
Timestamp Approximate Nearest Neighbor Search
over High-Dimensional Vector Data

Yuxiang Wang†, Ziyuan He†, Yongxin Tong†, Zimu Zhou‡, Yiman Zhong†
† State Key Laboratory of Complex and Critical Software Environment,

Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
‡ City University of Hong Kong, Hong Kong, China

†{yuxiangwang, hzy he, yxtong, yeeman}@buaa.edu.cn, ‡zimuzhou@cityu.edu.hk

Abstract—Unstructured data, such as images and texts, are
increasingly represented as high-dimensional vectors for emerg-
ing AI applications like retrieval-augmented generation. A key
operation in these applications is querying for vectors that
are both semantically similar and temporally relevant. This
operation can be formulated as Timestamp Approximate Nearest
Neighbor Search (TANNS), where both the vectors and the
query incorporate temporal attributes, aiming to retrieve the
approximate nearest neighbors valid at the given timestamp. A
naive solution is to create separate indexes for each timestamp,
which enables accurate and fast searches but incurs high update
latency and excessive storage demands.

In this paper, we introduce the timestamp graph, a novel
structure that supports rapid index updates while minimizing
storage costs. Exploiting the temporal locality of changes in valid
vectors, our timestamp graph effectively manages a unified index
across all historical timestamps, thereby substantially reducing
storage overhead. Moreover, we design the historic neighbor
tree, which further compresses the space complexity to that of a
single-timestamp index. Extensive evaluations on four standard
datasets show that our method achieves over 99% accuracy while
improving the query efficiency by 4.4× to 138.1× than existing
solutions.

Index Terms—high-dimensional data, approximate nearest
neighbor search

I. INTRODUCTION

Vector databases, which store and manage embeddings of
diverse unstructured data (e.g., text, images, audio) as high-
dimensional vectors [1], [2], have become indispensable in
emerging AI workflows such as retrieval-augmented genera-
tion (RAG) [3]. Acting as external knowledge repositories,
they provide AI models with contextually relevant information
to mitigate hallucinations and enhance in-context learning.
Such information is efficiently retrieved via Approximate
Nearest Neighbor Search (ANNS), an operation that returns
semantically similar records for a given query vector.

Beyond semantic similarity, temporal relevance is also criti-
cal for practical vector database applications. On the one hand,
the vectors often have a validity period, as new embeddings are
continuously added to the database and outdated ones expire.
For instance, in a knowledge base, the embeddings of current
knowledge evolve over time [4], necessitating searching over
valid data only to return accurate results. On the other hand,
many queries are tied to specific timestamps, demanding an-
swers that correspond to a particular moment. This is common
in applications like financial analysis and fact verification,

where aligning the retrieved vectors with the queried time
reference is necessary to avoid misleading results [5]. We
illustrate this insight in the following motivating example:

Example 1 (Answering Time-relevant Questions): Although
large language models (LLMs) exhibit strong capabilities in
question answering, they often struggle with time-relevant
problems [6], [7], such as “What was the highest closing value
of the NASDAQ-100 index before October 2024?” and “What
was the prize pool for the Counter-Strike Major Championship
in 2024 Summer?” Retrieval-Augmented Generation (RAG)
can enhance the accuracy of answers by supplementing the
LLM with text chunks that are both relevant to the query and
temporally accurate [3], [8]. Since the retrieval step in RAG
typically uses embedding similarity to identify relevant chunks
[9], it is important to consider approximate nearest neighbor
search of embedded data with timestamp constraint.

To meet these needs, we introduce Timestamp Approxi-
mate Nearest Neighbor Search (TANNS), a new query that
incorporates time attributes into both the data vectors and
the query. Given a query vector paired with a timestamp, the
TANNS query returns approximate nearest neighbors among
all vectors valid at that timestamp. Our goal is to enable
accurate and efficient TANNS queries, as applications like
chat bots demand real-time, high-quality results over millions
of high-dimensional vectors [9]–[11].

Prior research fails to support efficient TANNS queries.
Early studies on nearest neighbor search with temporal con-
straints [12]–[15] build temporal indexes to track valid objects
per timestamp for rapid search. However, they struggle for the
dense vector embeddings due to the curse of dimensionality
[16]–[18]. A seemingly plausible solution is the recently
proposed hybrid search upon high-dimensional vectors asso-
ciated with attributes [19]–[21]. However, they are unfit for
TANNS because they implicitly assume attributes with pre-
determined values, whereas the expiration timestamp of a
vector is typically unknown when it is added to the database.

To handle the high-dimensional vectors with nondetermin-
istic validity, we employ graph-based indexes, which prevail
in ANNS over high-dimensional data [22], [23], and build a
separate index per historical timestamp of interest. While this
strategy enables accurate and fast searches, it incurs notable
update latency due to frequent index updates whenever the
validity of any vector changes. More critically, maintaining
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TABLE I: Time and space complexity of methods (N : vector number in the dataset; M : neighbor number in the graph index).

Searching Time Updating Time Space

Naive Graph-based TANNS (Sec. III-B) O(M logN) O(MN logN) O(MN2)

TANNS with Timestamp Graph (Sec. IV) O(log2 N) O(log2 N) O(M2N)

TANNS with Compressed Timestamp Graph (Sec. V) O(log2 N) O(log2 N) O(MN)

an index for all valid vectors per timestamp consumes un-
acceptably high storage, with a space complexity that grows
quadratically with the number of vectors (see Sec. III).

To enhance the efficiency of TANNS queries, we propose
the timestamp graph (see Sec. IV), a novel structure that
supports rapid index updates and requires low index storage.
It maintains a single graph index for all historical timestamps,
thus significantly reducing storage overhead. The feasibility of
this approach is underpinned by the high temporal locality of
the changes in valid vectors, resulting in considerable overlap
in their indices across time. The cost of index updates is also
reduced, as only the neighbors of changed vectors need mod-
ification, which constitute a small fraction of the graph. How-
ever, directly implementing this idea is challenging, as vector
expiration can decrease graph connectivity and compromise
search accuracy. To address this issue, we introduce backup
neighbors and develop efficient algorithms to manage point
insertion and expiration in the timestamp graph. Recognizing
the redundancy in storing neighbor information, we further
propose the historic neighbor tree (see Sec. V) to compress
the timestamp graph. Remarkably, the compressed timestamp
graph tracks valid vectors across all timestamps while achiev-
ing the same space complexity as a single-timestamp index.
Table I summarizes the complexity of our proposed methods.

Our major contributions are as follows:
• We investigate the timestamp approximate nearest neigh-

bor search (TANNS), a new query in vector databases for
emerging AI applications.

• We propose the timestamp graph, a novel structure to
manage valid vectors across timestamps by a single index.
It enables accurate and efficient TANNS queries with fast
index updating and low index storage overhead.

• We design the historic neighbor tree, which compresses
the timestamp graph to the limit, achieving the same
space complexity as index for a single timestamp.

• Extensive experiments show that our solution yields a
recall rate of over 99% on four standard datasets, while
improving the query efficiency by 4.4× to 138.1× over
the state-of-the-arts.

II. PROBLEM STATEMENT

We first review the nearest neighbor search, a primitive in
vector databases [1], [2], [24], before defining our timestamp
approximate nearest neighbor search (TANNS) query.

Definition 1 ((Exact) k Nearest Neighbor (kNN)): Given
N high-dimensional vectors D = {u1, u2, ..., uN} and a
query vector q of the same dimension, the (exact) kNN query
kNN(D, q, k) retrieves a subset of k vectors that are closest

to q, i.e., ∀u ∈ kNN(D, q, k) and ∀v ∈ D \ kNN(D, q, k),
dis(q, u) ≤ dis(q, v), where dis(·, ·) is the distance function.

Unlike its low-dimensional counterpart [25], kNN on high-
dimensional data often prioritizes efficiency over accuracy to
align with the targeting vector database applications [1], [2],
[24], which results in the following query optimization scope:

• Approximate Queries. Most studies [2], [26], [27] focus
on approximate nearest neighbor search (ANNS) with its
accuracy assessed by the recall rate, a key metric for
downstream vector database tasks such as text retrieval
[9] and recommendation [28].

• Dedicated Indexes. Data in vector database applications
is not only high-dimensional but also large-scale, mak-
ing indexing indispensable for efficient queries. Graph-
based indexes, e.g., the hierarchical navigable small-
world graph (HNSW) prevail in ANNS queries on high-
dimensional vectors [26], [27]. They yield high accuracy
by visiting merely O(logN) vectors [2], [22], [23].

We follow the above scope yet extend it with time attributes
in both the vectors and the query, as defined below.

Definition 2 (Timestamp Approximate Nearest Neighbor
Search (TANNS)): Let D = {u1, u2, ..., uN} be N high-
dimensional vectors. Each vector ui is associated with two
timestamps, ui.s and ui.e (ui.s < ui.e), representing the
start and end of its validity. Let q be a query vector
of the same dimension, which is associated with a times-
tamp ts. The timestamp approximate nearest neighbor search
TANNS(D, ts, q, k) returns a subset of k valid vectors that
are approximately closest to q.

This new query captures the data dynamics and time-
aware queries in emerging vector database applications, e.g.,
memory controls and time references in chat bots [10], [11].
Specifically, we are interested in the following setups.

• Without loss of generality, we assume discrete times-
tamps, meaning that exactly one vector becomes valid
or invalid at each timestamp. The largest timestamp in
the dataset is denoted as T .

• We follow the setup of a transaction-time database [29].
A vector ui becomes valid when it is newly added to D at
ui.s, and expires when it is marked obsolete or replaced
by another vector at ui.e. Notably, the end timestamp of
one vector’s validity is unknown when it is added to D.

• We evaluate query accuracy by recall rate |r∩r∗|
k , where

r is the result of the TANNS query, and r∗ is the result
of the corresponding exact kNN query over all the valid
vectors at timestamp ts, i.e., kNN(D(ts), q, k), where
D(ts) represents all the valid vectors at ts (1 ≤ ts ≤ T ).
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Example 2: Assume D contains five vectors whose valid
times are shown in Fig. 1, and a query TANNS(D, t, q, 3),
where the distances between q and the vectors in D are listed
in Table II. We have kNN(D(t), q, 3) = {u1, u3, u4} since the
valid vectors at t are {u1, u3, u4, u5}, and u5 is further from
q than the other three vectors. If the result of TANNS query
is {u1, u3, u5}, then the recall rate is 66.7%, since two out of
three vectors in the result appear in the ground truth set.

Fig. 1: Example of TANNS.

Distance q

u1 2.5
u2 1.9
u3 2.1
u4 1.1
u5 3.2

TABLE II: Distances
between vectors.

We aim to optimize the efficiency of TANNS queries while
retaining high accuracy over large-scale, dynamic data [28],
[30]. Hence, we explore designs that support efficient index
update and search in terms of both time and memory. Table III
summarizes the major notations that will be used in this paper.

TABLE III: Summary of major notations.

Notations Description

D vector dataset
N total vector number in D
T the maximal timestamp in D
G HNSW index
T G timestamp graph
B backup neighbor list
k required result size of TANNS query
k′ parameter controlling searching scope
M neighbor number
M ′ candidate neighbor number during construction
HNT historic neighbor tree
µ leaf node size for historic neighbor tree
Lnow current neighbor list
Lt neighbor list at timestamp t

III. NAIVE GRAPH-BASED TANNS
This section presents a naive solution to TANNS by adopt-

ing graph-based indexes. We first review HNSW, a popular
graph-based index for ANNS, and then apply it to TANNS.

A. Graph-based ANNS and HNSW

Graph-based indexes are widely adopted for efficient ANNS
[23]. Given a set of vectorsD, a graph-based index constructs a
proximity graph G for D, where each point in G corresponds
to a vector in D, and each edge connects a pair of points
satisfying certain neighborhood conditions. Then the ANNS
can be performed by greedy routing towards the query vector
following the graph. These indexes achieve high search effi-
ciency and accuracy since their structures effectively capture
the nearby relation between high-dimensional vectors [26].

Algorithm 1: HNSW Search
Input: HNSW index G, query q, query number k
Output: a set of k ANN of q

1 ep← entry point of G;
2 Mark ep as visited;
3 pool← {ep};
4 ann← {ep};
5 while pool is not empty do
6 u← point closest to q in pool;
7 Remove u from pool;
8 v ← point furthest from q in ann;
9 if dis(q, v) > dis(q, u) then break;

10 foreach unvisited point o ∈ G[u] do
11 Mark o as visited;
12 v ← point furthest from q in ann;
13 if |ann| < k′ or dis(q, o) < dis(q, v) then
14 Insert v into ann and pool;
15 if |ann| > k′ then
16 Remove point furthest from q in ann;

17 return k points closest to q in ann;

The hierarchical navigable small-world graph (HNSW) is
a popular graph-based index in the academia and industry
[22]. It employs a multilayer graph structure and performs
searches from the top layer down to the base layer. We briefly
review HNSW’s search and construction algorithms below.
For simplicity, we only explain the operations at the base layer.
Operations at other layers are similar.

• HNSW Search. Searching over the HNSW index follows
the greedy routing principle, yet expands the search scope
from k to k′ (where k′ > k is a parameter) to avoid
local minima and boost query accuracy (see Algorithm 1).
The search begins from a predefined entry point ep
and maintains two lists: pool for candidate points and
ann for potential nearest neighbors. In each iteration, it
picks point v from pool that is closest to q and adds
v’s neighbors to pool. The search terminates when ann
reaches the size of k′ (efSearch in [22]) and all points in
ann are closer to q than those in pool. Finally, k points
in ann that are closest to q are returned as query result.

• HNSW Construction. The HNSW index is built via
incremental insertion (see Algorithm 2). To insert a point
o, we retrieve M ′ (efConstruction in [22]) candidate
neighbors and select M of them as its final neighbors
G[o] (lines 3-4). The same neighbor selection function
(i.e., Select-Nbrs) is applied to points in G[o] to ensure
that the number of neighbors is within M (lines 5-8). The
neighbor selection strategy used in HNSW is heuristic,
which prioritizes points closer to o and excluding domi-
nated points (lines 9-16). A point u is dominated by v if
dis(o, v) < dis(o, u) and dis(u, v) < dis(o, u).

The time complexity of searching N points by the HNSW
index is O(M logN) since it visit O(logN) points [22] and
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Algorithm 2: HNSW Construction
Input: dataset D
Output: HNSW index G for D

1 Initialize an empty graph G;
2 foreach point o ∈ D do
3 cand← Search (G, o,M ′);
4 G[o]← Select-Nbrs (o, cand,M);
5 foreach point u ∈ G[o] do
6 Add o to G[u];
7 if u has more than M neighbors then
8 G[u]← Select-Nbrs (u,G[u],M);

9 return G;
10 Function Select-Nbrs (o, cand,M):
11 Sort cand by ascending distance to o;
12 nbr ← ϕ;
13 foreach point u ∈ cand do
14 if u is not dominated by points in nbr then
15 Insert u into nbr;

16 if |nbr| = M then break;

17 return nbr;

access their M neighbors. The time complexity for HNSW
index construction is O(MN logN), as each point is inserted
sequentially, and each insertion involves a search operation
which takes O(M logN) time. The space complexity for the
HNSW index is O(MN), as M neighbors are stored per point.

B. Adopting HNSW Index for TANNS Query

Basic Idea. Although HNSW is efficient for ANNS, it assumes
a static vector set D, whereas the valid vector set varies over
time in TANNS. Hence, an intuitive solution to TANNS is to
build one HNSW index for the valid vectors at each timestamp,
resulting in T distinct HNSW indexes G1, G2, ..., GT . Each
Gt is constructed with all valid vectors at timestamp t via
Algorithm 2. For a given query TANNS(D, ts, q, k), we
pick the corresponding index Gts, on which we search for
k approximate nearest vectors via Algorithm 1.

Complexity Analysis. The time complexity for updating the
index is O(MN logN), as a new index is built from scratch
using Algorithm 2 each time the list of valid points changes.
As each point enters and expires for at most one time, the
maximal timestamp T is bounded by 2N . Thus, the total space
usage for T distinct HNSW indexes is O(MN2).

Remarks. The naive method is inefficient in terms of the index
updating time and the index storage, as practical applications
may contain millions of vectors [30]. Although our design and
analysis is presented in the context of HNSW, it also applies to
other graph-based indexes constructed by incremental insertion
[23], e.g., NSW [31] and PANNG [32].

IV. TIMESTAMP GRAPH FOR TANNS

This section introduces TANNS queries based on the times-
tamp graph, a novel structure that supports fast index updating
and consumes low index storage. We first present the structure
of the timestamp graph, then explain its search and construc-
tion algorithms, and finally analyze its complexity.

A. Timestamp Graph

Rationale. Data dynamics in practical vector database ap-
plications are mild [33], [34], which implies that the valid
vector sets at nearby timestamps largely overlap. Hence, it is
unnecessary to maintain a separate index per timestamp, a key
efficiency bottleneck in the naive solution. We take advantage
of such temporal locality and manage valid vectors across all
T timestamps by a single structure, as explained below.
Structure. A timestamp graph T G is a proximity graph
defined as in Sec. III-A yet over all historic valid vector sets
D(1), ..., D(T ). It can be considered as aggregating the T per-
timestamp HNSW indexes into a single graph by removing the
unchanged valid vectors between adjacent timestamps. Unlike
the HNSW index that only stores the current neighbor list for
each point, the timestamp graph tracks neighbor lists for all
historic timestamps. By scanning the historic neighbor lists, it
can trace the neighbors of a point at any timestamp.

Example 3: In Table IV, the column T G[o] represents the
historic neighbor list of point o. At timestamp t1, u3 and u4

are chosen as o’s neighbors, and they remain as neighbors until
t2, when o’s neighbors are updated to u1 and u3. Thus, when
visiting point o at timestamp between t1 and t2, we regard u3

and u4 as its two neighbors, while u1 and u3 are treated as
neighbors between t2 and t3.

B. TANNS Query on Timestamp Graph

To process a query TANNS(D, ts, q, k) with a timestamp
graph T G, we search for the approximate nearest neighbors
in a similar way to Algorithm 1. The main difference is that
when visiting point u in line 10, its neighbors G[u] are not
fixed but dependent on the query timestamp ts. The neighbors
of u at timestamp ts can be obtained by a binary search on
u’s historic neighbor list. All other steps remains the same as
standard HNSW search. The algorithm yields high accuracy
and efficiency since it specifically searches within the graph
built using vectors valid at the query timestamp.

C. Timestamp Graph Construction

In the naive solution (Sec. III-B), an entire HNSW index
for D(t) points is built from scratch using valid vectors per
timestamp t. In contrast, the construction of the timestamp
graph only involves one point per timestamp. However, it must
handle not only point insertion, but also point expiration. We
show that point expiration impairs the graph connectivity and
thus the search accuracy, and solve the problem with backup
neighbors, as explained below.
Need for Backup Neighbors. To update the timestamp graph
at a specific timestamp t, if a new point becomes valid, we

4



Fig. 2: Neighbors of point o during timestamp graph updating.

Timestamp T G[o] B[o]

t1 u3, u4 u1, u2

t2 u1, u3 u2

t3 u1, u3 u2, u5

t4 u1, u2 u2

t5 u2, u6 u1, u5

t6 u1, u6 u5

t7 None None

TABLE IV: Primary neighbors and
backup neighbors of point o.

add it to the graph and connect it with M neighbors. If
otherwise a point expires, we mark it as invalid and disconnect
it from its current M neighbors. Then we append a new
neighbor list (with the invalid point removed) to all the affected
neighbors. Over time, the neighbor list of certain points may
become empty, reducing the overall graph connectivity, which
decreases the search accuracy [34].

We try to maintain the graph connectivity by introducing
a backup neighbor list per point. Specifically, for each point
u, we store M backup neighbors B[u] in addition to M
primary neighbors in T G[u]. Consequently, when a point in
T G[u] expires, certain point in B[u] can take up its place,
avoiding decreased connectivity. With the backup neighbors
in mind, we now describe the algorithm details for handling
point insertion and expiration to update the timestamp graph
at a given timestamp t.

Point Insertion. Adding a point to the timestamp graph T G
is similar to the insertion in the HNSW, except for an extra
step to maintain the backup neighbor list (see Algorithm 3).
Concretely, when a new point o is added, we search the current
graph and retrieve M ′ candidate neighbors as in the HNSW,
but select 2M points from the candidates. The M points
closest to o are allocated to T G[o] as primary neighbors, while
the remaining points are stored in B[o] as backup neighbors.
For any point u whose neighbor list T G[u] is modified after
point insertion, we append a new version with timestamp t in
u’s historic neighbor list (lines 4-12).

Point Expiration. When a point expires, we disconnect the ex-
pired point from its current neighbors and select new neighbors
for these points (see Algorithm 4). Specifically, we process all
neighbors u of o as follows: If o is a backup neighbor for u,
we simply discard o from B[u] (lines 2-3). If o is in T G[u],
i.e., a primary neighbor, we replace o with a point from B[u]
(lines 7-9). In case the backup neighbor list B[u] is empty,
we reselect neighbors for u as if u were a newly added point
(lines 11-12). Since the frequency of neighbor reselection is
low, such time-consuming operation does not notably affect
the overall efficiency.

Example 4: Fig. 2 and Table IV illustrate the changes
to point o’s neighbors when updating the timestamp graph.
Initially, o selects T G[o] = {u3, u4} as primary neighbors

Algorithm 3: Point Insertion
Input: timestamp graph T G, point o, timestamp t

1 cand← Search (T G, o,M ′);
2 T G[o], B[o]← Select-Nbrs (o, cand, 2M);
3 Initialize o’s historic neighbor list with T G[o];
4 foreach u ∈ T G[o] do
5 if o is not dominated by points in T G[u] and

closer to u than furthest points in T G[u] then
6 Move the furthest point in T G[u] into B[u];
7 Add o to T G[u];
8 Append T G[u] to the historic neighbor list of

u, associated with timestamp t;

9 else
10 Add o to B[u];
11 if |B[u]| > M then
12 Remove the furthest point from B[u];

(connected with full line) and B[o] = {u1, u2} as backup
neighbors (connected with dashed line). At timestamp t1, point
u4 expires and o chooses u1 from B[o] to replace u4 as its
neighbor (while u2 is skipped as it is dominated by u3). Then
point u5 appears at timestamp t3. Although it is excluded
from T G[o] because its distance from o is larger than other
o’s neighbors, we keep it in B[o] as a backup neighbor. At
timestamp t4, u3 expires and u1 takes over its place. Then, u1

is replaced by u6 at timestamp t5 and added into the backup
list. Finally, point o expires at t7. We clear B[o] but keep its
historic neighbor list, ensuring that queries with timestamps
before t7 can be performed correctly.

D. Complexity Analysis of Timestamp Graph

For each point in timestamp graph, finding all neighbors at a
given timestamp via binary search on the historic neighbor list
takes O(logN) time, resulting in an overall search complexity
of O(log2 N). For graph updating, we perform a search
operation at first, which takes O(log2 N) time. Although a
search may also be triggered when handling point expiration,
this only occurs once every M updates in the worst case, since
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Algorithm 4: Point Expiration
Input: timestamp graph T G, point o, timestamp t

1 foreach u ∈ T G[o] do
2 if o ∈ B[u] then
3 Remove o from B[u];

4 else if o ∈ T G[u] then
5 Remove o from T G[u];
6 if B[u] is not empty then
7 cand← T G[u] ∪B[u];
8 T G[u]← Select-Nbrs (u, cand,M);
9 Remove all elements in T G[u] from B[u];

10 else
11 cand← Search (T G, u,M ′);
12 T G[u], B[u]← Select-Nbrs (u, cand, 2M);

13 Append T G[u] to the historic neighbor list of
u, associated with timestamp t;

only one point expires each time. Thus the time complexity
for index updating is O(log2 N) + M ·O(log2 N)

M = O(log2 N).
Due to the locality of timestamp graph updating, both

point insertion and expiration only affect M points, i.e.,
only the neighbor lists of these M points are modified, and
we only store the new neighbor lists for them. Since each
update requires O(M2) additional storage, the overall space
complexity of the timestamp graph is O(M2N).

V. COMPRESSING TIMESTAMP GRAPH

This section pushes the space complexity of the timestamp
graph to the limit (i.e., same as HNSW index for a single
timestamp) by compressing and managing the neighbor lists
in the timestamp graph via the historic neighbor tree. We
explain its structure, introduce the algorithms for neighbor list
reconstruction and compression, and analyze the complexity
of the compressed timestamp graph.

A. Historic Neighbor Tree

Motivation. Although the timestamp graph reduces the index
storage from O(MN2) to O(M2N), there is still redundancy
in the neighbor lists of the timestamp graph. As it is unlikely to
replace the entire neighbor list at once, the same points tend to
appear in multiple neighbor lists. For example, in Table IV, u1

appears in o’s neighbor list for four times, thereby occupying
redundant space.

The design of historic neighbor tree is inspired by the
classic interval tree [35], but it differs in two key aspects: (i)
The historic neighbor tree manages points whose presence in
the neighbor list are unknown in advance, unlike the interval
tree, where both endpoints of intervals are predefined. (ii)
The historic neighbor tree employs a bottom-up construction
approach to ensure the tree remains balanced.
Structure. A historic neighbor tree HNT for a point o ∈ D
is a binary tree with multiple nodes. Fig. 3 illustrates the

structure of an internal node of a historic neighbor tree. It
contains a unique node identifier, a timestamp t, and the
points valid at t. The leaf nodes share a similar structure
but lack the timestamp, with the points contained determined
by the construction process (see Sec. V-C). Both node types
maintain two sequences for the points they contain: one sorted
by the points’ start times and the other by their end times.
Furthermore, a point valid in multiple nodes is stored only
in the highest node where it is valid. For example, in Fig. 4,
although u3 is valid at timestamp t3, it should not be stored
in node 1 since it can be placed in the higher node 3.

Fig. 3: Structure of a node in historic neighbor tree.

In addition to the historic neighbor tree, we use Lnow to
record points in the current neighbor list. These points are
sorted by their start times. Once points are removed from
Lnow, they are added to the historic neighbor tree.

Next, we explain how to (i) reconstruct the neighbor list
at a given timestamp from the historic neighbor tree, and (ii)
construct the historic neighbor tree from all neighbor lists.

Example 5: Suppose we aim to reconstruct Lt2 , the neighbor
list at timestamp t2. We first scan the current neighbor list and
add u6, as it is valid at t2. Then we stop at u10 since its start
time exceeds t2. Afterwards, we traverse the historic neighbor
tree from the root node, adding u3 and u4 as they are valid
at t2. We proceed to node 1 (since t2 < t6), adding u1, then
to node 0, where u2 is the only valid point. In the end, we
reconstruct Lt2 as {u1, u2, u3, u4, u6}.

B. Neighbor List Reconstruction

Since the historic neighbor list may grow as large as N ,
a fast reconstruction is necessary. Algorithm 5 outlines the
steps to reconstruct the neighbor list Lt at a given timestamp
t from the historic neighbor tree. We first scan the current
neighbors Lnow and add points valid at t until encountering a
point with a start time later than t (lines 2-5). Next, we start
from the root and traverse the historic neighbor tree (lines 6-
12). At each node, valid points are added to Lt. If t matches
the node’s timestamp, traversal stops as no valid points exist
in lower nodes. Otherwise, traversal continues to the left or
right child, depending the relation between t and the node’s
timestamp. Reconstruction is completed after reaching a leaf
node and including all valid points stored in it.
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Fig. 4: Compressed historic neighbor list for point o.

Timestamp T G[o]
t1 u1 , u2 , u3 , u4 , u5

t2 u1 , u2 , u3 , u4 , u6

t3 u1 , u3 , u4 , u6 , u7

t4 u3 , u4 , u6 , u7 , u8

t5 u3 , u4 , u7 , u8 , u9

t6 u3 , u4 , u6 , u10, u11

t7 u3 , u4 , u6 , u10, u12

t8 u6 , u10, u13, u14, u15

t9 u6 , u10, u13, u14, u16

t10 u6 , u10, u13, u14, u17

t11 u6 , u10, u13, u14, u18

TABLE V: Historic neighbor lists for point o.

Algorithm 5: Neighbor List Reconstruction
Input: historic neighbor tree HNT , timestamp t
Output: neighbor list at timestamp t

1 Lt ← ϕ;
2 foreach point p ∈ Lnow do
3 if p is valid at t then
4 Insert p into Lt;

5 else break;

6 Node n← HNT.Root;
7 while n is not leaf do
8 For node n, add all valid points at t to Lt;
9 if t = n.t then return Lt;

10 if t < n.t then n← n.left;
11 else n← n.right;

12 For node n, add all valid points at t to Lt;
13 return Lt;

C. Historic Neighbor Tree Construction

We now describe how to compress the neighbor lists of a
point o into a historic neighbor tree. We dynamically build the
historic neighbor tree since the neighbors at each timestamp
are unknown in advance. Upon receiving the latest neighbor
list at t, we append it to the existing historic neighbor tree.

Algorithm 6 outlines the procedures. Consider the points
in Lnow \Lt, which have just been removed from the current
neighbor list. We first check whether point p already exists
in the historic neighbor tree. If not, we execute the routine
for adding a new point to the historic neighbor tree (lines 3-
12). Otherwise, we simply adjust the position of the existing
point in the tree (lines 14-17). Finally, we assign the current
neighbor list to Lnow (line 18). The details of adding a new
point and adjusting an existing point are as follows.

Adding New Point. First, we identify the active path in the
historic neighbor tree, i.e., the path from the newest leaf node
nc to the root node HNT.Root. A new point p is added by
scanning this path for the highest node where p can be placed
(lines 3-6). If p is placed in a leaf node, we check whether
the node exceeds the size threshold µ. If yes, we consider this

Algorithm 6: Append Neighbor List
Input: historic neighbor tree HNT ,

the latest neighbor list Lt

1 foreach point p ∈ Lnow \Lt do
2 if p ̸∈ HNT then // Adding New Point
3 Node nc ← the newest leaf node of HNT ;
4 foreach n in path from HNT.Root to nc do
5 if n = nc or p is valid at n.t then
6 Insert p into n and break;

7 if nc has more than µ points then
8 Subtree treec ← the maximal complete

binary tree containing nc;
9 Create internal node ni, with treec as its

left subtree and t as its timestamp;
10 Create leaf node nl as right sibling of nc;
11 if ni is higher than HNT.Root then
12 HNT.Root← ni;

13 else // Adjusting Existing Point
14 Find node np which p located in;
15 foreach n in path from HNT.Root to np do
16 if p is valid at n.t then
17 Move p from np into n and break;

18 Lnow ← Lt;

node as filled and create two new nodes, an internal node ni

and a leaf node nl to accommodate future points (lines 7-10).
Finally, ni becomes the new root node if it is higher than the
current root, and the tree height increases by one (lines 11-
12). In this way, the historic neighbor tree is constructed from
bottom to top.

Example 6: Fig. 5 (a)-(f) illustrates the evolution of the
historic neighbor tree as points are added. The active path
(highlighted in green) is the path from the root node to the
newest leaf node, where the new point will be inserted. When
the newest leaf node is filled, two new nodes are created at
the same time, as shown in lines 10-12 in Algorithm 6. For
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Fig. 5: Evolution of tree structure as new points are added to
the historic neighbor tree.

example, in the transition from (b) to (d), when node 2 is full,
the subtree rooted at node 1 is complete, and thus the parent
node for this subtree is created, which is node 3. Besides, the
sibling node 4 is created. Similarly, when node 4 is full, node
5 is created as its parent because the maximal complete tree
containing 4 is node 4 itself, and node 6 becomes its sibling.
Adjusting Existing Point. It handles the cases where a point
is removed from the neighbor list and then re-enters. For
instance, in Table IV, point u1 enters the neighbor list at
timestamp t2 and t6, and adjusting should be applied at t2. The
operation begins by locating point p in the historic neighbor
tree, which is denoted as np. Then we attempt to lift point p as
high as possible along the path from np to the root node. We
will prove in Lemma 1 that a point should not be adjusted to
any other position in the tree. Although the adjusting operation
may cause point p to appear in more versions of neighbor list
than it is actually in, it does not affect the search accuracy as
p remains valid at each reconstructed list it appears.

Lemma 1: If point p is adjusted from node np to node n′
p,

then n′
p is an ancestor of np.

Proof: We prove the lemma by contradiction. Assume
that node n′

p is not an ancestor or descendant of np. Then
np and n′

p has a lowest common ancestor node c and c is
neither np nor n′

p. Since point p is valid at both np.t and
n′
p.t, it must be valid at c.t as well, because c.t lies between

np.t and n′
p.t. Therefore, the point should be placed at a higher

node c, rather than at node n′
p, which violates our assumption.

This contradiction shows that n′
p must be np’s ancestor or

descendant. Moreover, node np cannot be an ancestor of n′
p,

since p is still valid at np.t, and it should be placed as high
as possible in the tree, which completes the proof.

D. Complexity Analysis of Compressed Timestamp Graph

We first characterize the structure of historic neighbor tree
and then analyze the complexity of the compressed timestamp
graph. We begin by showing the historic neighbor tree is
balanced, whose height is logarithmic relative to the number
of points it contains.

Lemma 2: If a historic neighbor tree has n points, then its
height is at most ⌈log n⌉.

Proof: Suppose a historic neighbor tree has h levels,
then its left subtree must be full (according to lines 7-10
in Algorithm 6), meaning that the subtree contains 2h−1 leaf
nodes. Thus, the entire tree contains at least µ · 2h−1 points,
where the leaf node size µ is chosen to be greater than 2. Given
that, a historic neighbor tree with 2h points has a height of at
most h, which completes our proof.
Time Complexity. We begin by analyzing the complexity of
historic neighbor tree.

Lemma 3: The time complexity of neighbor list reconstruc-
tion of point u at a given timestamp is O(log n+Mr), where n
is the number of points that ever appear in u’s history neighbor
list and Mr is the size of the reconstructed neighbor list.

Proof: We prove the lemma by showing that almost all
the points visited in Algorithm 5 appear in the reconstructed
neighbor list. The exceptions are one point in the current
neighbor list Lnow and at most one points in each layer of
the historic neighbor tree. The reasons are as follows:

• In lines 2-5, all points visited are valid until we encounter
the first invalid point, at which the scanning stops.

• In lines 7-14, we traverse the historic neighbor tree to
add valid points from the nodes we visit. By using either
the start time or end time order, we guarantee to access
at most one invalid point per node. If t < n.t, i.e., the
query timestamp is smaller than the node’s timestamp,
we scan the list in the order of the start time and stop
once we encounter an invalid point. Similarly, if t > n.t,
we scan the list in the order of the end time.

In summary, the time complexity of neighbor list recon-
struction is the summation of the layer number in historic
neighbor tree and the reconstructed neighbor list size, which
is O(log n+Mr).

Our experimental results (see Sec. VI-B) indicate that the
maximal size of the Mr is 1.31M , which is slightly larger than
the original size of neighbor list. Likewise, we can conclude
that the time complexity for inserting into a point’s historic
neighbor tree is O(log n), since the insertion operation visits
only one node at each layer.

We continue to analyze the compressed timestamp graph.
Since the number of visited nodes during both search and
update is O(logN), the time complexity for searching and
updating the compressed timestamp graph is O(log2 N).
Space Complexity. We proceed to analyze the space complex-
ity for the compressed timestamp graph.

Theorem 1: The space complexity of compressed timestamp
graph is O(MN), where N is the size of dataset and M is
the neighbor number for each point.

Proof: For a point with n points ever appearing in its
historic neighbor list, the space complexity of its historic
neighbor tree is O(n), because each point in the historic
neighbor list is stored in only one location, either in the
current neighbor list Lnow or in a node of the historic neighbor
tree. Thus, the total space required for all points’ neighbors
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is
∑N

i=1 O(ni), where ni is the number of history neighbors
of point ui. This corresponds to the number of edges created
during the index construction. Since each point creates at most
2M edges as it is inserted into the timestamp graph, the upper
bound for

∑N
i=1 ni is 2MN . Therefore, the space complexity

of the compressed timestamp graph is O(MN).
Note that the space complexity of the compressed timestamp

graph has reached the optimal, as the space complexity of
HNSW index at a single timestamp is O(MN).

VI. EXPERIMENTAL STUDY

This section presents the evaluations of our method on
standard benchmarks.

A. Experiment Setup

Datasets. We use four common high-dimensional vector
datasets in our experiment.

• SIFT [36]: Each point represents an 128-dimensional
image descriptor, extracted from INRIA Holidays images
using the Scale-Invariant Feature Transform algorithm.

• GIST [36]: Each point is a 960-dimensional image
descriptor derived from the Holidays image set and Flickr
images, capturing global image properties.

• DEEP [28]: Each point is a 96-dimensional feature vec-
tor embedded using the GoogLeNet model, representing
image features extracted from web images.

• GloVe [30]: Each data point is a 200-dimensional word
vector generated from tweets using the Global Vectors
for Word Representation model.

By default, 1 million vectors are used as data vectors for each
dataset. Euclidean distance is used to measure similarity in
SIFT, GIST, and DEEP, while cosine distance is used in GloVe.
Workloads. To assess the performance of TANNS across
various application scenarios, we assign data vectors to four
types of randomly generated temporal data patterns.

• Short: All points have valid time ranges less than 0.05T .
• Long: All points have valid time ranges exceeding 0.4T .
• Mixed: Points are divided into two groups of roughly

equal size: one with valid time ranges over 0.4T , and the
other under 0.05T .

• Uniform: Points have valid time ranges uniformly dis-
tributed between 1 and T .

Standard query sets from the four datasets are used, with query
timestamps randomly selected between 1 and T . The number
of TANNS results required for each query is set to k = 10.
Baselines. We compare our method with following solutions.

• Pre-Filtering [33]: It first filters the dataset to retrieve all
vectors valid at the query timestamp, then scans the valid
vectors to find vectors closest to the query. The method
always guarantees exact results.

• Post-Filtering (HNSW) [33]: It first searches the vector
index without considering timestamps to retrieve a large
candidate set, then filters the results based on validity at
the query timestamp. HNSW [22] is used as the vector
index, configured with M = 16, M ′ = 200.

• ACORN [37]: It constructs the graph index in a
predicate-agnostic manner, supporting ANNS with di-
verse query predicates. However, ACORN needs to deter-
mine the construction parameter γ based on the attribute
distribution in the dataset, which is unavailable in our
scenario. To adapt ACORN for TANNS, we assume
that the validity period of each vector and each query
timestamp are known in advance. We then set γ as the
inverse of the average query selectivity. Other parameters
are set to their default values, i.e., M = 32 and Mβ = 64.

• SeRF [21]: It is designed for range-filtering ANNS
queries, where each vector is associated with an attribute,
and the query searches among data vectors whose at-
tributes fall within the specified range. However, TANNS
queries differ as each vector’s validity is determined
by two timestamps, with the end timestamp unknown
in advance. To adapt SeRF for TANNS, we perform
queries on the 1D segment graph using the start time
as the attribute and apply post-filtering based on the end
time. The default construction parameters for 1D segment
graph are used, i.e., M = 16, K = 200.

Implementation. All methods are implemented in C++ and
compiled using GCC 9.4.0 with -Ofast optimization. For the
timestamp graph, we use the following default parameters:
neighbor number M = 16, candidate neighbor number M ′ =
200 and leaf node size for historic neighbor tree µ = 8.
Experiments are conducted using a single thread. We repeat
each experiment multiple times and report the average result.
Environment. All the experiments are carried on a server
with Intel Xeon(R) Gold 6240 2.60GHz CPU processors and
768GB RAM.

B. Experiments on Search Performance

In this section, we evaluate the search performance of our
method on all four datasets using the following metrics:

• Queries Per Second (QPS): It measures the average
number of queries executed per second. The metric
reflects the search efficiency.

• Recall Rate: As described in Sec. II, the recall rate is
calculated as |r∩r∗|

k , where r represents the TANNS query
result, r∗ is the ground truth for the query, and k is the
required result size (set to k = 10 in the experiment).
This metric measures the search accuracy.

Following established benchmarks for ANNS [23], [26], [27],
we use QPS vs. Recall Rate plots to show the trade-off
between search speed and accuracy. Different data points
in these plots are generated by varying k′, the parameter
controlling the search scope.
Comparison Between Methods. Fig. 6 presents the rela-
tionship between QPS and recall rate. For all methods, QPS
and recall rate are inversely related, indicating that search
efficiency decreases as recall rate improves. Across all datasets
and data patterns, both timestamp graph and compressed
timestamp graph consistently outperform baseline algorithms
in QPS at the same recall rate. The QPS of timestamp graph
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(a) SIFT (Long) (b) SIFT (Short) (c) SIFT (Mixed) (d) SIFT (Uniform)

(e) GIST (Long) (f) GIST (Short) (g) GIST (Mixed) (h) GIST (Uniform)

(i) DEEP (Long) (j) DEEP (Short) (k) DEEP (Mixed) (l) DEEP (Uniform)

(m) GloVe (Long) (n) GloVe (Short) (o) GloVe (Mixed) (p) GloVe (Uniform)

Fig. 6: Searching performance on four datasets under different data patterns.

has an advantage of 4.4-138.1× over the existing solutions at
the recall rate of 95%. For example, on the GloVe dataset
with a uniform data pattern, timestamp graph achieves a QPS
of 4464, offering an 54.0× advantage over to the best baseline
which processes 82 TANNS queries per second.

Varying Datasets. As shown in Fig. 6, both timestamp graph
and compressed timestamp graph achieve a recall rate exceed-
ing 99% across all four datasets. Besides, the timestamp graph
offers the highest QPS across all datasets when the recall rate
is constrained to be above 95%. For the uniform data pattern
at a fixed recall rate of 95%, the timestamp graph achieves
QPS of 49751 for SIFT, 7042 for GIST, 49875 for DEEP, and
4464 for GloVe. Among the datasets using euclidean distance,
GIST has the lowest QPS due to its higher dimensionality:
as dimensions increase, the computational cost of calculating
vector distances rises, leading to longer search times.

Varying Data Patterns. Data patterns affect search perfor-
mance by influencing the selectivity of the query timestamp,
i.e., the ratio of valid vectors at a given timestamp to the total
vectors in D. In the GIST dataset and at the recall rate of
95%, the QPS of Post-Filtering and SeRF decreases from 260

and 84 to 74 and 57, respectively, when transitioning from
the long to short data pattern. This decline occurs because
lower selectivity forces these methods to expand their search
scope to satisfy temporal constraints, thus reducing efficiency.
In contrast, the influence of data pattern on our method is
minimal. Fixing the recall rate at 95%, timestamp graph
processes 3984 searches per second in GIST (Long) dataset
and 4149 searches per second in GIST (Short) dataset. The
reason behind is that timestamp graph exclusively searches
valid points, avoiding performance degradation even under low
selectivity conditions.

C. Experiments on Index Construction
In this part, we evaluate the index construction performance

of the timestamp graph using the following metrics:
• Update Throughput: Similar to QPS, we use throughput

to measure the efficiency of index updates. Specifically,
it reflects the average number of updates to the dataset
that can be processed per second.

• Memory Usage: This metric reports the total memory
consumption of the method, including both the raw vector
data and the constructed index.
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(a) SIFT (Long) (b) SIFT (Short)

(c) SIFT (Mixed) (d) SIFT (Uniform)

Fig. 7: Indexing construction performance on the SIFT dataset under different data patterns.

The experiments are conducted on the SIFT dataset with
four temporal data patterns. We compare the performance
of timestamp graph with the Post-Filtering (HNSW) method,
which constructs an HNSW index using all vectors in D
without considering the valid time ranges of the vectors.
Comparison Between Methods. Fig. 7 presents the update
throughput and memory usage of methods under various data
patterns. The timestamp graph achieves update throughput
comparable to the original HNSW index, ranging between
0.8× and 1.5× of the corresponding HNSW values, indicat-
ing the efficiency of our update method. The compressed
timestamp graph can support a throughput of over 1000
updates per second when the neighbor number is 16, which is
sufficient for real-world vector search applications [33], [34].
Regarding memory usage, the compressed timestamp graph re-
duces memory consumption by 35.9%-51.4% compared to the
timestamp graph, with the reduction being more pronounced
when the graph is constructed with a larger neighbor number.
Varying Data Pattern. HNSW’s update throughput and mem-
ory usage remain unaffected by data patterns, as it does
not account for time attributes during index construction.
In contrast, the update throughput for the timestamp graph
is influenced by the data pattern. For example, compressed
timestamp graph built for short data pattern exhibits an 1.3×
higher throughput and consumes 90.7% of the memory used
by the graph constructed for long data pattern. This is because
timestamp graphs for short patterns contain fewer valid vec-
tors, which reduces the time required to search for candidate
neighbors during index construction, thereby improving update
throughput. Besides, vectors with shorter valid ranges have
fewer historic neighbors, leading to reduced memory usage.

D. Experiments on Scalability Test
In this part, we evaluate the scalability of the timestamp

graph using the DEEP dataset. Experiments are conducted with
dataset sizes ranging from 2 million to 10 million vectors. Four
metrics are used to assess performance, i.e., QPS, recall rate,
update throughput, and memory usage.

Fig. 8: Search performance of scalability test.

Fig. 9: Index construction performance of scalability test.

Search Performance. Fig. 8 shows the recall rate and QPS
of TANNS when varying dataset size. The neighbor number
M is fixed at 16, with the search scope parameter k′ set to
100 and 250 for the experiment. As the dataset size increases,
the recall rate of the timestamp graph shows a slight decline
for a fixed search scope. Besides, even with the largest dataset
containing 10 million vectors, the timestamp graph achieves a
QPS of 857 while maintaining a recall rate of 99%, showing
good scalability of timestamp graph in search performance.

Index Construction Performance. Fig. 9 illustrates the up-
date throughput and memory usage of timestamp graph as
dataset size increases, with neighbor numbers set to 16 or 32.
We observe that the update throughput decreases gradually as
the dataset size grows. Moreover, memory usage grows nearly
linearly with the dataset size. The compressed timestamp graph
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requires 11.2GB of memory for 2 million vectors and 46.7GB
for 10 million. Besides, compressed timestamp graph reduces
memory usage by up to 66.8%, demonstrating the effectiveness
of historic neighbor tree in optimizing the storage overhead.

E. Summary of Major Experimental Findings

Previous experimental results are summarized as follows:
• Timestamp graph exhibits strong performance in both

search efficiency and accuracy. It achieves a recall rate ex-
ceeding 99% across all four datasets and provides a 4.4×
to 138.1× improvement in search efficiency compared to
existing methods at similar recall levels.

• Experiments on index construction show that our method
processes over 1000 updates per seconds. Besides, the
historic neighbor tree efficiently compresses the times-
tamp graph, reducing memory usage by up to 51.4%.

• Our method demonstrates good scalability both in both
search performance and index construction. In the DEEP
dataset with 10 million vectors, timestamp graph achieves
a QPS of 857 while maintaining a recall rate of 99%.

VII. RELATED WORK

Approximate Nearest Neighbor Search. ANNS is a core
operation in vector databases [1], [24], [33], [38]. Indexes
for ANNS mainly fall into three categories: partition-based
[39]–[44], quantization-based [36], [45]–[48], and graph-based
[22], [23], [49]–[53], where the last one best balances search
accuracy and efficiency [26], [27]. HNSW and NSG are two
representative graph-based indexes. HNSW [22] constructs
a graph by incremental point insertion, i.e., each point is
successively added into the graph and connected to the existing
points close to it. NSG [50] first initializes a KGraph as the
base graph and then refines it using the MRNG neighbor selec-
tion strategy. However, these two indexes struggle to support
point deletion. FreshDiskANN [54] is a graph-based method
that supports point updates via periodical point removal and
reconnection. Yet it cannot be adapted to our problem as it
fails to achieve the fine granularity as the timestamp graph.

Another relevant research is hybrid approximate nearest
neighbor search [19]–[21], [37], [55]–[60], which performs
ANNS among vectors with specified attributes. However, these
solutions are mainly designed for static vector data stores, and
most cannot support the semantics of timestamp filtering in
TANNS. Among them, we empirically compared our method
with ACORN [37] and SeRF [21], two state-of-the-art methods
adaptable for TANNS.

Temporal Data Management. Temporal databases store and
retrieve data records that changes over time [61]. There are
many dedicated indexes for temporal data [29]. Among them,
MVB-Tree [62], HV-Tree [63], Timeline Index [64], and LIT
[65] are indexes designed for time-varied relational data. Other
indexes are intended for querying spatial-temporal objects,
such as HR-Tree [12], TPR-Tree [13] and MV3R-Tree [14].
Yet they struggle to support similarity searches in the high-
dimensional space due to the “curse of dimensionality” [18].

VIII. CONCLUSION

This paper defines the Timestamp Approximate Nearest
Neighbor Search (TANNS) and designs both time- and space-
efficient solutions for TANNS queries. We propose the times-
tamp graph to effectively manage valid vectors across all
timestamps via a unified structure. We further develop the his-
toric neighbor tree to compress neighbor lists in the timestamp
graph and push its space complexity to the limit (same as
index at a single timestamp). Extensive evaluations show that
our solution achieves up to 138.1× higher QPS at 99% recall
compared to prior proposals in TANNS query processing. Our
future work will focus on time interval query for vectors
with temporal attributes, which can be used in financial or
recommendation applications to retrieve relevant content valid
during a specific time period.
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