
DarkDistill: Difficulty-Aligned Federated Early-Exit Network
Training on Heterogeneous Devices

Lehao Qu
∗

SKLCCSE Lab

Beihang University

Beijing, China

lehaoqv@buaa.edu.cn

Shuyuan Li
∗

Department of Data Science

City University of Hong Kong

Hong Kong, China

shuyuan.li@cityu.edu.hk

Zimu Zhou

Department of Data Science

City University of Hong Kong

Hong Kong, China

zimuzhou@cityu.edu.hk

Boyi Liu

SKLCCSE Lab

Beihang University

Beijing, China

boyliu@buaa.edu.cn

Yi Xu

SKLCCSE Lab

Beihang University

Beijing, China

xuy@buaa.edu.cn

Yongxin Tong

SKLCCSE Lab

Beihang University

Beijing, China

yxtong@buaa.edu.cn

Abstract
Early-exit networks (EENs), which adapt their computational depths

based on input samples, are widely adopted to accelerate inference

in edge computing applications. The effectiveness of EENs relies

on difficulty-aware training, which tailors shallow exits for sim-

ple samples and deep exits for complex ones. However, existing

difficulty-aware training schemes assume centralized environments

with sufficient data, which become invalid with real-world edge

devices. In this paper, we explore difficulty-aware training in a

federated manner, where EENs are collaboratively trained on het-

erogeneous devices. We observe the cross-model exit unalignment

phenomenon, a unique problem when aggregating local EENs into

a cohesive global model. To address this problem, we design a novel

Difficulty-Aligned Reverse Knowledge Distillation scheme named

DarkDistill that preserves the difficulty-specific specialization for

aggregating heterogeneous local models. Instead of direct parame-

ter averaging, it trains difficulty-conditional data generators, and se-

lectively transfers generated knowledge of specific difficulty among

matched exits of heterogeneous EENs. Evaluations show that Dark-

Distill outperforms the state-of-the-arts in both full-parameter and

parameter-efficient fine-tuning of EENs.

CCS Concepts
• Computing methodologies→ Learning paradigms.

Keywords
Federated Learning on Heterogeneous Devices; Early-Exit Net-

works; Knowledge Distillation

∗
Equal contribution

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1454-2/2025/08

https://doi.org/10.1145/3711896.3736902

ACM Reference Format:
Lehao Qu, Shuyuan Li, Zimu Zhou, Boyi Liu, Yi Xu, and Yongxin Tong. 2025.

DarkDistill: Difficulty-Aligned Federated Early-Exit Network Training on

Heterogeneous Devices. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V.2 (KDD ’25), August 3–7, 2025,
Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/

10.1145/3711896.3736902

Classifier

mismatch
aggregation

B1 B3

C1 C2 C3

B2

B1

C1 C2

B2

high-end
model

Difficulty-increased training samplesCB Block

low-end
model

global model

Figure 1: Cross-model Exit Unalignment.

1 Introduction
Deep neural networks (DNNs) are increasingly deployed on edge

devices for continuous, real-time inference tasks such as traffic anal-

ysis [2], autonomous driving [38], and well-being monitoring [34].

Given the varied difficulty across input samples, a promising ap-

proach to accelerate inference is to adaptively allocate the model’s

computation [10]: more for complex samples and less for simple

ones. Early-exit networks (EENs) [36, 44] exemplify this adaptive

inference strategy via adjustable model depth by attaching inter-

mediate classifiers (i.e., early exits) to each block of the backbone.

These exits enable samples with high-confidence predictions to

terminate their inference at shallow layers, effectively reducing

latency.

Despite their benefits, EENs require dedicated training strategies

compared to single-exit network. Particularly, the exits are often

jointly optimized to resolve cross-exit interference and boost accu-

racy [5, 11, 23, 26, 42, 54]. An emerging strategy for synergetic exit

training is difficulty-aware training [5, 11, 54], which tailors shallow
exits for simple samples and deep exits for complex samples. This

paradigm encourages exit specialization by either directing samples

https://doi.org/10.1145/3711896.3736902
https://doi.org/10.1145/3711896.3736902
https://doi.org/10.1145/3711896.3736902

KDD ’25, August 3–7, 2025, Toronto, ON, Canada LehaoQu et al.

misclassified by shallow exits to deep ones [54], or increasing the

weight of complex samples on training deep exits [5, 11].

Difficulty-aware training of EENs implicitly assume centralized
environments with ample data availability. Yet in edge computing

applications, training data are often decentralized, with each device

holding a limited dataset [12, 52]. This urges adapting difficulty-

aware training to a federated learning (FL) setup [30, 51], where

multiple devices collaboratively learn an EENs via iterative local
training and model aggregation coordinated by a server.

Enabling difficulty-aware federated training on heterogeneous de-
vices faces unique challenges. Ideally, shallow (deep) exits should

be trained with simple (complex) samples, both during local train-

ing and model aggregation. Enforcing gradually increased sample

difficulty along exits in local models is achievable using existing

solutions [5, 11, 54]. Yet this condition fails when aggregating local

models from heterogeneous devices, as their exits at equivalent

depths may handle samples from disparate difficulty ranges. This

mismatch, termed as cross-model exit unalignment, calls for new
aggregation strategies to align exits across local models, thereby

injecting difficulty-awareness into federated learning (see Fig. 1).

To address the cross-model exit unalignment problem, we draw

on recent studies [59] that advocate knowledge distillation (KD)

[13] over direct parameter averaging for aggregating single-exit

network. Building upon this principle, we leverage KD for multi-
exit network aggregation in a difficulty-aligned manner. Although

EENs and KD are often coupled in federated learning with het-

erogeneous clients [7], existing methods [18, 20, 25, 29] cannot

solve our problem for two reasons. (i) Their objective is not to train
EENs for input-adaptive inference. Some [18, 29] use early exits

to align features among heterogeneous local models but discard

them after training, resulting in static inference. Others [20, 25]
target at adapting to runtime resources rather than input samples at

inference. Accordingly, their KD is agonistic to sample difficulties,

let alone align difficulty ranges across exits. (ii) They [18, 20, 25]

mainly conduct client-side KD among exits within the same local

model, whereas the cross-model exit unalignment arises during the

aggregation of these models at the server.
In this paper, we propose DarkDistill, a novel Difficulty-Aligned

Reverse Knowledge Distillation scheme for federated EENs training.

Givenmultiple EENs of varied depths, each locally trained to special-

ize on increasing difficulty ranges [5, 11, 54], DarkDistill aggregates

them into a global EEN that preserves this difficulty-specific spe-

cialization. Achieving this objective confronts two challenges: (i)
knowledge transfer among unaligned exits of heterogeneous local

EENs and (ii) server-side distillation without local data. DarkDistill

tackles these challenges with two designs.

• Selective, progressive, and reverse KD. Knowledge is only

transferred between exits ofmatched difficulty ranges, which

is key to difficulty-aligned model aggregation. Distillation

proceeds progressively from shallow models to deep ones of

adjacent depths. This enables effective knowledge transfer
because (i) shallow models are locally trained with more

data in FL with heterogeneous clients [32], and (ii) it avoids
distillation between models of serious capacity gaps [31].

• Difficulty-conditional data generation. We train a data gen-

erator that produces pseudo data at specified difficulty to

support the above KD scheme. In standard KD [13], students

imitate the responses of teachers to the target dataset, which

is inaccessible at the server in FL. Inspired by data-free KD

[56, 59], we develop a lightweight data generator to produce

pseudo data of controllable difficulty.

The main contributions of this paper are summarized as follows:

• To our best knowledge, this is the first work that identifies

and addresses the cross-model exit misalignment problem for

federated EEN training on heterogeneous devices. It enables

the deployment of input-adaptive DNN to practical edge

computing applications.

• We propose DarkDistill, a new data-free KD framework for

difficulty-aligned aggregation of heterogeneous local EENs.

It advances EEN training by extending difficulty-awareness

to the federated context.

• Extensive evaluations on image and speech classification

show that our solution outperforms state-of-the-arts base-

lines [18, 20, 25, 29] in both full-parameter and parameter-

efficient fine-tuning across varied resource distributions.

2 Related Work
Early-Exit Network. EEN [44] is a subclass of dynamic neural

network [10] to enhance inference efficiency by tailoring their

computational depths to inputs. Research on EEN [24, 40] spans

three main areas: architecture design [8, 16], exit policies [17, 27],

and training techniques, with training being critical yet under-

explored. Typically, exits are jointly trained [5, 11, 16, 54] because

isolated training tends to yield lower accuracy [24, 40]. We focus on

difficulty-aware training [5, 11, 54], an emerging joint-exit training

strategy to mitigate train-test exit mismatches, by aligning each

exit’s training with the input types it would expect during infer-

ence. Yet existing difficulty-aware training methods [5, 11, 54] are

designed for centralized settings. In contrast, we focus on difficulty-

aware training in federated environments.

Heterogeneous Federated Learning. Different from the tradi-

tional challenges of devices collaboration such as the dynamic

spatiotemporal information [43, 45, 46], the asynchronous demand

and supply of task [3, 9, 28] and the adaptive task assignment

[37, 55], federate learning on edge devices has faced the unique

effective training challenge across devices with diverse computa-

tional resources [7]. To involve all devices into training, a prevailing

strategy is to assign sub-models tailored to each device’s computa-

tional power by scaling the global model in widths [1, 7, 14], depths

[20, 25, 29, 41], or both [4, 18]. EENs, with their natural depth-

scaling capabilities, have been utilized in recent depth-based FL

proposals [20, 25, 29] to align feature representations of exits at the

same depth across sub-models. However, these exits are discarded

after training [18], leading to static models at inference. Although

some studies [20, 25] have evaluated the use of these exits for

adaptive inference, they focus on resource adaptation rather than

input-adaptive inference. In contrast, we prioritize input-adaptive

inference through difficulty-aware training and transform its spe-

cific knowledge between matched exits across varied depth models.

Knowledge Distillation. KD [13] is an effective knowledge trans-

fer strategy between teacher and student models or within a single

model, i.e., self-distillation [57]. KD has been applied in FL as an

DarkDistill: Difficulty-Aligned Federated Early-Exit Network Training on Heterogeneous Devices KDD ’25, August 3–7, 2025, Toronto, ON, Canada

alternativemodel aggregation scheme over direct parameter averag-

ing [30] to aggregate heterogeneous, single-exit models [59]. It has

also been utilized in EEN-based FL [18, 20, 25] as self-distillation of

local EEN during local training at clients. In contrast, we leverage

KD for a new problem, i.e., aggregating EENs at the server in a

difficulty-aligned manner. Our solution is also inspired by data-free

distillation [50, 56, 59], which maintains a data generator for server-

side KD without access to local datasets. We extend the idea by

training data generators conditioned on difficulty of samples.

3 Problem Statement
Early-Exit network. Early-exit network parameterized by 𝜃 con-

sists of𝑀 blocks and the classifiers connected after each block, and

each classifier can be considered as an exit. EENs terminate the

inference of an input sample at an early exit when its prediction

exceeds a confidence threshold [44].

Difficulty-Aware Training. The exits in EENs are often jointly

trained to enhance accuracy of all exits together [16, 44]:

L(𝜃 ;𝐷) =
𝑀∑︁
𝑚=1

𝜔𝑚L𝑚 (𝜃 ;𝐷) =
𝑀∑︁
𝑚=1

𝜔𝑚
|𝐷 |∑︁
𝑖=1

𝑙𝑚𝑖 (1)

where 𝐷 is the training dataset of size |𝐷 |, and 𝜔𝑚,L𝑚 denote

the weight and the loss of exit 𝑚, respectively. For the loss of 𝑖-

th sample at exit𝑚, 𝑙𝑚
𝑖

= CE(𝜈 (ℎ𝑚 (𝑥𝑖 ;𝜃)), 𝑦𝑖), where 𝜈 (·) is the
softmax function, which will output the prediction score of 𝑥𝑖 based

on logits ℎ𝑚 (𝑥𝑖 ;𝜃), and CE(·) is the cross-entropy loss function.

Difficulty-aware training [5, 11, 54] is an emerging joint training

strategy that aims to match EEN training to its inference. Since

easy samples tend to terminate their inference at shallow exits,

difficulty-aware training emulates this phenomenon by assigning

samples of increasing difficulty to exits based on their depth during

training. This can be achieved by learning sample- and exit-specific

weights 𝜔𝑚
𝑖

based on corresponding losses [5, 11] or replacing the

single-exit logits ℎ𝑚 (𝑥𝑖 ;𝜃) with accumulative ones (over exits) [54].

Difficulty-AwareTraining in EEN-based FL.We focus on difficulty-

aware training in standard EEN-based FL setups [7]. Assume 𝐾

clients with local training datasets {𝐷1, ..., 𝐷𝐾 } and local EENs

parameterized by {𝜃𝑔 [:𝑚1], . . . , 𝜃𝑔 [:𝑚𝐾]}, where 𝜃𝑔 [:𝑚𝑘] repre-
sents model parameters till exit𝑚𝑘 in the global EEN 𝜃𝑔 . The 𝐾

clients have heterogeneous resources, and𝑚𝑘 denotes the maxi-

mum number of exits that client 𝑘 can afford for local training.

L(𝜃𝑔 ;𝐷1, ...𝐷𝐾) =
𝑀∑︁
𝑚=1

∑︁
𝑘∈𝑆𝑚

|𝐷𝑘 |
|𝐷𝑚 |

L𝑚
𝑘
(𝜃𝑔 [:𝑚𝑘];𝐷𝑘) (2)

where L𝑚
𝑘

is the loss of client 𝑘 at exit 𝑚 on local dataset 𝐷𝑘
as defined in Eq. (1), 𝑆𝑚 is the set of clients with 𝑚 exits, and

|𝐷𝑚 | =
∑
𝑘∈𝑆𝑚 |𝐷𝑘 | is the sum of the quantities of the local training

samples across client set 𝑆𝑚 .

AlthoughL𝑘 can be optimized via existing difficulty-aware train-

ing schemes [5, 11, 54], directly averaging parameters of local EENs

with different depths as standard FedAvg [30] would mix exits lo-

cally trained for different difficulty ranges (as explained in Fig. 1).

Such cross-model exit unalignment phenomenon is unique when

incorporating difficulty-awareness in EEN-based FL. It calls for new

model aggregation strategies, which motivates our design.

Discussions. We make the following notes on our problem setups.

• We quantify the difficulty of sample 𝑖 as its training loss

𝑙1
𝑖
at the first exit of an EEN: 𝑑′

𝑖
= 𝑙1

𝑖
. The training loss

is a widely utilized indicator for sample difficulty in self-

paced learning [19, 22] and difficulty-aware training [5, 11].

To reduce communication cost and protect privacy of local

datasets, we further quantize 𝑑′
𝑖
as follows:

𝑑𝑖 = 𝑑
∗, 𝑖 𝑓 𝑑′𝑖 ∈ [𝑑

∗, 𝑑∗ + 𝑙𝑛 𝑐
𝑟
) (3)

where {𝑑∗} are 𝑟 discrete values uniformly dividing the dif-

ficulty range [0, 𝑙𝑛 𝑐] of all samples, and 𝑐 is the number of

classes. We use the quantized difficulty 𝑑𝑖 in our designs.

• We assess the performance of EENs in two settings [11, 16,

54]. (i) Anytime Inference: It processes each testing sample

independently, and the inference may terminate at any time

due to e.g., sudden changes in resource availability. (ii) Bud-
geted Inference: It processes a batch of testing samples given

a throughput budget, where the EEN maximizes the through-

put of correct predictions.

4 Method
4.1 DarkDistill Overview
Key Idea. DarkDistill addresses the cross-model exit unalignment

problem via a difficulty-aligned, data-free knowledge distillation
scheme to aggregate the local EENs into a global one (see Fig. 2). It

measures the difficulty ranges of local datasets via a lightweight

difficulty assessment module (Sec. 4.2), which assists in training a

difficulty-conditional data generator (Sec. 4.3) that produces pseudo
data for sever-side knowledge distillation. The pseudo data is uti-

lized to align exits and transfer knowledge among matched exits of

local EEN, and DarkDistill adopts a progressive reverse knowledge
distillation strategy (Sec. 4.4) for effective knowledge transfer. In

addition to such progressive distillation, we also provide a parallel

variant (Sec. 4.5) to accelerate model aggregation.

� ∼ �2(�)
� ∼ �2(�)

�2

B1

C1 C2

B2

B1 B3

C1 C2 C3

B2

pseudo data

Difficulty-Conditional
Generators

Progressive
Reverse KD

B1

C1

� ∼ �1(�)
� ∼ �1(�)

�1

��(�), ��(�), ��

client3

��

Difficulty Assessment
��(�)

��[: 1]

global
model

��

�3�2�1

�3�2�1

client2client1

Figure 2: DarkDistill overview.

Workflow. DarkDistill adopts an iterative training framework in

typical client-server based FL [30]. There are three steps in each

communication round (see Algorithm 1).

• Step 1: Local Processing. After receiving the global model

parameters 𝜃 , client 𝑘 takes the parameters of the first𝑚𝑘
exits as its local model 𝜃𝑘 . Client 𝑘 trains 𝜃𝑘 via existing (cen-

tralized) difficulty-aware schemes. Meanwhile, it measures

KDD ’25, August 3–7, 2025, Toronto, ON, Canada LehaoQu et al.

the difficulty distribution 𝑝𝑘 (𝑑) and class distribution 𝑝𝑘 (𝑦)
of its local dataset 𝐷𝑘 .

• Step 2: Generator Training. The server utilizes {𝑝𝑘 (𝑑)} up-
loaded by clients to train difficulty-conditional generators,

which produce pseudo data with controllable difficulty lev-

els. The data will assist in knowledge distillation between

intermediate models in the server-side.

• Step 3: Model Aggregation. The server first aggregates the
local models of the same number of exits into intermedi-

ate models via standard parameter averaging [30], where

𝜃𝑚 denotes an intermediate model with𝑚 exits. The sever

then transfers knowledge of pseudo data among exits with

matched difficulty ranges from an intermediate model with

𝑚 exits to one with𝑚 + 1 exits, starting from the shallowest

intermediate model. After difficulty-aligned distillation, we

aggregate all the intermediate models exit-wise [20] as the

global model to be disseminated to clients in the next round.

We explain the uniquemodules in DarkDistill over standard FedAvg,

i.e., difficulty assessment, difficulty-conditional data generator, pro-

gressive reverse knowledge distillation and its acceleration below.

Algorithm 1: ServerExecute

Input: global model parameters 𝜃0, Generators parameters

{𝜙0}, learning rate 𝛾, 𝛽
1 for communication round 𝑞 = 1, ..., 𝑄 do
2 𝜃𝑞+1, {𝜃𝑞𝑚} ← 0

3 // Step1: Local Processing

4 for selected client 𝑘 do
5 𝜃

𝑞+1
𝑘

, 𝑝𝑘 (𝑑), 𝑝𝑘 (𝑦) ← ClientExecute(𝜃𝑞, 𝐷𝑘)
6 𝜃

𝑞
𝑚𝑘
← 𝜃

𝑞
𝑚𝑘
+ |𝐷𝑘 |
|𝐷𝑚𝑘

| 𝜃
𝑞+1
𝑘

7 // Step2: Generator Training

8 Attain {𝑝𝑚 (𝑑)}, {𝑝𝑚 (𝑦)} based on {𝑝𝑘 (𝑑)}, {𝑝𝑘 (𝑦)}
9 for𝑚 = 1, ..., 𝑀 − 1 do
10 𝜙

𝑞+1
𝑚 ← 𝜙

𝑞
𝑚 − 𝛽∇𝜙𝑞

𝑚
L𝐺 (𝜙

𝑞
𝑚, 𝜃

𝑞+1
𝑚) ⊲ By Eq. (5)

11 // Step3: Model Aggregation

12 for𝑚 = 1, ..., 𝑀 − 1 do
13 Conditions 𝑦 ∼ 𝑝𝑚 (𝑦), 𝑑 ∼ 𝑝𝑚 (𝑑), 𝜖 ∼ N(0, 𝐼)
14 Generate 𝜉𝑚 ∼ 𝐺𝑚 (𝑦,𝑑, 𝜖 ;𝜙𝑚) based on 𝑦,𝑑, 𝜖

15 𝑔𝑚+1 ← ∇𝜃𝑞
𝑚+1
L𝐾𝐷 (𝜃

𝑞
𝑚, 𝜃

𝑞

𝑚+1; 𝜉𝑚) ⊲ By Eq. (7)

16 for𝑚 = 𝑀, ..., 1 do
17 𝜃

𝑞+1
𝑚 ← 𝜃

𝑞
𝑚 − 𝛾𝑔𝑚

18 𝜃𝑞+1 [𝑚] ← 𝜃𝑞+1 [𝑚] +∑𝑀
𝑚1=𝑚

|𝐷𝑚
1
|∑𝑀

𝑚
2
=𝑚 |𝐷𝑚

2
| 𝜃
𝑞+1
𝑚1
[𝑚]

19 return 𝜃𝑞+1

4.2 Difficulty Assessment of Local Datasets
This module measures the difficulty distribution of clients’ local

datasets. In edge computing scenarios, clients have not only hetero-

geneous compute capabilities but also non-IID datasets. Accordingly,

the difficulty distributions of local datasets vary across clients, and

should be assessed with a unified scale for difficulty-aligned KD.

Algorithm 2: ClientExecute
Input: Local model parameters 𝜃𝑞 , Local dataset 𝐷𝑘 , Local

epoch 𝐸, local model learning rate 𝛾

1 𝜃
𝑞,0

𝑘
← 𝜃𝑞 [:𝑚𝑘]

2 for local epoch 𝑡 = 1, ...,𝑇 do
3 𝜃

𝑞,𝑡

𝑙
← 𝜃

𝑞,𝑡

𝑙
− 𝛾∇L(𝜃𝑞,𝑡−1

𝑘
;𝐷𝑘) ⊲ By Eq. (1)

4 𝐿𝑡 ← {𝑙1
𝑖
, ..., 𝑙

𝑚𝑘

𝑖
} |𝐷𝑘 |
𝑖=1

on 𝜃
𝑞,𝑡

𝑘

5 Attain 𝑝𝑘 (𝑑) based on 𝐿𝑇 as Eq. (3)

6 𝑝𝑦 (𝑑) ←
𝑛
𝑦

𝑘

|𝐷𝑘 | , 𝜃
𝑞+1
𝑘
← 𝜃

𝑞,𝑇

𝑘

7 return 𝜃𝑞+1
𝑘

, 𝑝𝑘 (𝑑), 𝑝𝑘 (𝑦)

We normalize the difficulty 𝑑𝑖 of sample 𝑖 by performing infer-

ence on the global EEN as the unified scale, and takes the loss at

the first layer as the difficulty estimate (see Eq. (3)). Then the diffi-

culty distribution of client 𝑘 is calculated as 𝑝𝑘 (𝑑) =
𝑛𝑑
𝑘

|𝐷𝑘 | , where

𝑛𝑑
𝑘
is the number of samples of difficulty 𝑑 in client 𝑘 . The above

difficulty assessment should be performed every communication

round, since the global model used for inference on local datasets

is updated in every round.

To avoid per-round EEN inference on clients, we leverage the

loss each sample derived from the last local training epoch as approx-
imated loss in Eq. (3), since the local model 𝜃

𝑞,𝑇

𝑘
may not notably

deviate from the initial 𝜃𝑞 [:𝑚𝑘] between rounds.

In addition to 𝑝𝑘 (𝑑), client 𝑘 also uploads its class distribution

𝑝𝑘 (𝑦) =
𝑛
𝑦

𝑘

|𝐷𝑘 | , where 𝑛
𝑦

𝑘
is the number of samples for 𝑦 class in 𝐷𝑘 .

4.3 Difficulty-Conditional Data Generator
This module trains generators that output difficulty-conditioned
pseudo data for indeterminate models. Specifically, we train one

generator 𝐺𝑚 independently for each intermediate model 𝜃𝑚 to

produce pseudo data𝑥 , whichwill be used for knowledge distillation

in Sec. 4.4. The 𝑥 is referred to as follows:

𝑥 ∼ 𝐺𝑚 (𝑦,𝑑, 𝜖 ;𝜙𝑚) (4)

where 𝜙𝑚 is model parameters of 𝐺𝑚 , 𝜖 is a Gaussian noise vector

from N(0, 𝐼), and 𝑥 is the pseudo data based on given difficulty 𝑑

and class𝑦, sampled from 𝑝𝑚 (𝑑) and 𝑝𝑚 (𝑦), which are the difficulty

distribution and class distribution of 𝜃𝑚 . The difficulty distribution

𝑝𝑚 (𝑑) of 𝜃𝑚 is defined as 𝑝𝑚 (𝑑) =
∑

𝑘∈𝑆𝑚 𝑝𝑘 (𝑑)× |𝐷𝑘 |∑
𝑘∈𝑆𝑚 |𝐷𝑘 | , where 𝑝𝑚 (𝑑)

is the difficulty distribution of local dataset for 𝑚 exits clients,

denoted by 𝑆𝑚 . The class distribution 𝑝𝑚 (𝑦) of 𝜃𝑚 is calculated

similarly based on {𝑝𝑘 (𝑦)}𝑘∈𝑆𝑚 . Note that it is common to upload

meta information like the distributions i.e., 𝑝𝑘 (𝑑) and 𝑝𝑘 (𝑦) of local
datasets in data-free KD based federated learning [50, 56, 59].

4.3.1 Generator Architecture. The generator is based on MLP, it

takes one-hot label vector𝑦, difficulty𝑑 and noise 𝜖 as the input, and

after passing through a hidden layer with dimension 𝑑ℎ , it outputs

outputs a feature representation with dimension 𝑑𝑟 at last. We set

the noise dimension 𝑑𝜖 as the classes of dataset, and 𝑑ℎ = 1000.

Notably, Deit model is based on Transfermer [48] architecture,

which has a embedding layer before the first block, since we set𝑑𝑟 =

DarkDistill: Difficulty-Aligned Federated Early-Exit Network Training on Heterogeneous Devices KDD ’25, August 3–7, 2025, Toronto, ON, Canada

197 × 192, where 197 is the number of tokens and 192 is the latent

representation of Deit-Tiny. Benefits from that, the output can be

directly input to the first block (encoder) to avoid the computation

of the embedding layer and simulate raw data.

4.3.2 Generator Training. Our generator differs from those in pre-

vious data-free KD [59] in two unique constraints.

• Difficulty Simulation. It should simulate datasets con-

ditioned on difficulty. The measured difficulty vector
ˆ𝑑 of

pseudo data 𝑥 should resemble 𝑑 sampled from 𝑝 (𝑑). It can
be enforced by minimizing the difference |𝑑 − ˆ𝑑 |.

L𝑑𝑖 𝑓 (𝜙𝑚, 𝜃𝑚) = E�̃�∼𝐺𝑚 (𝑦,𝑑,𝜖 ;𝜙𝑚) |𝑑 − ˆ𝑑 |
• Classification. It should represent knowledge extracted

from multi-exit networks (i.e., intermediate models in our

case). In other words, pseudo data 𝑥 must be correctly classi-

fied by all exits of the targeted intermediate model.

L𝑐𝑒 (𝜙𝑚, 𝜃𝑚) = E�̃�∼𝐺𝑚 (𝑦,𝑑,𝜖 ;𝜙𝑚)

𝑚∑︁
𝑖=1

CE(𝜈 (ℎ𝑖 (𝑥 ;𝜃𝑚)), 𝑦)

We simply weights of above loss functions as 1, and a generator

with parameters 𝜙𝑚 simulates difficulty-conditioned knowledge

from intermediate model 𝜃𝑚 by optimizing the following objective.

min

𝜙𝑚
L𝐺 (𝜙𝑚, 𝜃𝑚) = L𝑑𝑖 𝑓 (𝜙𝑚, 𝜃𝑚) + L𝑐𝑒 (𝜙𝑚, 𝜃𝑚) (5)

4.4 Progressive Reverse Knowledge Distillation
This section presents a novel reverse knowledge distillation scheme

among intermediate models. As mentioned in Sec. 4.1, distillation

proceeds from an intermediate model with𝑚 exits to one with𝑚+1
exits, while knowledge is selectively transferred among exits based

on their difficulty ranges.

Distillation between Adjacent Intermediate Models. We first

explain how to transfer knowledge from a teacher model T with𝑚

exits, to a student model S with𝑚 + 1 exits, in a difficulty-aligned
and effective manner. We enable difficulty-aligned distillation via

the following designs.

difficulty
distance

��

��

B1 B3

C1 C2 C3

B2

B1

C1 C2

B2

pseudo data

��
2

��
2

KD weight
��,� �

�

Figure 3: Adaptive weight based on difficulty distance.

• Exit Pairing. Due to different model depths between T and

S, there is no exact match in difficulty among their exits.

Hence, we connect all the𝑚(𝑚 + 1) exit pairs to maximize

distillation flexibility and rely on dataset matching and KD

weights for difficulty-aligned distillation.

• Dataset Matching. Since each exit of 𝜃𝑚 targets at a distinct

difficulty range, we associate each exit to a unique dataset

for distillation. Ideally, this corresponds to the local datasets

that 𝜃𝑚 is trained on, which are inaccessible at the server. We

approximate the training data for exit 𝑖 of 𝜃𝑚 by performing

inference on the pseudo data set 𝜉 = {𝑥,𝑦, 𝑑} generated for

𝜃𝑚 , since the local difficulty-aware training minimizes train-

test mismatch [18, 20, 25]. Specifically, for exit 𝑖 of 𝜃𝑚 , its

dataset for distillation is subset 𝜉𝑖
𝜃𝑚

, which are samples in 𝜉

that terminate their inference at exit 𝑖 .

• Exit-Wise KD Weight. Shown as Fig. 3, after identifying the

intended difficulty ranges for exit 𝑖 of T and exit 𝑗 of S,
i.e., by their associated datasets 𝜉𝑖T and 𝜉

𝑗

S , we assign an

exit-wise weight for distillation from exit 𝑖 of T to exit 𝑗

of S proportional to the similarity between their targeted

difficulty ranges as follows:

𝜇𝑖, 𝑗 = 𝜈 (
∑︁

𝑑T ∈𝜉𝑖T

∑︁
𝑑S ∈𝜉 𝑗S

|𝑑T − 𝑑S |) (6)

where we sum over the differences in sample-wise difficulty

and normalize it via softmax.

We further ensure effective reverse distillation by (i) transfer-
ring feature and relation, and (ii) imposing model-wise distillation
weights. The final distillation objective is calculated as:

L𝐾𝐷 (𝜃𝑚, 𝜃𝑚+1; 𝜉T) = 𝑤𝑚
𝑚∑︁
𝑖=1

𝑚+1∑︁
𝑗=1

𝜇𝑖, 𝑗𝜓 (F 𝑖T , F
𝑗

S)

F 𝑖T , F
𝑗

S = {𝑓 𝑖 (𝑥 ;𝜃𝑚) |𝑥 ∈ 𝜉𝑖T }, {𝑓
𝑗 (𝑥 ;𝜃𝑚+1) |𝑥 ∈ 𝜉𝑖T }

(7)

where 𝑓 𝑖 (𝑥 ;𝜃𝑚) is the feature of 𝑥 which input into 𝑖-th classifier

of intermediate model 𝜃𝑚 , F 𝑖T (F 𝑗S) is the set of feature for 𝜉
𝑖
T at

exit 𝑖 (𝑗) of T (S), and we optimize 𝑚 + 1 exits of S jointly on

𝜉T by the relation-based knowledge distillation loss𝜓 (·) [35]. The
model-wise weight𝑤𝑚 =

∑
𝑘∈𝑆𝑚 |𝐷𝑘 |∑
𝑘∉𝑆𝑀

|𝐷𝑘 | accounts for the differences

in numbers of training samples across models.

Progressive Distillation. The above distillation from 𝜃𝑚 to 𝜃𝑚+1
starts from the shallowest and proceeds incrementally to the deep-

est. Such sequential distillation may cause error accumulation [49].

That is, if improper distillation occurs at a certain model and its

parameters are updated immediately, the error will propagate to

subsequent distillation among deeper models. To mitigate error

accumulation, we calculate gradients 𝑔𝑚+1 of the distillation loss

for student intermediate model S without updating its parameters;

and utilize the gradients to update all intermediate models together

after distillation to the deepest model (lines 15-16 in Algorithm 1).

4.5 Parallel Variant for Acceleration
This section introduces DarkDistill-PL, a variant of DarkDistill

that accelerates the server-side KD (see Fig. 4). Unlike DarkDis-

till, which sequentially transfers knowledge from one intermediate

model to another, DarkDistill-PL simultaneously distills the ensem-

ble knowledge of all immediate knowledge to the global model

S parameterized by 𝜃 in an exit-wise manner. The workflow of

DarkDistill-PL is presented in Algorithm 3.

Exit-Wise Parallel Distillation.We approximately align the diffi-

culty of exits by matching their locations rather than their training

datasets as Sec. 4.4 to simplify the design. Specifically, we organize

the𝑀 intermediate models as𝑀 teachers {T𝑚}𝑀𝑚=1
by exits. That is,

KDD ’25, August 3–7, 2025, Toronto, ON, Canada LehaoQu et al.

T𝑚 corresponds to the𝑚-th exits of intermediate models. Its ensem-

ble knowledge corresponds to features accumulated over {𝜃𝑚} that
have at least𝑚 exits, i.e., 𝐹𝑚 (𝑥 ; {𝜃𝑚}) =

∑𝑀
𝑖=𝑚

𝑛𝑖∑𝑀
𝑖′=𝑚 𝑛𝑖′

𝑓𝑚 (𝑥 ;𝜃𝑖),
where 𝑛𝑖 =

∑
𝑘∈𝑆𝑖 |𝐷𝑘 |. The ensemble knowledge of T𝑚 on pseudo

datasets {𝜉𝑚} is distilled to exit𝑚 of the global model (denoted by

S𝑚) by optimizing the objective below:

L𝐾𝐷 ({𝜃𝑚}, 𝜃 ; {𝜉𝑚}) =
1

𝑀

𝑀∑︁
𝑚=1

𝜓 (FT𝑚 , FS𝑚),

FT𝑚 , FS𝑚 = {𝐹𝑚 (𝑥 ; {𝜃𝑚}) |𝑥 ∈ 𝜉𝑚}, {𝑓𝑚 (𝑥 ;𝜃) |𝑥 ∈ 𝜉𝑚}
(8)

Difficulty-Increased Data Generators. The parallel distillation
above needs a new generator design. As shown in Fig. 4, DarkDistill-

PL assigns one generator for each T𝑚 , and they should generate

pseudo data with increasing difficulty. That is, pseudo data pro-

duced by the generator for T𝑚+1 is more difficult than that for T𝑚 .

This is implemented by maximizing the difference in difficulty of

generators for adjacent exits as follows:

L𝑑𝑖 𝑓 (𝜙𝑚+1, 𝜙𝑚)=E�̃�𝑚+1∼𝐺𝑚+1 (𝑦;𝜙𝑚+1)
ˆ𝑑𝑚+1−E�̃�𝑚∼𝐺𝑚 (𝑦;𝜙𝑚)

ˆ𝑑𝑚
(9)

where 𝑥𝑚+1 is the pseudo data for T𝑚+1, and ˆ𝑑𝑚+1 is the difficulty of

𝑥𝑚+1, measured as Eq. (3) based on its ensemble logits [56], which

is larger than
ˆ𝑑𝑚 to ensure increased difficulty. Classification loss of

DarkDistill-PL is similar to the second term of Eq. (5) but also utilizes

ensemble logits 𝐻𝑚 (𝑥), where 𝐻𝑚 (𝑥) = ∑𝑀
𝑖=𝑚

𝑛𝑖∑𝑀
𝑖′=𝑚 𝑛𝑖′

ℎ𝑚 (𝑥 ;𝜃𝑖).
The objective of 𝜙𝑚+1 in DarkDistill-PL is presented as follows:

min

𝜙𝑚+1
L𝐺 (𝜙𝑚, 𝜙𝑚+1, {𝜃𝑚})=L𝑑𝑖 𝑓 (𝜙𝑚, 𝜙𝑚+1,{𝜃𝑚})+L𝑐𝑒 (𝜙𝑚+1, 𝜃𝑚+1)

(10)

�1
�2

B1

C1 C2

B2

B3

C1 C2 C3

B2

pseudo
data

B1

C1

�1

�� � , �� ��

��[: 1]

Difficulty Assessment

max �2 − �1
max �3 − �2 B1 B3

C1 C2 C3

B2 global model
��

�2

�3

Difficulty-Increased Generators

Parallel
Reverse KD

�3

B1

client3client2client1

easy

difficult

Figure 4: Variant of DarkDistill with parallel distillation.

4.6 Convergence Analysis
Under assumptions in Appendix A, our proposed federated EEN

training algorithm converges in FL with heterogeneous clients (see

Theorem 1). We extend the analysis in [58] from single-exit network

to multi-exit network. All proofs are in Appendix A.

Theorem 1. If the learning rate𝛾 of local training satisfies 1

𝑇
√
𝑄
≤

𝛾 < 1

6𝑀2𝐿𝑇
, our solution coverages to a neighborhood of a stationary

point of standard FL as follows:

1

𝑄

𝑄∑︁
𝑞=1

E∥∇L(𝜃𝑞)∥2 ≤ 𝐺0√
𝑄
+𝑉0 +

𝐻0

𝑇
+ 𝐼0√

𝑄

𝑄∑︁
𝑞=1

E∥𝜃𝑞 ∥2 (11)

Algorithm 3: ServerExecute-PL

Input: global model parameters 𝜃0, generators parameters

{𝜙0𝑚}, learning rate 𝛾, 𝛽

1 for communication round 𝑞 = 1, ..., 𝑄 do
2 𝜃𝑞, {𝜃𝑞𝑚} ← 0

3 // Step1: Local Processing

4 for client 𝑘 selected do
5 𝜃

𝑞+1
𝑘

, 𝑝𝑘 (𝑑), 𝑝𝑘 (𝑦) ← ClientExecute(𝜃𝑞, 𝐷𝑘)
6 𝜃

𝑞
𝑚𝑘
← 𝜃

𝑞
𝑚𝑘
+ |𝐷𝑘 |
|𝐷𝑚𝑘

| 𝜃
𝑞+1
𝑘

7 // Step2: Generator Training

8 Attain 𝑝𝑚 (𝑑), 𝑝𝑚 (𝑦) based on {𝑝𝑘 (𝑑), 𝑝𝑘 (𝑦)}𝑘∈𝑆𝑚
9 for𝑚 = 1, ..., 𝑀 do
10 Conditions 𝑦 ∼ 𝑝𝑚 (𝑦), 𝑑 ∼ 𝑝𝑚 (𝑑), 𝜖 ∼ N(0, 𝐼)
11 Generate 𝜉𝑚 ∼ 𝐺𝑚 (𝑦,𝑑, 𝜖) based on 𝑦,𝑑, 𝜖

12 𝜙
𝑞+1
𝑚 ← 𝜙

𝑞
𝑚 − 𝛽∇𝜃𝑞𝑚L𝐺 (𝜙𝑚, {𝜃

𝑞
𝑚}) ⊲ By Eq. (10)

13 // Step3: Model Aggregation

14 for𝑚 = 1, ..., 𝑀 do
15 𝜃𝑞 [𝑚] ← 𝜃𝑞 [𝑚] +∑𝑀

𝑚1=𝑚
|𝐷𝑚

1
|∑𝑀

𝑚
2
=𝑚 |𝐷𝑚

2
| 𝜃
𝑞
𝑚1
[𝑚]

16 Generate pseudo latent {𝜉𝑚}𝑚∈𝑀 with {𝐺𝑚}𝑚∈𝑀
17 𝜃𝑞+1 ← 𝜃𝑞 − 𝛾∇𝜃𝑞L𝐾𝐷 ({𝜃

𝑞
𝑚}, 𝜃𝑞 ; {𝜉𝑚}) ⊲ By Eq. (8)

18 return 𝜃𝑞+1

where 𝐺0 = 4E[L(𝜃0)], 𝑉0 = 𝐾𝐺
36Γ∗ , 𝐻0 = 𝑀𝐾𝜎2

(Γ∗)2 +
𝐾𝐺

18Γ∗𝑀 and

𝐼0 =
𝐿2𝛿2𝐾 (2𝑀+1)

Γ∗
√
𝑄

are constants related to the initial model param-

eters 𝜃0, assumption bounds 𝐿, 𝜎, 𝛿,𝐺 , and federated configurations
Γ∗, 𝑀,𝑇 ,𝑄, 𝐾 . Concretely, Γ∗ is the occurrence for the parameter of
the last block and its classifier in local models, 𝑀 is the largest exit
number of local models, 𝑇 is the local training epoch, 𝑄 is the total
communication round, 𝐾 is the number of clients.

5 Experiments
5.1 Experimental Setup
Baselines. We compare DarkDistill and DarkDistill-PL against

FL methods with heterogeneous clients that utilize EEN. For fair

comparison, we extend them for difficulty-aware training by apply-

ing existing centralized difficulty-awareness schemes to their local

training. We consider the following schemes for local training.

• None [44]: Jointly exit training without difficulty-awareness.

• BoostNet [54]: Difficulty-aware training via boosted gradi-

ent and accumulative logits.

• L2W-DEN [11]: Difficulty-aware training by meta learning

of sample-adaptive exit weights. It requires computation-

intensive meta learning on clients.

The above local training strategies are integrated with the fol-

lowing FL schemes for evaluation.

• ExclusiveFL: Naive baseline that only involves clients that

can train the global model in FL.

• InclusiveFL [29]: Generic FL that transfers momentum

knowledge from large models to small ones.

DarkDistill: Difficulty-Aligned Federated Early-Exit Network Training on Heterogeneous Devices KDD ’25, August 3–7, 2025, Toronto, ON, Canada

• ScaleFL [18]: EEN-based FL method that scales both the

widths and depths of local models. It uses self-distillation

within local models at clients, transferring knowledge from

the last exit to shallower one.

• DepthFL [20]: EEN-based FL that scales model depths. It

also uses self-distillation within local models at clients, but

manually transfers knowledge between exits.

• ReeFL [25]: EEN-based FL that devises a shared classifier for

all exits and selects the exit with the smallest loss to teach

other exits at clients.

• DarkDistill: Our difficulty-aligned model aggregation strat-

egy with progressive KD.

• DarkDistill-PL: Our difficulty-aligned model aggregation

strategy with parallel KD.

Datasets &Model.We experiment with CIFAR-100 [21] and SVHN

[33] for image classification, and SpeechCommandsV2 [53] for

speech classification. We finetune a pre-trained, transformer-based

model, i.e., a variant of tiny DeiT [47], in both full-parameter (Full)

and parameter-efficient (LORA [15]) setups. The model is config-

ured with 4 exits (including the last one) by default. Details of how

to add early exits are in Appendix B.1.

Client Heterogeneity. Following previous FL with heterogeneous

clients studies [20, 25], we set 100 clients, divided into 4 levels

with increasing compute capabilities, with 4 sizes of local model.

We simulate three client heterogeneity settings by varying the

distributions of high- and low-end clients (details in Appendix B.1.4).

We also use Dirichlet distribution Dir(𝛼) on label ratios to simulate

the non-IID data among clients, where a smaller 𝛼 represents higher

data heterogeneity. The training hyperparameters for baselines and

our works are detailed in Appendix B.1.

5.1.1 Metrics. We assess the accuracy of the global EEN in two

settings. (i) Anytime inference: It measures the accuracy of each exit

assuming sufficient budgets. (ii) Budget inference: It measures the

accuracy of a batch samples within given budgets.

5.2 Main Results
Performance of Anytime Inference. Table. 1 summarizes the

mean and standard deviation of test accuracy across all 4 exits of

global EEN. Our solutions achieve the highest accuracy in both

fine-tuning settings. Comparing the columns with and without

difficulty-awareness (BoostNet) for local training, we observe in-

creased accuracy in most FL baselines for both Full and LORA, ex-

cept for ReeFL [25], which is caused by shared exit. This validates

the necessity of difficulty-aware training in federated EEN training.

Comparisons between local difficulty-aware training schemes i.e.,
BoostNet vs. L2W-DEN are deferred to ablation studies (see Sec. 5.3).

In full-parameter fine-tuning, DarkDistill and DarkDistill-PL with

BoostNet are the top 2 on all datasets, which have about 2% increase.

Meanwhile, the larger SD across exits accuracy presents DarkDistill

can specialize exits on difficulty ranges. For LORA, DarkDistill is

still the best. We exclude DarkDistill-PL for LORA since it aims

to improve efficiency when training large numbers of parameters

and thus is more suited for the full-parameter case. Additionally,

our work exhibits a larger standard deviation across exits, which

confirms that these exits are specialized to specific difficulty ranges.

Performance of Budgeted Inference. Fig. 5 plots the test accu-
racy given different computation budgets (measured in amounts of

Mul-Adds), where the global EEN is finetuned with various EEN-

based FL methods together with BoostNet for local difficulty-aware

training on CIFAR-100 with various 𝛼 . As is shown, our DarkDistill

and DarkDistill-PL can improve the accuracy over the baselines at

various computation budgets. For example, in Full with 𝛼 = 1000,

DarkDistill-PL improves the accuracy by 2.2% when evoking 15M

Mul-Adds, and achieves the same peak accuracy of the baselines yet

is 1.4 times faster; in Full when 𝛼 = 0.1, DarkDistill-PL increases the

accuracy by 2.9% and 2.1% at 13M and 25M Mul-Adds, respectively,

and is 1.4 times faster than baselines to achieve the same accuracy

of 63.7%. For LORA, DarkDistill also achieves higher accuracy and

faster inference than the baselines.

InclusiveFL ScaleFL DepthFL ReeFL DarkDistill DarkDistill-PL

1.0 1.5 2.0 2.5 3.0 3.5

Average budget (in MUL-ADD) ×1010
60

62

64

66

68

70

72

A
cc

ur
ac

y
(%

)

×1.4 Speedup

+2.2 Acc

+0.6 Acc

(a) Full 𝛼 = 1000

1.2 1.7 2.2 2.7 3.2

Average budget (in MUL-ADD) ×1010
62

64

66

68

70

A
cc

ur
ac

y
(%

)

+1.9 Acc

+1.0 Acc

×1.3 Speedup

(b) Full 𝛼 = 1

1.0 1.5 2.0 2.5 3.0 3.5

Average budget (in MUL-ADD) ×1010
50

52

54

56

58

60

62

64

66

A
cc

ur
ac

y
(%

)

×1.4 Speedup

+2.1 Acc

+2.9 Acc

(c) Full 𝛼 = 0.1

1.8 2.3 2.8 3.3

Average budget (in MUL-ADD) ×1010
65

66

67

68

69

70

A
cc

ur
ac

y
(%

)

+0.8 Acc

+0.6 Acc

×1.2 Speedup

(d) LORA 𝛼 = 1000

Figure 5: Budgeted inference: performance on CIFAR-100
with varied 𝛼 in Full and LORA setups.

5.3 Ablation Study
Effectiveness of Generator. Fig. 6 visualizes the feature space of
pseudo data produced by the generators of DarkDistill for three

classes. As is shown, the pseudo data is divided into 4 clusters with

various difficulty levels {1, 2, 3, 4}. It implies that the generators can

produce pseudo data at specified difficulty for a given class.

Difficulty 1 Difficulty 2 Difficulty 3 Difficulty 4

(a) Fox (b) Mouse (c) Wolf

Figure 6: Visualization of pseudo data generated by DarkDis-
till with difficulty-increased samples.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada LehaoQu et al.

Table 1: Anytime inference performance to finetune a 4-exit DeiT-tiny model (best accuracy in bold; second best underlined).

Finetune Difficulty-aware Approach

CIFAR-100 [21]

SVHN [33] SpeechCmds [53]

𝛼 = 0.1 𝛼 = 1 𝛼 = 1000

Full

None

ExclusiveFL 26.60±3.10 49.96±11.48 41.58±7.01 85.28±2.97 87.00±2.88
InclusiveFL [29] 40.10±2.03 58.83±6.98 61.40±7.01 82.95±0.34 91.90±1.42
ScaleFL [18] 54.99±10.61 63.21±9.14 63.82±9.87 88.24±0.78 92.56±0.26
DepthFL [20] 40.70±1.57 59.01±5.18 61.71±5.73 83.45±0.43 92.05±0.60
ReeFL [25] 59.24±8.00 63.37±7.72 63.90±8.68 88.37±1.27 93.12±1.14

BoostNet [54]

ExclusiveFL 48.68±13.66 57.57±15.12 58.65±15.31 87.30±2.89 91.07±2.58
InclusiveFL [29] 57.10±7.21 62.96±8.12 64.01±8.24 87.86±1.66 92.91±1.10
ScaleFL [18] 52.74±13.82 60.55±11.93 60.73±10.80 87.91±0.77 92.03±0.37
DepthFL [20] 58.15±6.73 63.81±6.34 64.19±6.73 87.74±1.01 92.72±0.64
ReeFL [25] 59.01±7.98 63.08±9.03 63.66±7.31 88.39±1.28 93.01±1.18
DarkDistill 60.48±7.93 64.50±7.97 65.67±7.48 88.41±1.46 93.31±1.13
DarkDistill-PL 61.05±8.19 65.12±7.02 65.49±7.88 88.48±1.57 93.42±0.98

LORA [15]

None

ExclusiveFL 44.44±18.61 52.33±18.56 52.88±18.17 83.78±4.43 88.72±3.15
InclusiveFL [29] 44.82±23.36 54.26±21.38 54.76±21.37 85.16±5.31 89.58±3.04
ScaleFL [18] 22.17±23.36 30.85±30.58 32.58±31.96 76.42±13.14 58.82±34.80
DepthFL [20] 52.17±14.16 57.09±14.78 57.63±14.48 85.69±2.71 90.11±2.04
ReeFL [25] 52.32±9.83 57.74±11.78 58.16±11.69 85.54±3.00 89.56±2.62

BoostNet [54]

ExclusiveFL 50.34±13.63 55.68±15.33 56.48±15.33 84.48±3.88 88.51±2.26
InclusiveFL [29] 54.25±11.78 59.66±11.72 59.81±11.66 85.96±2.50 90.38±2.10
ScaleFL [18] 40.46±22.36 47.18±24.11 48.26±24.17 81.70±3.14 80.19±4.83
DepthFL [20] 55.85±9.45 60.95±9.20 61.45±9.04 79.90±1.61 90.93±1.29
ReeFL [25] 51.57±9.82 58.04±11.88 58.62±11.91 85.44±2.92 89.40±2.44
DarkDistill 57.32±11.91 61.24±11.06 61.74±11.42 86.11±2.16 91.06±2.08

Robustness of Generator. The experiments in Table. 2 prove that

DarkDistill, DarkDistill-PL are robust across different generator
architectures. For full parameters fine-tuning, our work always

outperforms SOTA on CIFAR-100 with varied combinations of noise

dimension 𝑑𝜖 and hidden dimension 𝑑ℎ .

Table 2: Effects of theGeneratorNetwork Structure onCIFAR-
100 (DarkDistill is left; DarkDistill-PL is right).

𝑑𝜖
𝑑ℎ

64 128 256 512

2 64.79 |64.88 65.05 |64.93 65.32 |65.25 65.10 |65.11
16 65.38 |64.91 65.20 |65.09 65.37 |64.65 65.18 |65.51
32 65.05 |64.79 65.06 |64.79 65.28 |65.08 65.60 |64.90
64 65.15 |64.92 65.74 |64.93 64.91 |64.55 65.06 |65.05

SOTA 64.19±6.73

Impact of Local Difficulty-Aware Training. Our main results

adopt BoostNet for local difficulty-aware training. This experiment

tests L2W-DEN, another local difficulty-aware training scheme.

Table. 3 shows the anytime inference accuracy on CIFAR-100 for

LORA using the two methods for local training. We choose the

LORA setting because L2W-DEN involves on-device meta-learning,

which imposes drastic computation burden for full-parameter train-

ing at clients. Aligned with previous studies [5, 11], L2W-DEN

improves the accuracy over BoostNet (yet with larger computation

overhead). Our DarkDistill still outperforms the baselines, which

implies it functions with other difficulty-aware training strategies.

Table 3: Impact of local difficulty-aware strategy for LORA.

Approch

𝛼 = 1 𝛼 = 1000

BoostNet L2W-GEN BoostNet L2W-GEN

InclusiveFL [29] 59.66±11.72 59.99±10.34 59.81±11.66 60.82±10.48
ScaleFL [18] 47.18±24.11 52.67±18.52 48.26±24.17 53.61±18.31
DepthFL [20] 60.95±9.20 61.92±8.15 61.45±9.04 62.42±8.65
ReeFL [25] 58.04±11.88 57.87±12.17 58.62±11.91 59.09±12.87
DarkDistill 61.42±11.06 62.08±11.26 61.74±11.42 62.90±10.31

Contributions of Individual Modules. Table. 4 decomposes the

contributions of knowledge distillation (KD) and difficulty condi-

tion of data generator (G) in DarkDistill, measured by their anytime

inference accuracy on CIFAR-100. For G, ✗ means traditional gen-

erator without difficulty condition. Our KD scheme improves 0.5%,

and the generator with difficulty condition further boosts the ac-

curacy by 0.5%. This proves that the two are mutually reinforcing.

Table 4: Contributions of KD and Generator of DarkDistill.

Finetune KD G Exit-1 Exit-2 Exit-3 Exit-4 Avg

Full

✗ ✗ 53.67 64.89 70.54 70.30 64.85

✓ ✗ 53.70 65.49 70.80 69.94 64.98

✓ ✓ 55.10 65.67 71.26 70.64 65.67

LORA [15]

✗ ✗ 44.84 62.19 68.33 68.50 60.97

✓ ✗ 44.87 62.73 69.15 69.30 61.51

✓ ✓ 45.28 62.71 69.43 69.52 61.74

DarkDistill: Difficulty-Aligned Federated Early-Exit Network Training on Heterogeneous Devices KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 5: Table. 1’s Extension: SST-2 on 4-exit Bert model (best accuracy in bold; second best underlined).

Difficulty-aware ExclusiveFL InclusiveFL ScaleFL DepthFL ReeFL DarkDistill DarkDistill-PL

None 78.07±0.20 80.13±0.33 80.36±0.39 80.02±0.11 81.79±0.14 / /

BoostNet 79.07±0.27 81.59±0.14 81.82±0.15 81.33±0.14 81.76±0.30 82.11±0.42 83.02±0.39

InclusiveFL ScaleFL DepthFL ReeFL DarkDistill DarkDistill-PL

0 100 200 300 400 500

Round
0

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)

(a) Full Acc 𝛼 = 1000

0 100 200 300 400 500

Round
0

2

4

6

8

10

12

Lo
ss

(b) Full Loss 𝛼 = 1000

0 100 200 300 400 500

Round
0

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)

(c) LORA Acc 𝛼 = 1000

0 100 200 300 400 500

Round

2

4

6

8

10

12

Lo
ss

(d) LORA Loss 𝛼 = 1000

0 100 200 300 400 500

Round
0

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)

(e) LORA Acc 𝛼 = 0.1

0 100 200 300 400 500

Round

2

4

6

8

10

12

Lo
ss

(f) LORA Loss 𝛼 = 0.1

Figure 7: Federated training convergence and performance of CIFAR-100 with Full and LORA.

Table 6: Impact of client heterogeneity on accuracy, tested on CIFAR-100 (best accuracy in bold; second best underlined).

Finetune

Major Devices Low-end [0.4,0.3,0.2,0.1] Normal [0.25,0.25,0.25,0.25] High-end [0.1,0.2,0.3,0.4]

Approach 𝛼 = 0.1 𝛼 = 1 𝛼 = 1000 𝛼 = 0.1 𝛼 = 1 𝛼 = 1000 𝛼 = 0.1 𝛼 = 1 𝛼 = 1000

Full

InclusiveFL [29] 48.69±3.22 57.93±6.36 60.04±6.42 57.10±7.21 62.96±8.12 64.01±8.24 60.00±9.61 65.84±8.77 66.43±9.55
ScaleFL [18] 40.54±11.12 54.18±8.76 56.53±8.39 52.74±13.82 60.55±11.93 60.73±10.80 58.73±14.73 63.42±13.34 63.45±13.01
DepthFL [20] 53.36±4.64 61.54±4.88 61.96±4.63 58.15±6.73 63.81±6.34 64.19±6.73 61.43±8.42 65.40±7.61 65.71±7.09
ReeFL [25] 53.79±5.95 60.00±5.59 61.02±7.16 59.01±7.98 63.08±9.03 63.66±7.31 61.77±8.61 65.15±9.13 65.87±9.63
DarkDistill 55.89±5.63 61.81±5.66 62.32±5.48 60.48±7.93 64.50±7.97 65.67±7.48 62.88±10.41 66.01±8.85 67.02±9.16
DarkDistill-PL 56.42±4.88 62.11±5.19 62.98±6.58 61.05±8.19 65.12±7.02 65.49±7.88 63.86±10.45 66.54±8.31 67.44±9.98

LORA [15]

InclusiveFL [29] 46.98±6.48 55.41±9.57 56.90±9.80 54.25±11.78 59.66±11.72 59.81±11.66 58.59±14.45 62.00±13.49 62.20±13.01
ScaleFL [18] 31.78±31.78 43.71±21.42 46.15±21.22 40.46±22.36 47.18±24.11 48.26±24.17 45.44±25.09 49.01±26.83 49.12±26.73
DepthFL [20] 50.71±7.51 58.55±6.37 59.31±8.81 55.85±9.45 60.95±9.20 61.45±9.04 58.58±10.67 62.51±9.96 62.72±10.07
ReeFL [25] 45.92±7.12 54.39±10.03 55.58±10.54 51.57±9.82 58.04±11.88 58.62±11.91 54.00±10.76 60.06±12.84 60.73±12.90
DarkDistill 53.27±8.48 58.88±5.66 59.33±8.81 57.32±11.91 61.24±11.06 61.74±11.42 60.02±14.34 62.77±13.24 62.88±13.16

Different pretrained model. We conduct extension experiments

on SST-2 [39] for GLUE benchmark with Bert [6] model, which has

12 layers and 128 hidden dimension. We show the anytime infer-

ence with 4 exits for full parameter fine-tuning in Table. 5. These

experiments show that our work is also robust across pertrained
models with different architectures.

Intermediate Results of Training. As shown in Fig. 7, all ap-

proaches reach the convergence on CIFAR-100 with varied 𝛼 and

fine-tuning setups. The accuracy of DarkDistill outperforms all

baselines, with almost the lowest training loss on the valid dataset.

Impact of Client Heterogeneity. Table. 6 lists the anytime infer-

ence accuracy on CIFAR-100 under three client heterogeneity distri-

butions. For example, “high-end” means high-end devices dominate,

where 10%, 20%, 30%, and 40% clients can train local models with 1,

2, 3, and 4 exits, respectively. Our DarkDistill and DarkDistill-PL

always outperform the baselines with the three distributions.

6 Conclusion
This paper introduces DarkDistill, a novel heterogeneous federated

learning scheme dedicated for early-exit networks (EENs) and its

parallel variant DarkDistill-PL for acceleration. We identify the

cross-model exit unalignment problem, an unexplored challenge

when extending difficulty-aware EEN training to federated contexts.

We develop a difficulty-conditional generator training strategy and

a difficulty-aligned reverse distillation scheme to aggregate EENs of

varying depths into a global model that retains its difficulty-specific

specialization. Extensive experiments on image and speech classi-

fication benchmarks show that DarkDistill outperforms existing

heteronomous federated learning solutions in both full-parameter

and parameter-efficient fine-tuning settings. We envision DarkDis-

till as a critical step for training dynamic deep neural network on

edge devices with heterogeneous resources.

Acknowledgements
We are grateful to anonymous reviewers for their constructive

comments. This work was partially supported by National Key

Research and Development Program of China under Grant No.

2023YFF0725103, National Science Foundation of China (NSFC)

(Grant Nos. 62425202, U21A20516, 62336003), the CityU APRC grant

(No. 9610633), the Beijing Natural Science Foundation (Z230001),

the Fundamental Research Funds for the Central Universities No.

JK2024-03, the Didi Collaborative Research Program and the State

Key Laboratory of Complex & Critical Software Environment (SKL-

CCSE). Yi Xu and Yongxin Tong are the corresponding authors.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada LehaoQu et al.

References
[1] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. 2022. Fedrolex: Model-

heterogeneous federated learning with rolling sub-model extraction. NeurIPS 35
(2022).

[2] Romil Bhardwaj, Gopi Krishna Tummala, Ganesan Ramalingam, Ramachandran

Ramjee, and Prasun Sinha. 2018. Autocalib: Automatic traffic camera calibration

at scale. ACM Transactions on Sensor Networks 14, 3-4 (2018), 1–27.
[3] Caleb Chen Cao, Yongxin Tong, Lei Chen, and HV Jagadish. 2013. Wisemarket: a

new paradigm for managing wisdom of online social users. In KDD.
[4] Yun-Hin Chan, Rui Zhou, Running Zhao, Zhihan JIANG, and Edith CHNgai. 2023.

Internal Cross-layer Gradients for Extending Homogeneity to Heterogeneity in

Federated Learning. In ICLR.
[5] Joud Chataoui, Mark Coates, et al. 2023. Jointly-Learned Exit and Inference for a

Dynamic Neural Network. In ICLR.
[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

arXiv preprint arXiv:1810.04805 (2018).
[7] Enmao Diao, Jie Ding, and Vahid Tarokh. 2020. HeteroFL: Computation and

Communication Efficient Federated Learning for Heterogeneous Clients. In ICLR.
[8] Biyi Fang, Xiao Zeng, Faen Zhang, Hui Xu, and Mi Zhang. 2020. Flexdnn: Input-

adaptive on-device deep learning for efficient mobile vision. In SEC.
[9] Dawei Gao, Yongxin Tong, Jieying She, Tianshu Song, Lei Chen, and Ke Xu. 2016.

Top-k Team Recommendation in Spatial Crowdsourcing. In WAIM. 191–204.

[10] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang.

2021. Dynamic neural networks: A survey. TPAMI 44, 11 (2021), 7436–7456.
[11] Yizeng Han, Yifan Pu, Zihang Lai, ChaofeiWang, Shiji Song, Junfeng Cao,Wenhui

Huang, Chao Deng, and Gao Huang. 2022. Learning to Weight Samples for

Dynamic Early-Exiting Networks. In ECCV. 362–378.
[12] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise

Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-

age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531 (2015).
[14] Junyuan Hong, Haotao Wang, Zhangyang Wang, and Jiayu Zhou. 2021. Efficient

Split-Mix Federated Learning for On-Demand and In-Situ Customization. In

ICLR.
[15] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu

Wang, Weizhu Chen, et al. 2021. LoRA: Low-Rank Adaptation of Large Language

Models. In ICLR.
[16] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and

Kilian Weinberger. 2018. Multi-Scale Dense Networks for Resource Efficient

Image Classification. In ICLR.
[17] Jiaming Huang, Yi Gao, and Wei Dong. 2024. Unlocking the Non-deterministic

Computing Power with Memory-Elastic Multi-Exit Neural Networks. In WWW.

[18] Fatih Ilhan, Gong Su, and Ling Liu. 2023. Scalefl: Resource-adaptive federated

learning with heterogeneous clients. In CVPR. 24532–24541.
[19] Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G Hauptmann. 2014.

Easy samples first: Self-paced reranking for zero-example multimedia search. In

MM. 547–556.

[20] Minjae Kim, Sangyoon Yu, Suhyun Kim, and Soo-Mook Moon. 2022. DepthFL:

Depthwise federated learning for heterogeneous clients. In ICLR.
[21] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

from tiny images. (2009).

[22] M Kumar, Benjamin Packer, and Daphne Koller. 2010. Self-paced learning for

latent variable models. NeurIPS 23 (2010).
[23] Assaf Lahiany and Yehudit Aperstein. 2022. PTEENet: Post-Trained Early-Exit

Neural Networks Augmentation for Inference Cost Optimization. IEEE Access 10
(2022), 69680–69687.

[24] Stefanos Laskaridis, Alexandros Kouris, and Nicholas D Lane. 2021. Adaptive

inference through early-exit networks: Design, challenges and directions. In

EMDL.
[25] Royson Lee, Javier Fernandez-Marques, Shell Xu Hu, Da Li, Stefanos Laskaridis,

Łukasz Dudziak, Timothy Hospedales, Ferenc Huszár, and Nicholas Donald Lane.

2024. Recurrent Early Exits for Federated Learning with Heterogeneous Clients.

In ICML.
[26] Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao Huang. 2019. Improved

techniques for training adaptive deep networks. In ICCV. 1891–1900.
[27] Xiangjie Li, Chenfei Lou, Yuchi Chen, Zhengping Zhu, Yingtao Shen, Yehan

Ma, and An Zou. 2023. Predictive exit: Prediction of fine-grained early exits for

computation-and energy-efficient inference. In AAAI, Vol. 37. 8657–8665.
[28] Boyi Liu, Yiming Ma, Zimu Zhou, Yexuan Shi, Shuyuan Li, and Yongxin Tong.

2024. CASA: Clustered Federated Learning with Asynchronous Clients. In KDD.
[29] Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang, Lingjuan Lyu, Hong

Chen, and Xing Xie. 2022. No one left behind: Inclusive federated learning over

heterogeneous devices. In KDD.
[30] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In AISTATS. 1273–1282.

[31] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Mat-

sukawa, and Hassan Ghasemzadeh. 2020. Improved knowledge distillation via

teacher assistant. In AAAI, Vol. 34. 5191–5198.
[32] Sahar Almahfouz Nasser, Nihar Gupte, and Amit Sethi. 2024. Reverse knowledge

distillation: Training a large model using a small one for retinal image matching

on limited data. In WACV.
[33] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, An-

drew Y Ng, et al. 2011. Reading digits in natural images with unsupervised feature

learning. NeurIPS 2011 (2011).
[34] Xiaomin Ouyang, Xian Shuai, Jiayu Zhou, Ivy Wang Shi, Zhiyuan Xie, Guoliang

Xing, and Jianwei Huang. 2022. Cosmo: contrastive fusion learning with small

data for multimodal human activity recognition. In MobiCom. 324–337.

[35] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. 2019. Relational knowledge

distillation. In CVPR. 3967–3976.
[36] Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge, and NoahA

Smith. 2020. The Right Tool for the Job: Matching Model and Instance Complexi-

ties. In ACL. 6640–6651.
[37] Jieying She, Yongxin Tong, Lei Chen, and Tianshu Song. 2017. Feedback-Aware

Social Event-Participant Arrangement. In SIGMOD. 851.
[38] Shuyao Shi, Neiwen Ling, Zhehao Jiang, Xuan Huang, Yuze He, Xiaoguang

Zhao, Bufang Yang, Chen Bian, Jingfei Xia, Zhenyu Yan, Raymond W. Yeung,

and Guoliang Xing. 2024. Soar: Design and Deployment of A Smart Roadside

Infrastructure System for Autonomous Driving. In MobiCom. 139–154.

[39] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,

Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic

compositionality over a sentiment treebank. In ACL. 1631–1642.
[40] Max Sponner, Bernd Waschneck, and Akash Kumar. 2024. Adapting Neural

Networks at Runtime: Current Trends in At-Runtime Optimizations for Deep

Learning. Comput. Surveys 56, 10 (2024), 1–40.
[41] Shangchao Su, Bin Li, and Xiangyang Xue. 2025. Fedra: A random allocation

strategy for federated tuning to unleash the power of heterogeneous clients. In

ECCV. 342–358.
[42] Yi Sun, Jian Li, and Xin Xu. 2022. Meta-GF: Training Dynamic-Depth Neural

Networks Harmoniously. In ECCV. 691–708.
[43] Qian Tao, Yuxiang Zeng, Zimu Zhou, Yongxin Tong, Lei Chen, and Ke Xu. 2018.

Multi-worker-aware task planning in real-time spatial crowdsourcing. In Data-
base Systems for Advanced Applications: 23rd International Conference, DASFAA
2018, Gold Coast, QLD, Australia, May 21-24, 2018, Proceedings, Part II 23. 301–317.

[44] Surat Teerapittayanon and Bradley McDanel. 2016. Branchynet: Fast inference

via early exiting from deep neural networks. In ICPR. 2464–2469.
[45] Yongxin Tong, Jieying She, Bolin Ding, Libin Wang, and Lei Chen. 2016. Online

mobile micro-task allocation in spatial crowdsourcing. In ICDE. 49–60.
[46] Yongxin Tong, Dingyuan Shi, Yi Xu, Weifeng Lv, Zhiwei Qin, and Xiaocheng

Tang. 2021. Combinatorial optimization meets reinforcement learning: Effective

taxi order dispatching at large-scale. TKDE 35, 10 (2021), 9812–9823.

[47] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre

Sablayrolles, and Hervé Jégou. 2021. Training data-efficient image transformers

& distillation through attention. In ICML. 10347–10357.
[48] A Vaswani. 2017. Attention is all you need. NeurIPS (2017), 5998–6008.
[49] Hui-Po Wang, Sebastian Stich, Yang He, and Mario Fritz. 2022. ProgFed: Effective,

communication, and computation efficient federated learning by progressive

training. In ICML. 23034–23054.
[50] Shuai Wang, Yexuan Fu, Xiang Li, Yunshi Lan, Ming Gao, et al. 2024. DFRD: Data-

Free Robustness Distillation for Heterogeneous Federated Learning. NeurIPS 36
(2024).

[51] Yansheng Wang, Yongxin Tong, Dingyuan Shi, and Ke Xu. 2021. An efficient

approach for cross-silo federated learning to rank. In ICDE. 1128–1139.
[52] Yansheng Wang, Yongxin Tong, Zimu Zhou, Ziyao Ren, Yi Xu, Guobin Wu, and

Weifeng Lv. 2022. Fed-LTD: Towards cross-platform ride hailing via federated

learning to dispatch. In KDD.
[53] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech

recognition. arXiv preprint arXiv:1804.03209 (2018).
[54] Haichao Yu, Haoxiang Li, Gang Hua, Gao Huang, and Humphrey Shi. 2023.

Boosted dynamic neural networks. In AAAI, Vol. 37. 10989–10997.
[55] Chen Jason Zhang, Yongxin Tong, and Lei Chen. 2014. Where to: Crowd-aided

path selection. Proceedings of the VLDB Endowment 7, 14 (2014), 2005–2016.
[56] Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. 2022. Fine-

tuning global model via data-free knowledge distillation for non-iid federated

learning. In CVPR. 10174–10183.
[57] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and

Kaisheng Ma. 2019. Be your own teacher: Improve the performance of con-

volutional neural networks via self distillation. In ICCV. 3713–3722.
[58] Hanhan Zhou, Tian Lan, Guru Prasadh Venkataramani, and Wenbo Ding. 2024.

Every parameter matters: Ensuring the convergence of federated learning with

dynamic heterogeneous models reduction. NeurIPS 36 (2024).
[59] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. 2021. Data-free knowledge

distillation for heterogeneous federated learning. In ICML. 12878–12889.

DarkDistill: Difficulty-Aligned Federated Early-Exit Network Training on Heterogeneous Devices KDD ’25, August 3–7, 2025, Toronto, ON, Canada

A Proof of Theorems
We extend the analysis in [58] from single-exit network to multi-

exit network. Specifically, we first introduce Assumption 1, which is

unique in EEN training. We then derive several unique lemmas for

EEN training, which extend the three lemmas in [58] for federated

EEN training (i.e., Lemma 5, Lemma 6, Lemma 7). Finally, we prove

Theorem 1 based on these lemmas.

Assumption 1 (EEN Training). For an EEN with 𝑀 exits, it’s
training loss function consists of𝑀 exits, we have:

L =

𝑀∑︁
𝑚=1

L𝑚

Assumption 2 (Smoothness). Loss functions {L𝑚
𝑘
}𝑘∈𝐾,𝑚∈𝑀 are

all L-smooth, where L𝑚
𝑘

is the loss at exit𝑚 for client 𝑘 . For any 𝜃, 𝜃 ′

and any 𝑘,𝑚, we assume that there exists 𝐿 > 0 s.t.:∇L𝑚
𝑘
(𝜃) − ∇L𝑚

𝑘
(𝜃 ′)

 ≤ 𝐿 𝜃 − 𝜃 ′
Assumption 3 (Server KD Noise). For 𝛿2 ∈ [0, 1) and any 𝑘 ,

the global model knowledge distillation and reduction noise in each
communication round is bounded as follows:

∥𝜃 − 𝜃𝐾𝐷 [:𝑚𝑘] ∥ ≤ 𝛿2 ∥𝜃 ∥
where 𝜃𝐾𝐷 = 𝜃 − 𝛾∇L𝐾𝐷 (𝜃) represents the parameters optimized
by server KD, and 𝜃𝐾𝐷 [:𝑚𝑘] is the model of client 𝑘 after reduction.

Assumption 4 (Bound Gradient). The expected squared norm
of stochastic gradients is bounded uniformly. That is, in local epoch 𝑡 ,
for constant 𝐺 > 0 and any 𝑘 , we have:

E𝜉𝑡
𝑘

∇L𝑚
𝑘
(𝜃𝑡
𝑘
; 𝜉𝑡
𝑘
)
2 ≤ 𝐺

Assumption 5 (Gradient Noise). In local dataset, for any 𝑘, 𝑡 ,
we assume a bounded gradient estimate:

E𝜉𝑡
𝑘

∇L𝑚
𝑘
(𝜃𝑡
𝑘
; 𝜉𝑡
𝑘
) − ∇L𝑚 (𝜃𝑡

𝑘
)
2 ≤ 𝜎2

Lemma 1. The gradient of each region’s parameters, calculated by
the EEN training loss, can be represented by the gradient of each exit.
For any 𝑘, 𝑖 , we have:

∇L (𝑖)
𝑘

=

𝑀∑︁
𝑚=𝑖

∇L (𝑖),𝑚
𝑘

where𝑀 exits ENN has𝑀 regions. For region 𝑖 , it consists of block 𝑖
and classifier 𝑖 , and ∇L (𝑖)

𝑘
is the gradient of region 𝑖 .

Proof. We first expandL𝑘 to
∑𝑀
𝑚=1 L𝑀𝑘 based on Assumption 1

and then utilize ∇(𝑓 + 𝑔) = ∇𝑓 + ∇𝑔:

∇L𝑘 = ∇
(
𝑀∑︁
𝑚=1

L𝑚
𝑘

)
=

𝑀∑︁
𝑚=1

∇L𝑚
𝑘

(12)

We attain

∑𝑀
𝑗=1 ∇L

(𝑖), 𝑗
𝑘

based on Eq. (12) at first, and then we

remove losses of exits which can’t train parameters of block 𝑖:

∇L (𝑖)
𝑘

=

𝑀∑︁
𝑚=1

∇L (𝑖),𝑚
𝑘

=

𝑀∑︁
𝑚=𝑖

∇L (𝑖),𝑚
𝑘

(13)

□

Lemma 2. Under Lemma 1 and Assumption 4, ∥∇L𝑘 (𝜃𝑘 ; 𝜉)∥2 is
the squared norm for gradient of region 𝑖’s parameters in client 𝑘 for
training samples 𝜉 , which can be bounded as follows:

∥∇L𝑘 (𝜃𝑘 ; 𝜉)∥2 ≤ 𝑀2𝐺

Proof. This lemma quantifies the expected squared norm of the

stochastic gradient for the joint training strategy of local EENs.

LEFT =

 𝑀∑︁𝑗=1 ∇L 𝑗𝑘 (𝜃𝑘 ; 𝜉)

2

≤𝑀
𝑀∑︁
𝑗=1

∇L 𝑗
𝑘
(𝜃𝑘 ; 𝜉)

2 ≤ 𝑀2𝐺

(14)

In the first step, the joint training loss of the EEN is converted

based on Eq. (12); the second step employs the inequality |∑𝑛𝑖=1 𝑎𝑖 |2 ≤
𝑛
∑𝑛
𝑖=1 |𝑎𝑖 |2; and the final step is derived from the gradient noise

inequality, as specified in Assumption 5. □

Lemma 3. Under Lemma 1 and Assumption 2, we have:
𝑀∑︁
𝑖=1

E
∇L (𝑖)

𝑘
(𝜃𝑞,𝑡−1
𝑘
) − ∇L (𝑖)

𝑘
(𝜃𝑞)

2 ≤ 𝑀2𝐿2E
𝜃𝑞,𝑡−1
𝑘

− 𝜃𝑞
2

where in communication round 𝑞, 𝜃𝑞 denotes the global model param-
eters, 𝜃𝑞,𝑡−1

𝑘
is the local model parameters of client 𝑘 in local epoch

𝑡 − 1, and 𝜃𝑞,0
𝑘

= 𝜃
𝑞

𝐾𝐷
[:𝑚𝑘] is the initial parameters of client 𝑘 .

Proof. This lemma quantifies the difference between a local

gradient and a stochastic gradient by summing the gradients of all

parameters as follows.

LEFT =

𝑀∑︁
𝑖=1

E

 𝑀∑︁𝑗=𝑖 ∇L (𝑖), 𝑗𝑘
(𝜃𝑞,𝑡−1
𝑘
) − ∇L (𝑖), 𝑗

𝑘
(𝜃𝑞)

2

≤𝑀
𝑀∑︁
𝑗=1

E
∇L 𝑗

𝑘
(𝜃𝑞,𝑡−1
𝑘
) − ∇L 𝑗

𝑘
(𝜃𝑞)

2 ≤ 𝑀2𝐿2E
𝜃𝑞,𝑡−1
𝑘

− 𝜃𝑞
2

(15)

In the first step, we utilize Lemma 1 to simplify the gradients

of region 𝑖 , utilize the inequality |∑𝑛𝑖=1 𝑎𝑖 |2 ≤ 𝑛
∑𝑛
𝑖=1 |𝑎𝑖 |2 and

relax𝑀 − 𝑖 + 1 to𝑀 . The second step converts the parameter-wise

gradients to exit-wise gradients. Finally, we utilize Assumption 2,

which allows us to consider the difference in parameters. □

Lemma 4. Under Lemma 1 and Assumption 5, we have:
𝑀∑︁
𝑖=1

E
∇L (𝑖)

𝑘
(𝜃𝑞,𝑡−1
𝑘

; 𝜉𝑡−1
𝑘
) − ∇L (𝑖)

𝑘
(𝜃𝑞,𝑡−1
𝑘
)
2 ≤ 𝑀2𝜎2

Proof. We quantify the difference between a local gradient and

a stochastic gradient using the gradient noise assumption.

LEFT =

𝑀∑︁
𝑖=1

E

 𝑀∑︁𝑗=𝑖
[
∇L (𝑖), 𝑗

𝑘
(𝜃𝑞,𝑡−1
𝑘

; 𝜉𝑡−1
𝑘
) − ∇L (𝑖), 𝑗

𝑘
(𝜃𝑞,𝑡−1
𝑘
)
]

2

≤𝑀
𝑀∑︁
𝑗=1

E
∇L 𝑗

𝑘
(𝜃𝑞,𝑡−1
𝑘

; 𝜉𝑡−1
𝑘
) − ∇L 𝑗

𝑘
(𝜃𝑞,𝑡−1
𝑘
)
2 ≤ 𝑀2𝜎2

(16)

The first step is similar to the proof of Lemma 4. And then we

replace the gradients from parameter-wise to exit-wise. Finally,

we use Assumption 5 to relax the gradient estimate of all exits

objectives to𝑀𝜎2. □

KDD ’25, August 3–7, 2025, Toronto, ON, Canada LehaoQu et al.

Extension. Now, based on Lemma 2, Lemma 3 and Lemma 4 we

proved above, we extend three lemmas in [58] to federated EEN

learning as Lemma 5, Lemma 6 and Lemma 7 as follows.

Lemma 5 (Extension for Lemma 1 in [58]). Under Lemma 2,
We bounds the squared norm for federated EEN training as follows:

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

E
𝜃𝑞,𝑡−1
𝑘

− 𝜃𝑞
2 ≤ 𝑀2𝛾2𝑇 3𝐾𝐺 + 𝛿2𝐾𝑇 · E

𝜃𝑞2
Proof. The squared norm of the difference between 𝜃

𝑞,𝑡−1
𝑘

and

𝜃𝑞 can be bounded by E∥𝜃𝑞,𝑡−1
𝑘

− 𝜃𝑞,0
𝑘
∥2 + E∥𝜃𝑞,0

𝑘
− 𝜃𝑞

𝑘
∥2. For the

first term, we apply Lemma 2 in the third step as follows:

FIR ≤
𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

(𝑡 − 1)
𝑡−1∑︁
𝑗=1

E
−𝛾∇L𝑘 (

𝜃
𝑞,𝑗−1
𝑘

; 𝜉
𝑗−1
𝑘

)2 ≤ 𝑀2𝛾2𝑇 3𝐾𝐺

3

(17)

For the second term, the parameters changed by knowledge

distillation in server is bounded by 𝛿 based on Assumption 3:

SEC =

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

E
𝜃𝑞
𝐾𝐷
[:𝑚𝑘] − 𝜃𝑞

2 ≤ 𝛿2𝐾𝑇 · E 𝜃𝑞2 (18)

□

Lemma 6 (Extension for Lemma 2 in [58]). Under Lemma 3, we
attain the upperbound for federated EEN training as follows:

𝑀∑︁
𝑖=1

E

 1

𝑇 Γ
(𝑖)
𝑞

∑︁
𝑘∈𝑆𝑖

𝑇∑︁
𝑡=1

[
∇L (𝑖)

𝑘
(𝜃𝑞,𝑡−1
𝑘
) − ∇L (𝑖) (𝜃𝑞)

]
2

≤ 𝑀4𝐿2𝛾2𝑇𝐾𝐺

Γ∗
+ 𝑀

2𝐿2𝛿2𝐾

Γ∗
E

𝜃𝑞2
Proof. The difference of the gradient calculated by local model

and global model can be bounded by Lemma 5.

LEFT ≤
𝑀∑︁
𝑖=1

1

Γ
(𝑖)
𝑞 𝑇

𝑇∑︁
𝑡=1

∑︁
𝑘∈𝑆𝑖

E
∇L (𝑖)

𝑘
(𝜃𝑞,𝑡−1
𝑘
) − ∇L (𝑖)

𝑘
(𝜃𝑞)

2
≤𝑀

4𝐿2𝛾2𝑇𝐾𝐺

Γ∗
+ 𝑀

2𝐿2𝛿2𝐾

Γ∗
E

𝜃𝑞2 (19)

The first step utilizes Lemma 2 from [58] and extends single-exit

to multi-exit based on Lemma 3 and Lemma 5. □

Lemma 7 (Extension for Lemma 3 in [58]). Under Lemma 4:

𝑀∑︁
𝑖=1

E

 1

Γ
(𝑖)
𝑞 𝑇

∑︁
𝑘∈𝑆𝑖

𝑇∑︁
𝑡=1

[
∇L (𝑖)

𝑘
(𝜃𝑞,𝑡−1
𝑘

, 𝜉𝑡−1
𝑘
)−∇L (𝑖)

𝑘
(𝜃𝑞,𝑡−1
𝑘
)
]
2

≤ 𝑀
2𝐾𝜎2

𝑇 (Γ∗)2

Proof. We use Lemma 3 in [58] for the first step and Lemma 4

for the second step as follows:

LEFT ≤ 1

𝑇 (Γ∗)2
𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

𝑀2𝜎2 ≤ 𝑀2𝐾𝜎2

𝑇 (Γ∗)2
(20)

□

Our Analysis Conclusion. We extend Lemma 1-3 in [58] to

Lemma 5, Lemma 6 and Lemma 7 correspondingly, and then we

adopt a similar procedure to get our convergence result for feder-

ated EEN training as follows:

Theorem 1. If 1

𝑇
√
𝑄
≤ 𝛾 < 1

6𝑀2𝐿𝑇
, our solution coverages to a

neighborhood of a stationary point of standard FL:

1

𝑄

𝑄∑︁
𝑞=1

E
∇L(𝜃𝑞)2 ≤ 𝐺0√

𝑄
+𝑉0 +

𝐻0

𝑇
+ 𝐼0√

𝑄

𝑄∑︁
𝑞=1

E
𝜃𝑞2

where 𝐺0 = 4E[L(𝜃0)], 𝑉0 = 𝐾𝐺
36Γ∗ , 𝐻0 = 𝑀𝐾𝜎2

(Γ∗)2 +
𝐾𝐺

18Γ∗𝑀 and 𝐼0 =

𝐿2𝛿2𝐾 (2𝑀+1)
Γ∗
√
𝑄

.

B Experiments Implementation Details
B.1 Training Details Hyperparameters
B.1.1 Baseline Hyperparameters. We reproduce previous methods

in two aspects: difficulty-aware training strategies and federated

learning with heterogeneous clients.

Difficulty-aware training strategies.We set the ensemble weight

to 0.2 for BoosteNet. For L2W-DEN, we set the hidden size of the

meta net to 500 and use the Adam optimizer with a weight decay of

1𝑒−4, an initial learning rate (LR) of 1𝑒−4, and 𝑝 = 30 for the bud-

geted exit policy during meta training. One meta training process

is conducted in each local epoch.

FL with heterogeneous clients. These heterogeneous clients

are divided into 4 categories based on their resources, and sub-

models, one exit after 3-layers for deit model with 12 layers, are

assigned to them. For federated learning with heterogeneous clients,

we set 𝛽 = 0.2 for the momentum distillation of InclusiveFL. For

DepthFL, we set the temperature 𝜏 = 1 for self-KD. For ReeFL, we

set 𝜏 = 1 for its dynamic self-KD, use a normalized linear layer

as the shared classifier, and configure the hyperparameters of the

accumulator as specified for ReeFL. For ScaleFL, we follow the

depth-scale method to add classifiers at the 4-th, 7-th, 10-th, and

last transformer blocks with widths of [3
4
, 6
7
, 9

10
, 12
12
] for each block,

to ensure that the number of model parameters is similar to the

others, and set the temperature 𝜏 = 3.

B.1.2 Ours Hyperparameters. In each communication round, we

iterate 5 knowledge distillation steps after updating the generator

once, which involves conducting 2 epochs on the server. The ar-

chitecture and training strategies of the generator are detailed in

Sec. 4.3.1. For knowledge distillation, the training configuration

(learning rate, optimizer, weight decay) of the student model is the

same as that used for local training as follows.

B.1.3 Local Training. Using difficulty-aware training strategies

[11, 54], each client trains its local model using the SGD optimizer

with the following settings: a batch size of 32, a momentum of 0.9,

a weight decay of 1𝑒−4, an initial learning rate (LR) of 5𝑒−2, and an

LR decay of 0.99.

B.1.4 Server & Aggregation. There are 100 clients, divided into 4

levels with increasing resources, which train 4 sizes local model

with their private dataset. We set three scenarios to simulate het-

erogeneous clients by varying the majority resources of clients,

low-end: ratio of 4 level clients is [0.1, 0.2, 0.3, 0.4]; high-end: the
ratio is [0.4, 0.3, 0.2, 0.1]; normal: the ratio is [0.25, 0.25, 0.25, 0.25].

Additionally, the total number of communication rounds is 500,

and in each round, 10% of the clients are sampled for local training.

We use FedAvg [30] to aggregate parameters of local models.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Method
	4.1 DarkDistill Overview
	4.2 Difficulty Assessment of Local Datasets
	4.3 Difficulty-Conditional Data Generator
	4.4 Progressive Reverse Knowledge Distillation
	4.5 Parallel Variant for Acceleration
	4.6 Convergence Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Main Results
	5.3 Ablation Study

	6 Conclusion
	References
	A Proof of Theorems
	B Experiments Implementation Details
	B.1 Training Details Hyperparameters

