimentally
demonstrated that, in the context of FIT, the data heterogeneity does
not  showcase  the  monotonic  relationship  to  instruction  following
ability.  Notably,  they  have  also  provided  an  interesting  insight  that
the data diversity can significantly influence the ’s  instruction
following capabilities, i.e., it is the data diversity matters in federated
instruction tuning.

Then,  recent  research  [135]  has  increasingly  emphasized  data-
centric  approaches  to  federated  instruction  tuning,  highlighting  the
importance  of  data  diversity  and  quality  across  user  instruction
domains. These approaches typically involve actively selecting a core
subset  of  available  instructions  as  an  enhancement.  We  categorize
data-centric  Fed-IT  approaches  into  three  groups:  (i)  Heuristic
Scoring-based  Data  Selection  [35],  (ii)  Clustering-based  Data
Selection  [36,135],  and  (iii)  LLM-Generation-based  Data  Selection.
In  the  following,  we  review  the  representative  studies  from  each
category.

(i)  Heuristic-scoring-based:  It  first  employs  a  scoring  function  to
assess the quality or diversity of the instruction data and then selects
a  subset  of  instructions  for  FL  training  based  on  the  score  ranking.
For  example,  authors  in  [35]  adopt Instruction-Response  Alignment
(IRA) as the score function, formally described as,
 

IRA((X,I),Θ) =L(X;Θ)−L((X,I);Θ), (9)
L(X;Θ) L((X,I))where  and  are the loss function with and without

instructions, respectively.
(ii)  Clustering-based:  It  aims  to  maximum  the  domain  coverage

(i.e.,  data  diversity)  across  FL  clients  by  solving  a  clustering
optimization  problem.  For  example,  authors  in  [135]  formulate  an
optimization  problem  to  maximum  the  data  diversity  and  minimize
the  communication  overhead  at  the  same  time,  which  is  formalized
as,
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P
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where  are  the  cluster  centers  and  is  the  function  (e.g.,
cosine  function)  measuring  similarity  between  the  in-domain  data
point  from the domain dataset  and the centroid .

LLMs rLLMs(iii)  LLM-Generation-based:  It  uses  or  to  generate
synthetic instruction data to make further fine-tuning, which extends
the diversity of instruction data as well. For example, Zhan et al. [38]
propose  FewFedPIT,  which  utilizes  real  instructions  together  with
synthetic instructions to update the local model as,
 

Θc = β ·Θ
l
c+ (1−β) ·Θ

g
c , (11)

Θ
l
c Θ

g
c

c

where  and  are the model parameters trained on local private
instruction  data  and  generated  synthetic  instructions  of  client ,

respectively.

Finally, we make a discussion on the data-diversity aware FL with
previous  FL  approaches  from  the  perspective  of  client  or  data
selection.  As  shown  in Fig. 7,  in  vanilla  FL  [18,19],  the  server
typically  selects  a  random  subset  of  clients  to  perform  training  on
their  local  data.  However,  this  approach overlooks the inherent  data
heterogeneity  across  FL  clients.  As  a  remedy,  prior  studies  have
explored  client  selection  aware  FL  (C-Select  FL)  [136,137],  which
evaluates  each  FL  client’s  contribution  [138,139]  and  prioritizes
those  with  higher  contributions  dataset  in  the  training  process.
Furthermore,  in  the  federated  instruction  tuning,  the  unique
characteristics  of  instruction data  and user  tasks  necessitate  an even
stronger  emphasis  on  the  data  diversity  [34,36,135].  This  leads  to  a
new  kind  of  FL  approaches  that  performs  data-level  selection  at  a
finer  granularity  before  the  training  process.  It  considers  which
specific  data  points  within  FL  clients  are  most  beneficial  for  FL
training.  We envision  that  this  fine-grained  data  selection  based  FL
approaches  should  be  promising  for  a  broader  applications  beyond
the  Fed-IT,  particularly  when  both  the  data  diversity  and  FL  tasks
generalization play the important roles.

LLM

rLLMs

Next,  we  discuss  the  privacy  risk  in  federated  instruction  tuning.
As  stated  in  the  AI  alignment  paradox  [140], “More  virtuous  AI  is
more  easily  made vicious”,  it  highlights  a  fundamental  safety  issue,
while  instruction  tuning  improves  the ’s  ability  to  understand
and follow user instructions, it simultaneously increases the risk that
malicious  attacker  could  exploit  to  follow  harmful
instructions. Representatively, Ye et al. [141] propose an FL server-
side  defense  approach  for Fed-IT,  in  which  the  FL  server  performs
additional fine-tuning using a defense dataset after each aggregation
step to mitigate the influence of potentially poisoned model updates
from  malicious  clients.  As  discussed  above,  most  existing  Fed-IT
approaches have primarily focused on data-diversity-aware federated
training. However, identifying and filtering the malicious instructions
or  outputs  contributed  by  compromised  FL  clients  remains  an  open
and critical research challenge. 

4.3  Summary of signal from raw data
We  summarize  FL  techniques  based  on  training  signals  from  raw
data  from  aforementioned  three  key  aspects:  model  capability,
communication  efficiency,  and  privacy  preservation.  Firstly,
concerning  model  performance,  the  focus  of  the  federated  learning
 

 
Fig. 7    Towards Data-Diversity-Aware Fed-ST. (a) Vallina FL; (b) C-Select
FL; (c) D-Select FL
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community has shifted from client-centric selection to data-diversity-
aware  approaches,  which  aim  to  enhance  instruction-following
capabilities  across  diverse  downstream  tasks  by  selecting  diverse
subsets of instruction data prior to training. Secondly, to address the
prohibitive  communication  overhead  associated  with  full-parameter
transmission  during  federated  pretraining,  the  ZOO-based  training
approaches [32,89]  have been widely adopted,  which enable  the FL
training  by  transmitting  only  random  seeds  and  scalar  coefficients,
thereby  significantly  reducing  communication  costs.  Meanwhile,
how  to  ensure  model  accuracy  in  federated  supervised  pre-training
using random seeds remains a key research challenge. Finally, in the
privacy  preservation  context,  both  federated  supervised  pre-training
and  federated  instruction  tuning  introduce  new  challenges.  For
federated  pre-training,  an  open  research  question  is  whether  using
random seeds could inadvertently leak raw training data. In the case
of federated instruction tuning,  a  critical  concern is  whether  we can
prevent the  from learning to follow harmful instructions from
malicious clients. 

■ 5  Training signal from representation

rLLMs

rLLMs

In this subsection, we introduce federated transfer learning (Fed-TL)
approaches of ,  which improves reasoning capabilities  based
on  the  interpretable  training  signals,  e.g.,  learned
representation, adapter modules, logits or proxy models.

rLLMs
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We divide the  Fed-TL for  into  three  categories  according
to the format of training signal during FL training process, including:
(i)  Federated  Prompt  Learning  using  shared  representations  (i.e.,
embeddings),  (ii)  Federated  Adapter  Learning  using  collaboratively
trained  adapter  modules,  and  (iii)  Federated  Knowledge  Distillation
using the transferred knowledge (e.g., logits or proxy small models).
Next, we briefly discuss how these three Fed-TL techniques enhance
the  reasoning  capabilities  of .  Firstly,  Federated  Prompt
Learning  reformulates  user  discrete  or  continuous  prompts  into
formats  that  are  more  interpretable  and  actionable  for ,
thereby  incentivizing  a  more  effective  reasoning  process  [142]  just

rLLMs
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like  the  federated  instruction  tuning  [34].  Secondly,  Federated
Adapter  Learning allows  to  incorporate  the  domain-specific
knowledge  in  a  plug-and-play  fashion,  therefore  improving  the
abilities  for  the  domain-specific  reasoning  as  well.  Lastly,  since
smaller language models are usually highly optimized for the specific
tasks, Federated Knowledge Distillation enables the  to align
with  the  task-specific  strengths  of  small  language  models  by
distilling their knowledge through the proxy models or logits, which
provide  a  privacy-preserving  but  communication-efficient  federated
training  manner.  We  review  representative  studies  and  discuss
emerging  research  trends  within  each  topic  area,  with  a  particular
focus  on  three  key  aspects:  model  capability,  communication  cost,
and privacy protection. 

5.1  Federated prompt learning

[vector] Reviews[The movie was great]

Sentiment[Positive] rLLM′s

rLLMs

Prompt  learning  is  designed  to  reformat  input  queries  into  certain
templates,  like  +  +

,  which  elicit  the  desired
behaviors  (e.g.,  reasoning),  without  changing  the  model’s  internal
parameters  [7].  Similarly,  Federated  Prompt  Learning  (Fed-Prompt)
[40,41,45]  aims  to  jointly  learn  a  prompt  function  that  transforms
heterogeneous  user  inputs  into  formats  more  suitable  for 
across  FL  clients,  facilitating  a  consistent  and  effective  reasoning
process for diverse user queries,  i.e.,  existing research has primarily
focused  on  improving  model  performance  in  this  direction  (in
Table 6).

rLLMsFrom  discrete  prompts  to  continuous  prompts. Firstly,  as 
possess  the  in-context  learning  capabilities  [4,81],  they  can  learn
directly  from  the  prompt  templates  provided  as  examples.  In  this
case,  a  straightforward  approach  to  achieve Fed-Prompt is  sharing
and  aggregating  the  prompt  data  from  FL  clients  in  the  training
process  [40,41].  In  [41],  the  authors  proposed  a  knowledge
compendium  based  approach,  called  FICAL,  where  each  FL  client
generates  prompts  based  on  its  local  knowledge  compendium  and
then  the  FL  server  concatenate  them  as  the  global  compendiums.

  
Table 6    Summary of the representative federated prompt learning approaches

FL-Setup #Client Prompts L.update G.aggregate G.update Basic Model Privay Tech.

Fed-SP-SC [39] Cross-Devices − Discrete − Direct − GPT-3.5 −

FedFSCD [40] Cross-Silos − Discrete − Direct − GPT-4 Prompt Inject.

FICAL [41] Cross-Devices 8 Discrete − Direct Embedding LLaMA3-8B Compendium

PromptFolio [42] Cross-Devices 100 Continuous Portf. Opt. Direct CoOp-like CLIP −

FedAPT [43] Cross-Devices 30 Continuous SGD Direct SGD CLIP −

FedPepTAO [44] Cross-Devices 100 Continuous Adam Direct Mom LLaMA-7B −

PromptFL [45] Cross-Devices 64 Continuous SGD Direct SGD CLIP −

FedDTPT [46] Cross-Devices 10 Continuous − Clustering − DeepSeek-V2 −

PLAN [47] Cross-Silos 6 Continuous SGD Model-Based SGD CLIP −

FedBPT [48] Cross-Devices 20 Continuous Black-box Tuning Model-Based CMA-ES LlaMA2-7B −

PFPT [143] Cross-Devices 80 Continuous Adam Model-Based Bi-Opt. ViT −
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After that, the global compendiums are encoded into embeddings and
stored  in  a  vector  database  for  future  use.  Similarly,  Seo  et  al.  [41]
proposed a security-aware framework where each FL client leverages

 to  transform  its  local  prompts  into  a  standard  format  and
applies  prompt  injection  defense  mechanisms  against  malicious
attack. Then, the processed prompts are aggregated on the FL server.

G.aggregate

Recently, research efforts have increasingly focused on continuous
prompts in embedding vector format (a.k.a. soft prompts) rather than
the  discrete  prompts  in  raw-text  format.  Continuous  prompts  are
dense,  trainable  representations  and  are  generally  considered  to
provide a stronger privacy preservation level as they are less human-
interpretable.  From the perspective of federated training, continuous
prompts  enable  more  flexible  aggregation  strategies ,
which mainly includes: (i) Direct aggregation,  (ii) Clustering-based
Aggregation,  and  (iii) Model-based  Aggregation.  We  review  the
representative studies for each as follows.

{P1, . . . ,Pn}

(i)  Direct  aggregation:  Given  that  word  embeddings  are  often
assumed  to  exhibit  additive  properties  [144],  previous  studies
[42–44] have adopted a simple yet effective aggregation strategy, i.e.,
taking  a  FedAvg-like  [121]  method  to  average  prompt  embeddings
across FL clients , which can be formalized as,
 

PG =

∑

c∈C

Dc
∑

j∈C |D j|
Pc, (12)

PG |Dc|

c

where  is the global aggregated prompt vectors and  denotes
the total number of data samples of FL client . In [42], the authors
theoretically and empirically demonstrate that combining multiple FL
clients  leads  to  better  performance  than  using  prompts  from  single
client.

(ii)  Clustering-based  aggregation:  Since  prompt  embeddings  are
inherently  high-dimensional  vectors,  we  can  also  use  clustering-
based  methods  to  compute  the  centroid  of  FL  clients’ prompt
embeddings  as  the  aggregated  result.  For  example,  Wu  et  al.  [145]
propose FedDTPT, a clustering based approach to aggregate prompt
embeddings.  Specifically,  FedDTPT  first  computes  the  semantic
similarity  among  prompt  vectors  and  then  employs  the  classical
DBSCAN as clustering method for semantic aggregation.

(iii) Model-based aggregation: Beyond direct average or clustering,
model-based prompt  aggregation is  also  widely  adopted in  previous
work  [47,48],  where  neural  networks  or  probabilistic  models  are
adopted  to  perform  a  more  expressive  fusion  of  federated  prompt
representations.  For  instance,  Gong  et  al.  [47]  proposed  a  federated
prompt  learning  framework  that  employs  attention-based  neural
networks for prompt aggregation, where the attention-based model is
jointly trained using the FedAvg algorithm simultaneously. Sun et al.
[48]  proposed  a  model-based  prompt  learning  framework  called
FedBPT,  which  allows  the  FL  server  to  execute  the  Covariance
matrix  adaptation  evolution  strategy  (CMA-ES)  [146],  a  gradient-
free  optimization  algorithm,  to  aggregate  local  prompt  distributions
from FL clients without relying on explicit gradients.

In  the  following,  we  briefly  discuss  the  privacy  protection  in
federated  prompt  learning,  particularly  in  scenarios  involving
discrete prompts, where FL clients directly upload textual prompts to

rLLMs

the FL server [39,41]. This setting introduces new privacy and safety
challenges,  such  as  prompt  injection  attacks  [40],  in  which
adversarial  clients  craft  malicious  prompts  that  induce  the  model  to
exhibit unintended or harmful behaviours. In response, Seo et al. [40]
propose a direct defense framework in which  assess and filter
prompts  based  on  their  internal  reasoning  capabilities.  Besides,  the
authors in [141] present a complementary defense strategy, where the
FL server performs further training on a curated defense dataset after
aggregating  prompts  from  potentially  malicious  clients,  helping  to
mitigate the adverse effects of injected prompts. 

5.2  Federated adapter learning

LLMs

rLLMs

rLLMs

rLLMs

Adapter  Learning (or  Adapter  Tuning)  is  a  parameter  efficient  fine-
tuning  approach  that  takes  the  as  frozen  black- boxes  and
trains  only  limited  additional  adapter  parameters  for  various
downstream  tasks.  For Federated  Adapter  Learning (Fed-AL),  it
trains the adapters across FL clients in a distributed manner, thereby
enhancing  the  task-specific  reasoning  capabilities  of .  The
benefits  of  Fed-AL  are  twofold.  Firstly,  it  updates  only  adapter
parameters,  is  resource-efficient,  and  significantly  reduces
computational,  communication,  and  memory  overhead.  Secondly,  it
can  serve  as  plug-and-play  modules  for  diverse  downstream  tasks,
making it  highly flexible  and easily  incorporable within the 
architecture.  As  shown  in Fig. 8,  prior  Fed-AL  approaches  can  be
divided  into  three  categories  based  on  the  placement  of  adapter
modules  within  the  Transformer  architecture  of ,  including
(i) Layer-Internal, (ii) Layer-External, and (iii) Hybrid Adaptation. In
the  following,  we  review  representative  studies  in  each  category
(summarized in Table 7),  with a primary focus on improving model
capability.

rLLMs

rLLMs

ΘA ΘB

From internal  adapters  to external  adapters. Firstly, as  illustrated in
Fig. 8(a),  the  federated  internal  adapter  approaches  primarily  utilize
the  Low-Rank  Adaptation  (LoRA)  framework  [34,36,56,61,149],
where  low-rank  matrices  are  injected  into  to  enable
parameter-efficient  fine-tuning.  The  main  idea  of  LoRA  is  that  the
weight  matrices  in  are  intrinsically  low-rank  and  can  be
replaced by the product of two smaller matrices,  and , which
can be formally described as follows,
 

Θ = Θ+∆Θ, ∆Θ = ΘA ·ΘB, (13)
Θ ∈ Rp×q

ΘA ∈ R
q×r
ΘB ∈ R

r×p r≪ p,q

1%

Θ
LoRA

= {ΘA,ΘB}

where  is  the  frozen  parameters,  and  the  trainable
parameters   ( ).  In  Fed-AL,  FL
clients  can  share  only  the  adapter  rather  than  the  full  model
parameters,  enabling  communication-efficient  joint  training.
However, how to aggregate these adapters from FL clients on the FL
server  is  non-trivial  [56]  and  we  review representative  studies  from
the perspective of adapter aggregation strategies in the following. In
[148],  the  authors  propose  a  LoRA  based  federated  parameter-
efficient tuning approach and set trainable parameters less than .
They  directly  treat  trainable  parameters  as
previous in FL and aggregate them using FedAvg [121], i.e.,
 

Θ
LoRA

=

∑

c∈C

|Dc|/DC| ·Θ
LoRA
c . (14)
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However,  such  direct  aggregation  is  not  reasonable  for  the  LoRA
based federated adapter learning, as
 

∑

c∈C

ΘB,c ·ΘA,c ,

∑

c∈C

ΘB,c ·
∑

c∈C

ΘA,c. (15)

ΘA

G.aggregate

ΘB

Therefore,  more  FL  aggregation  solutions  are  proposed  to  tackle
above challenges. As an initial try, Sun et al. [61] propose the FFA-
LoRA,  an  approach  tailored  for  federated  aggregation.  Specifically,
FFA-LoRA initializes the low-rank parameter  from Gaussian and
frozen in the FL server aggregation phase . Thus, only
the other parameters  need to be aggregated in server, i.e.,

 

ΘG = Θ+∆ΘG, ∆ΘG = ΘA,0 ·
∑

c∈C

ΘB,c, (16)

ΘA,0

ΘA ΘB

ΘA,c ΘB,c c

where  denotes  the  fixed  parameters  in  LoRA.  In  [56],  the
authors  proposed  an  alternative  aggregation  approach  for  LoRA-
based  federated  adapter  learning,  termed  FLoRA,  which  further
utilize  both  and  in  the  FL  aggregation  phase.  Specifically,
the  and  matrices  from  each  FL  client  are  firstly
concatenated  on  the  FL  server  and  then  multiplied  to  form  the
aggregated update, ensuring an equivalent federated extension of the
original LoRA formulation, which is formalized as,
 

 

 
Fig. 8    Federated  adapter  tuning:  from  internal  adaption  to  external  adaption.  (a)  Layer-Internal  adaptation  (b)  layer-external  adaptation;
(c) hybrid adaptation

  
Table 7    Summary of the representative federated adapter learning approaches

FL-Setup #Client Type Position Architect. Basic Model Privacy Tech.

Fed-IT [34] Cross-Devices 100 Internal Inside ATT, FFN LoRA LLaMA-7B -

FFA-LoRA [61] Cross-Silos 3 Internal Inside ATT, FFN LoRA RoBERTa-Large DP

FLoRA [56] Cross-Devices 10 Internal Inside ATT LoRA LLaMA-7B DP, HE

FedHDS [36] Cross-Devices 200 Internal Inside ATT, FFN LoRA LLaMA-3B DP

FibecFed [63] Cross-Devices 10 Internal Inside ATT, FFN LoRA LLaMA-7B −

FedIT-U2S [37] Cross-Silos 5 Internal Inside ATT, FFN LoRA Vicuna-7B −

Fed-SB [58] Cross-Devices 25 Internal Inside ATT, FFN LoRA LLaMA3-3B DP

FedDPA [62] Cross-Silos 8 Internal Inside ATT LoRA LLaMA-7B −

FedMT [57] Cross-Silos 2 Internal Inside ATT LoRA LLaMA3-8B −

FedPA [147] − − Internal Inside MLP LoRA − DP

FedDB [59] Cross-Silos 50 Internal Inside MLP LoRA ViT HE, SMC

FedPEFT-A [148] Cross-Silos 8 External After FFN Pfeiffer ViT-B DP

FedDAT [72] Cross-Silos 5 External After FFN Houlsby ViLT −

FedPIA [60] Cross-Devices 200 External After ATT, FFN Houlsby ViLT −

FedMCP [64] Cross-Silos 6 External After Transformer Houlsby RoBERTa −

FedFMSL [65] Cross-Devices 15 Hybrid After EC, TF LoRA,Gate CLIP −
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∑

c∈C

ΘB,c ·ΘA,c =
(

⊕c∈CΘB,c

)

·
(

⊕c∈CΘA,c

)

, (17)

⊕where the symbol  denote the concatenate operation. Therefore, the
FLoRA preserves  the  low-rank structure  while  enabling  cross-client
training.

rLLMs

rLLMs

Θup,Θdown

Recently, some  studies  [36,60,64,72]  have  shifted  from  LoRA-
based  adapters  to  Houlsby-based  external  adapters  [118]  (as  in
Fig. 8(b))  in  the  context  of  federated  adapter  learning  for .
This transition is primarily motivated by the fact that Houlsby-based
adapters  do  not  require  breaking  the  inside  structure  of ,
making  it  easier  to  integrate.  As  plug-and-play  modules,  external
adapters  can  be  easily  extended  to  multiple  downstream  reasoning
tasks.  In  contrast,  LoRA-based  adapters  often  struggle  to  achieve
such  flexibility  due  to  their  tighter  coupling  with  internal  model
parameters  [118].  The  main  idea  of  Houlsby-based  adapter  is  to
inject  an  adapter  with  two  part  of  trainable  parameters 
after the FFN of each Transformer block, and then the activations can
be calculated as,
 

h′ = h+σ(h ·Θdown)Θup, (18)
h σ

Θ
pri
up ,Θ

pri

down
Θ

glob
up ,Θ

glob

down

where  is the normalized output of the FFN and  is the activation
function.  Representatively,  Zhao  et  al.  proposed FedMCP [64],  a
Houlsby-style federated adapter learning framework designed with a
dual-adapter  architecture.  In  FedMCP,  each  FL  client  holds  the
private  adapters  and  the  global  adapters ,
where global adapters are uploaded to the FL server and aggregated
via  FedAvg  [121],  while  the  private  adapters  remain  local.  Both
adapters  are  jointly  utilized during inference,  allowing the  model  to
benefit from shared global knowledge while preserving personalized
reasoning capabilities, which is formally as follows,
 

h′ = h+
1

2
σ(hΘ

pri

down
)Θ

pri
up +

1

2
σ(hΘ

glob

down
)Θ

glob
up , (19)

Θ
pri
up ,Θ

pri

down
Θ

glob
up ,Θ

glob

down
where  and  are  the  local  private  adapter
and  global  public  adapter,  respectively.  Instead  of  directly
aggregating  the  trainable  parameters  of  adapters,  Saha  et  al.  [60]
proposed  a  permutation  matrix-based  aggregation  approach  to  align
adapter parameters between the server and clients. 

5.3  Federated knowledge distillation
Knowledge distillation (KD) [150] provides a flexible mechanism for
transferring knowledge between machine learning models. Federated
Knowledge  Distillation  (Fed-KD)  extends  this  concept  to  privacy-
sensitive  settings  by  allowing  each  client  to  learn  from  its  local
private dataset and transmit distilled knowledge, rather than raw data
or full model parameters, to improve the reasoning capability of large
models  collaboratively.  Next,  we  review  representative  studies  on
Fed-KD for large models (in Table 8), which adopt various forms of
knowledge, including logits, soft labels, and proxy models and so on.

Knowledge  formats:  from  activations  to  models.  (i)  Activations-
based:  To  address  the  model  size  mismatch  between  the  FL  server
and clients, Dong et al. [66] utilize hidden states (i.e., activations) in
neural  networks  as  the  knowledge  to  update  the  global  model.
(ii) Logits based: In [67], Fan et al. proposed a federated knowledge
transfer  framework  for  small  and  large  models,  called  FedMKT,
which  leverages logits (values  before  the  softmax  function  used  for
predicted  probabilities)  to  enable  bidirectional  knowledge  transfer
between  a  large  server-side  model  and  client-side  lightweight
models,  largely  reducing  the  communication  cost.  (iii)  Predictions
based: In [71], the authors assume that the FL server and clients share
a  same  public  dataset  and  then  the  server  and  client  can  align  their
models  through  predictions  (i.e.,  soft  labels)  in  the  federated
knowledge  distillation.  (iv)  Adapter  based:  Fan  et  al.  [68]  also
proposed  a  parameter-efficient  federated  knowledge  distillation
framework  that  fine-tunes  both  small  and  large  models,  where
knowledge  transfer  is  performed  through  adapter  parameters.
(v)  Proxy  Model  based:  Besides,  the  proxy  models,  which  are
compressed  from  a  large  model,  can  also  be  used  to  update  large
language  models  on  the  FL server  [73].  In  summary,  in  Fed-KD of
large  models,  existing  studies  have  explored  various  knowledge
formats  as  alternatives  to  traditional  gradient  sharing  for  global  and
local  model  updates.  However,  which  formats  provide  better  trade-
off  between  accuracy,  efficiency,  and  privacy  remains  an  open
question.

rLLMs

We  make  a  discussion  on  privacy  risk  in  federated  knowledge
distillation (Fed-KD) below. As aforementioned, a primary feature of
Fed-KD for  is that existing studies [47,66–68,73] can utilize

  
Table 8    Summary of the representative federated knowledge distillation approaches

FL-Setup #Client Knowl. Format Teacher Student Mutual G.distil L.distil Loss Func. Basic Model

FEDSP [66] Cross-Devices 10 Activations Large Small − √ − L2 GPT-2-1.5B

FedMKT [67] Cross-Devices 4 Logits Large Small √ √ √ LCE , Loss LLaMA2-7B

FedID [71] Cross-Devices 10 Predictions Large Large √ √ √ LCE , Loss BERT-110M

FedDAT [72] Cross-Silos 25 Adapter Large Large √ − √ LKL ViLT-87M

FedCoLLM [68] Cross-Silos 4 Adapter Large Small √ √ − LKL GPT-2-774M

FedBiOT [69] Cross-Silos 9 Adapter Large Small − √ − L2 LKL, LLaMA2-7B

FedPFT [73] Cross-Devices 100 Proxy Model Large Small − √ − L2 BERT-110M

FedPT [74] Cross-Silos 10 Proxy Model Large Small − √ − LKL GPT-2-1.5B
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all  kinds  of  model-interpretable  training  signals  (such  as  adapters
[64,68], logits [67], and proxy models [73]), which is quite different
from  gradient-based  signals  in  the  Fed-ST.  The  federated  adapter
learning or transfer learning has utilized diverse knowledge signals to
improve  the  performance  of  the .  However,  the  potential
privacy  risks  associated  with  various  training  signals  have  not  been
fully  explored.  In  particular,  systematic  and  fair  evaluation
frameworks  for  measuring  privacy  risk  across  various  signal  types
are  still  lacking.  Thus,  how  to  develop  quantifiable  metrics,  like
trustworthy  FL  [151],  to  assess  the  trade-offs  among  efficiency,
model  performance,  and  privacy  for  various  knowledge  formats  in
federated transfer learning is a promising research direction. 

5.4  Summary of signal from representation

rLLMs

LLMs

We  summarize  Fed-TL  approaches  using  model-interpretable
representation  for  from  model  capability,  communication
efficiency,  and  privacy  preservation  as  well.  Firstly,  concerning
model performance, in federated prompt learning, increasing studies
have shifted focus toward continuous prompts and explored multiple
aggregation  strategies  for  continuous  prompts,  e.g.,  the  clustering-
based  and  model-based  federated  aggregation.  Secondly,  to  reduce
the  communication  cost,  LoRA  [149]  and  Houlsby  [118]  adapters
have been widely adopted in federated adapter learning to avoid full-
parameters  operations,  enabling  to  enhance  task-specific
reasoning  capabilities  in  a  flexible  plug-in  style.  Besides,  various
model-interpretable training signals have been explored for federated
knowledge  distillation  to  enable  the  collaborative  training  of  large
and small models. Then, in terms of privacy protection, it remains an
open  research  question  to  what  extent  the  various  intermediate
representations shared during federated transfer learning, particularly
in  Fed-KD and  Fed-AL,  may  expose  sensitive  information.  Finally,
another  important  direction  is  to  study  which  shared  knowledge
offers better trade-offs among model capability, communication cost,
and privacy preservation. 

■ 6  Training signal from preference
rLLMs

rLLMs

rLLMs

As the observation that  are also policy maker [128,152], we
have witnessed reinforcement learning being widely adopted as a key
technique to enhance the reasoning capabilities of  [11]. This
subsection  introduces  federated  reinforcement  learning  (Fed-RL),
which  leverages  the  preferences  from  humans  or  models  as  the
training signal to enhance reasoning capabilities of . Next, we
review the representative studies along this research topic.

rLLMs

From human feedback to  AI  feedback. Firstly,  in  general,  there  are
limited  prior  works  utilizing  Fed-RL  to  enhance ,  and  they
primarily  focus  on  Reinforcement  Learning  from  Human  Feedback
(RLHF).  Existing  research  in  Fed-RL  can  be  divided  into  two
categories:  (i)  Policy  based  Fed-RL  [77,79,123]  and  (ii)  Selector
based  Fed-RL  [78].  The  former  utilizes  the  heterogeneous  client
preferences  as  reinforcement  signals.  For  example,  in  [79],  the
authors  propose  the  FedRLHF  framework,  where  FL  clients  first
perform  policy  gradient  updates  locally,  and  then  the  server
aggregates these policy parameters as FedAvg [121]. In contrast, the
selector-based  Fed-RL  [78]  builds  a  federated  selector  in  which

rLLMs

rLLMs

rLLMs

rLLMs

rLLMs

 first generates two reasoning outputs and prompts the user to
select the preferred one. Then, the user’s preference signal can be the
feedback  for  generating  the  better  reasoning  outputs. Secondly, in
response to the high annotation cost and limited scalability of human
feedback,  a  recent  study  [153]  has  first  designed  a  straightforward
federated  reinforcement  learning  from  AI  feedback  (Fed-RLAIF),
where  can act as judges [129] to provide preference signals,
offering  a  more  cost-effective  and  scalable  alternative  to  human-in-
the-loop training. In summary, using Fed-RL to improve the test-time
reasoning performance of  is an emerging research direction.
Notably,  with  recent  advancements  in  reinforcement  learning  for

 [154],  model-based  preference  signals  are  emerging  as  a
promising  focus  for  the  next  wave  of  federated  learning  in ,
where  model  capability,  communication  cost,  and  privacy
preservation remain largely underexplored. 

■ 7  Open platforms and applications
 

rLLMs7.1  Open-source FL platform for 
rLLMsThe  open-source  platforms  is  crucial  to  federated ,  as  they

provide  fundamental  tools  to  support  various  research  and
application scenarios. Next, we review representative platforms (as in
Fig. 9).

rLLM

FATE-LLM.  Building on FATE [155],  FATE-LLM [156]  is  as  the
first  industrial-level  Fed-  framework,  which  highlights  the
privacy  protection.  It  supports  various  commonly  used  privacy
preserving  techniques  like  secure  aggregation  [105],  differential
privacy (DP) [107], and secure multi-part computation (SMC) [110],
which preserve data privacy for both training and inference phases.

rLLMs

FederatedScope-LLM  (FS-LLM).  FS-LLM  [157]  is  an  open
sourced  comprehensive  toolkit  designed  to  fine-tune  in  the
FL  scenario.  FS-LLM  offers  a  diverse  set  of  federated  fine-tuning
datasets  across  multiple  domains,  along  with  corresponding
evaluation tasks, to support a comprehensive benchmarking pipeline.
It  offers  a  variety  of  fine-tuning  algorithms  through  unified  and
flexible  interfaces,  and  supports  multiple  federated  training  modes,
including  simulated,  distributed,  and  clustered  modes.  It  is  also
equipped  with  a  range  of  acceleration  and  resource-efficient
operators  as  well  as  parallelization  operators,  which  can  be
seamlessly  integrated  with  advanced  algorithms  such  as
personalization or hyperparameter optimization.

rLLMs

Shepherd. Shepherd is  the  first  open-source  platform  specifically
designed for Federated instruction tuning (Fed-IT) [34]. The goal of
Fed-IT  is  to  leverage  federated  learning  to  address  issues  in  data
acquisition  and  privacy  during  the  instruction  tuning  of .
 

 
rLLMsFig. 9    Timeline of Federated  Platforms
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Shepherd is in a decentralized architecture, where the FL clients first
update  the  model  adapters  based  on  local  instructions,  and  then  the
FL  server  is  responsible  for  the  scheduling  and  aggregation.  It
encompasses  key  functions  (e.g.,  data  allocation,  client  scheduling,
and model aggregation) and is compatible with multiple .

rLLMs

OpenFedLLM.  The  above  platforms  primarily  concentrate  on
Supervised  Fine-Tuning  (SFT)  [131].  In  contrast,  OpenFedLLM
[158]  stands  out  as  a  full-process  platform.  Notably,  it  is  the  first
platform  to  support  RLHF  [131]  within  federated .  The
architecture  of  OpenFedLLM  predominantly  follows  a  centralized
model, where a central server orchestrates the training process across
clients.  Like  FS-LLM,  OpenFedLLM  is  a  benchmark  pipeline
equipped with various well-defined datasets and a comprehensive set
of  metrics.  It  uses  communication  compression  techniques  such  as
quantization [159] for performance optimisation.

rLLMs

rLLMs

rLLMs

OpenHufu-LLM.  OpenHufu-LLM  [160−162]  is  an  new  open-
source  framework  designed  for  federated  fine-tuning  of .  Its
system  architecture  integrates  four  core  components:  a  data  access
module,  a  federated  communication  module,  a  model  fine-tuning
module, and a performance evaluation module. The key strengths of
OpenHufu-LLM lie in its system-level performance. It demonstrates
notable  communication  efficiency  and  scalability,  supporting
distributed multi-GPU fine-tuning and compatibility with mainstream

.  The  communication  module  is  implemented  using gRPC,
enabling  the  high  throughput  communication  for  large-scale
parameter exchange in the federated training of .

LLM

Summary.  As  shown  in Table 9,  all  surveyed  platforms  support
adapter  learning  and  prompt  learning.  However,  when  it  comes  to
operator optimization and multi-GPU parallel training, both essential
for  large-scale  applications,  only  limited  platforms  meet  these
requirements. Furthermore, in terms of heterogeneity support, FATE-
LLM currently supports heterogeneous model architectures, whereas
most  other  open-source  platforms  primarily  address  data
heterogeneity.  In  summary,  existing  open-source  federated 
platforms remain in the early stages of development and have yet to
offer  comprehensive  support  for  reasoning-oriented  techniques  and
large-scale industrial applications. 

rLLMs7.2  Typical applications of federated 

rLLMs

In  this  subsection,  we  discuss  two  representative  real-world
applications of federated  including Software Engineering and
Medical Healthcare.

LLMs

rLLMs

rLLMs

rLLM

rLLMs

Federated  for  software  engineering. In  software
engineering,  the  rapid  evolution  of  technologies  and  projects  has
introduced  numerous  challenges  for  tasks  such  as  code  translation
and code review, especially when source codes in various languages
or  formats  is  distributed  across  private  repositories.  For  example,
Kumar  et  al.  [101]  propose  a  federated  approach  for  code
translation, enabling clients to jointly train a code translator without
sharing  sensitive  data.  They  mainly  focus  on  two  task,  i.e., code
translation and code  review.  We  review  each  of  these  tasks  as
follows. (i)  code  translation:  Due  to  the  proprietary  nature  of  code,
enterprises often train exclusive  locally. Experimental results
in  [101]  demonstrate  that  the  proposed  federated  approach
significantly outperforms individual client models on C#-to-Java and
Java-to-C#  translation  tasks,  achieving  over  a  40% improvement  in
CodeBLEU scores. (ii)  code review:  Traditional  human-driven code
review  processes  are  often  time-consuming  and  labor-intensive.
Kumar  et  al.  [57]  fine-tune  the  LLaMA-3-8B  model  to  develop  a
multi-task  for code review, encompassing tasks such as review
necessity  prediction,  comment  generation,  and  code  refinement.
Their findings show that federated  offer clear advantages for
federated  clients  with  varying  code  quality,  particularly  in  code
refinement.  Moreover,  models  trained  cumulatively  across  tasks
outperforms individually fine-tuned single-task models.

rLLMs

rLLMs

rLLMs

rLLMs

LLM

rLLMs

Federated  for  medical  healthcare. In  medical  field,  the
traditional  centralized  paradigm  for  training  and  deploying 
faces  significant  challenges  such  as  elated  to  data  privacy,
communication  cost,  and  scalability  [163].  Therefore,  federated

 have  emerged  as  a  promising  solution.  We  review  two
representative applications of federated  in the medical field:
(i)  medical  text  generation  and  (ii)  disease  diagnosis.  Firstly,  for
medical  text  generation,  Jung  et  al.  [15]  proposed  a  federated 
framework  that  integrates  client-specific  retrieval-augmented
generation  (RAG)  systems.  This  framework  enables  distributed
retrieval  and  generation  over  local  datasets  while  preserving  the
privacy  of  sensitive  medical  information.  Secondly,  for  disease
diagnosis, Liu et al. [100] introduced the FedARC, a personalized FL
approach  designed  for  multi-center  tuberculosis  diagnosis.  The
FedARC  addresses  challenges  such  as  data  heterogeneity  and  local
data  scarcity  by  leveraging  adaptive  regularization  and  model
contrastive learning [164].  Their  experimental  results  on five public
chest  X-ray  datasets  demonstrate  that  the  federated  can
significantly  improve  diagnostic  performance,  providing  a  accurate
and efficient solution. 

  
Table 9    Summary of the representative Fed-LLM platforms

Privacy Tech. Multi-GPU Ops Optimization Instr.-Tuning Adapter-Tuning Prompt-Learning RLHF Benchmark

FATE-LLM [156] DP, SMC etc. √ − × √ √ × ×

FS-LLM [157] DP etc. √ √ √ √ √ × √

Shepherd [34] − × − √ √ √ × ×

OpenFedLLM [158] − × − √ √ √ √ √

OpenHufu-LLM [162] DP, SMC etc. √ √ √ √ √ × ×
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■ 8  Future directions and challenges
rLLMs

rLLMs rLLMs

rLLMs

Prior studies in federated  have made significant progress by
successfully  utilizing  various  training  signal  formats  to  enhance
reasoning capabilities of language models. Nevertheless, this rapidly
evolving  field  still  offers  abundant  research  opportunities.  In  the
following,  we  highlight  two  promising  research  directions  and
associated challenges from the perspective of training signals fed into

,  including:  (i)  Federated  RL-Enhanced  and
(ii) Federated RAG-Enhanced . 

rLLMs8.1  Federated RL-enhanced 

rLLMs

rLLMs

In  this  subsection,  we  envision  a  paradigm  shift  in  federated
reinforcement  learning  enhanced ,  where  an  alternative
format of training signal, namely outcome signal, is further exploited
to  enhance  reasoning  capabilities.  Outcome  signals,  such  as
evaluation  scores,  are  typically  scalar  values  and introduce  minimal
communication  overhead.  Thus,  it  should  focus  more  on  model
capability and data privacy in this research direction. Specifically, we
first  introduce  the  shift  in  training  signals  of  the  and  then
explore  the  opportunities  and  challenges  that  arise  across  multiple
outcome owners.

rLLM πΘ

Training  signal:  from  preference  to  outcome. Prior  works
[4,128,152]  have  already  viewed  the  as  a  policy  and  the
next-token-prediction problem in language model can be modeled as
the  sequence-decision  problem  in  reinforcement  learning,  where
decision trajectory can be formalized as,
 

P(y|X) =

Tr∏

t=1

P(yt | X,y1,y2, . . . ,yt−1)

=

k∏

t=1

πΘ(rt | X,r<t)

︸               ︷︷               ︸

Reasoning Decisions

·

k+Tr∏

t=k+1

πΘ(yt−k | X,r<k,y<t)

︸                         ︷︷                         ︸

Answer Decisions

, (20)

πΘ rLLMs

rLLMs

rLLMs

rLLMs

where  is the -based decision policy to generate a sequence
of token. In such cases,  various forms of sparse training signals can
be utilized,  such as human preference feedback [128].  Recently,  the
remarkable success of DeepSeek-R1 [11] etc., have shown that task-
specific  outcome-based  scoring  signals  can  be  effectively  leveraged
through  RL  to  improve  the  reasoning  performance  of .  For
example,  the  final  answers  generated  by  can  be  evaluated
against  known  correct  solutions  in  mathematical  tasks,  or  code
outputs  can  be  scored  based  on  predefined  test  cases.  Furthermore,

 can also act  as  judges to evaluate the outputs  [129].  On the
one  hand,  in  this  context,  various  application  domains  can  serve  as
judges by providing valuable outcome-based training signals, making
it  feasible  to  apply  Fed-RL  across  a  wide  range  of  scenarios,
particularly  in  the  privacy-sensitive  applications  such  as  healthcare.
On  the  other  hand,  outcome  scores  typically  have  less  privacy  than
other  training  signals  (e.g.,  raw  data  or  model  parameters),  so  we
believe  that  Fed-RL  will  have  growing  impacts  and  envision  the
opportunities and challenges in this research direction.

Firstly,  FL  clients  may  produce  outcomes  based  on  diverse  and
potentially  conflicting  criteria,  resulting  in  inherently  heterogeneous

outcome-score  signals.  Thus,  a  crucial  challenge  in  this  context  is
how  to  handle  such  heterogeneity  within  Fed-RL  frameworks,
especially for scenarios where FL clients have non-uniform score or
reward structures.

rLLMs

rLLMs

Secondly,  a  commonly  adopted  approach  in  RL-based  is
rejection  sampling,  which  filters  for  high-quality  reasoning
trajectories,  serving  as  a  valuable  form  of  reasoning  signal  [11].
Therefore,  an  important  question  is  whether  the  federated  rejection
sampling mechanism can be developed to leverage private reasoning
data  across  data  owners  in  the  training  of  federated  RL  enhanced

.

rLLMs

Finally,  existing  privacy-preserving  techniques,  such  as secure
aggregation provide  an  efficient  mechanism  for  previous  federated
learning  algorithms  [105].  Accordingly,  an  important  research
question  is  whether  the  widely-adopted  RL  algorithms  for ,
such as GRPO [11], can be reformulated into Fed-RL fashion solely
using secure aggregation in the context of outcome-based signals. 

rLLMs8.2  Federated RAG-enhanced 

rLLMs

In  this  subsection,  we  introduce  federated  retrieval-augmented
generation (Fed-RAG) of , which exploit the external data or
knowledge  across  various  data  owners  in  a  federated  fashion.
Specifically, we first introduce the basic concepts and workflow and
then  envision  the  future  directions  for  the  key  steps  and  knowledge
formats of federated RAG.

rLLMs

External  knowledge:  from  public  to  private. With  in-context
learning  capabilities,  incorporate  various  formats  of
knowledge  (e.g.,  prompts  or  embeddings)  in  reasoning  process,
enabling  them  to  further  exploit  the  external  knowledge  without
requiring additional training. In the seminar work [165], Lewis et al.
introduced Retrieval-Augmented  Generation,  a  generation  paradigm
that  combines  language  model  and  external  knowledge  for  next-
token-prediction, which can be formalized as,
 

P(y | X) =
∑

z∈Z

Pη(z|X)

T∏

t=1

P(yt | X,z,y<t), (21)

Z Pη(·|X)

X

Z

LM

rLLMs

rLLMs

rLLMs

where  is the retrieved external knowledge and  denotes the
generation  model  based  on  input  tokens  and  external  knowledge

.  It  is  evident  that  we  can  achieve  a  same  retrieval-augmented
framework  for  reasoning  by  just  replacing  the  in  Eq.  (21)  with

 in Eq. (3) in Section 2. In practical scenarios, e.g., healthcare
[166],  external  clinical  knowledge  with  sensitive  information  is
typically  distributed  across  various  data  owners.  Thus,  researchers
have  extended  the  concepts  of  RAG  [165]  to  Fed-RAG  [167–169],
which  allows  the  to  further  utilize  the  private  data  or
knowledge in reasoning process in a privacy-preserving manner. We
envision a workflow for Fed-RAG enhanced .

S tep

rLLM

S tep

Workflow of Fed-RAG. As shown in Fig. 10, there are five steps in
a typical  workflow of Fed-RAG. -①:  When receiving a query
from a user query, the  encodes the query into embeddings and
sends  them  to  the Retrieval  Router. -②:  Then,  the Retrieval
Router selects  the  appropriate  data  sources  based  on  the  semantic
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content  of  the  query.  It  chooses  data  sources  most  likely  to  contain
highly  relevant  external  knowledge  for  the  user  query  to  avoid  a
naive  router  requiring  all  FL  clients. -③:  The  selected  FL
clients  perform  local  retrieval  (e.g.,  approximate  nearest  neighbour
search) over their private databases and return the retrieved results to
the  FL  server,  where  we  can  employ  high  dimensional  vector
retrieval  methods  such  as  FAISS  [170]  or  HNSW  [171]  on  the  FL
client  side  for  local  retrieval. -④:  The  FL  server  then
aggregates  the  retrieval  results  from  all  participating  FL  clients.  In
the  aggregation  phase  of  federated  RAG,  the  FL  server  merges  the
retrieval  results  from  previously  selected  FL  clients  for  the
subsequent reasoning tokens generation. -⑤: Finally, the 
utilizes the aggregated information as external knowledge to generate
reasoning  paths  and  the  final  answers.  We  envision  the  research
questions below.

rLLMsFirstly, as previously discussed,  are inherently flexible and
trained  across  diverse  training  signals.  Existing  Fed-RAG  solutions
[167–169]  predominantly  operate  on  prompts  or  embeddings,  and
whether other formats of knowledge can be utilized reasoning across
through Fed-RAG is a non-trivial problem. Furthermore, another key
open problem in Fed-RAG is whether and how heterogeneous forms
of  knowledge  (e.g.,  prompts,  embeddings,  or  proxy  models)  can  be
jointly fused as external knowledge.

rLLMsSecondly,  for  task-specific  reasoning  process,  may  have
different  requirements  for  external  knowledge,  such  as  diverse
viewpoints,  factual  correctness,  or  efficient  response,  which
highlights  the importance of  retrieval  routers  and raise an important
research question, i.e.,  can we design query-aware and intent-driven
retrieval  routing  or  indexing  mechanism  across  FL  clients  as  Fed-
RAG infrastructures to fill the reasoning requirements?

k

Finally,  existing  Fed-RAG  frameworks  [167–169]  mainly  adopts
naive  aggregation  strategies,  such  as  concatenation  [15]  or  Top-
selection [167], which not only overlooks the semantic dependencies
among retrieved external knowledge but also inadvertently leaks the
privacy. Thus, it is a crucial research problem whether we can design
an effective FL aggregation mechanism in a privacy-for-free fashion. 

■ 9  Conclusion

rLLMs

In  this  survey,  we  provide  a  comprehensive  overview  of  existing
research  on  federated  reasoning  large  language  models  (federated

).  We  propose  a  novel  taxonomy  grounded  the  nature  of
training signals, encompassing signals derived from raw data, model-
interpretable  representations,  and  preference  feedback.  Within  the
proposed  taxonomy,  we  summarize  the  primary  federated  learning
techniques  and  highlight  the  emerging  trends  that  align  with  the

rLLMs

rLLMs

rLLMs

unique  features  of .  We  then  review  open-source  platforms
for  federated  and  present  two  representative  real-world
applications.  Finally,  we  envision  future  research  opportunities  and
challenges in federated  along two promising directions,  i.e.,
extending  the  forms  of  training  signals  and  leveraging  externally
sourced knowledge. 
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