
1

NALSpatial: A Natural Language Interface for Spatial Databases
Mengyi Liu, Xieyang Wang, Jianqiu Xu, Hua Lu, Senior Member, IEEE, and Yongxin Tong, Member, IEEE

Abstract—Spatial databases play a vital role in a number
of applications ranging from geographic information systems
to location-based services. Application tasks typically access
underlying spatial data to answer queries. However, non-experts
lack the expertise necessary for formulating spatial queries.
To fill in this gap, we propose an effective framework that
translates natural language queries over spatial data into ex-
ecutable database queries, called NALSpatial. The framework
consists of two core phases: (i) natural language understanding
and (ii) natural language translation. Phase (i) extracts key entity
information, comprehends the query intent and determines the
query type by employing natural language processing techniques
and deep learning algorithms. The key entities and query type
are passed to phase (ii), which makes use of entity mapping
rules and structured language models to construct executable
database queries. NALSpatial supports dealing with five types
of queries including (i) basic queries (e.g. distance and area),
(ii) range queries, (iii) nearest neighbor queries, (iv) spatial join
queries and (v) aggregation queries. We develop NALSpatial in
an open-source extensible database system SECONDO. Extensive
experiments show that NALSpatial on average achieves response
time of about 2.5 seconds, translatability of 95% and translation
precision of 92%, outperforming three state-of-the-art methods.

Index Terms—Spatial Database, Natural Language Interface,
Semantic Parsing, Query Processing.

I. INTRODUCTION

SPATIAL databases manage massive spatial data to support
a wide range of applications such as geographic informa-

tion systems, location-based services and urban planning [1].
Emerging application tasks require an increasing number of
users to derive insights from the data as quickly as possible.
Traditionally, users send their queries to the database system to
retrieve the underlying data, but formulating complex structure
query languages is not a trivial task for non-technical users.
To solve the issue, the natural language interface for database
(NLIDB) enables such non-technical users to explore the data
in a convenient way without relying on experts’ help [2]. Al-
though a great deal of research has been conducted on spatial
databases such as data partitioning [3], [4], indexing structures
[5]–[8], keyword queries [9]–[11], and spatial crowdsourcing
[12]–[14], little effort has been devoted to natural language
interfaces to spatial databases. To bridge this severe gap, we
build a natural language interface for non-experts to friendly
interact with spatial databases.

In the literature, NLIDBs have been mainly studied in
relational databases (e.g. PRECISE [15]), XML databases

M. Liu, X. Wang, and J. Xu are with the College of Computer Science
and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing
211106, China. E-mail: {liumengyi, xieyang, jianqiu}@nuaa.edu.cn.

H. Lu is with the Department of People and Technology, Roskilde Univer-
sity, 4000 Roskilde, Denmark. E-mail: luhua@ruc.dk.

Y. Tong is with the State Key Laboratory of Software Development Envi-
ronment, School of Computer Science and Engineering, Beihang University,
Beijing 100190, China. E-mail: yxtong@buaa.edu.cn.

(Corresponding author: Jianqiu Xu.)

(a) (b)
Fig. 1. Transforming NLQs over spatial data into executable database queries.
(a) Processing NLQ1. (b) The results of NLQ1.

(e.g. DaNaLIX [16]), RDF Q/A (e.g. TEQUILA [17]) and
crowd mining (e.g. NL2CM [18]). Such interfaces cannot be
directly applied to the generation of executable languages
in the spatial domain because of the complexity of spatial
queries (e.g., advanced tasks involving nearest neighbor search
and spatial aggregation). There are two major challenges
in building natural language interfaces for spatial databases:
(i) Semantic understanding is an intractable problem due
to ambiguity in natural language. If the user intent is not
accurately understood, incorrect results will be produced. (ii)
Structured language construction. The executable sentence
follows specific system-level rules. One application task could
be formatted in several ways and how to produce the optimal
query plan including appropriate operators, data structures and
the execution order is an open issue.

Regarding the issue of semantic understanding, former
NLIDBs leverage natural language processing (NLP) tools,
including NLTK [19], spaCy1, Stanford CoreNLP [20] and
Stanza [21]. Nevertheless, such tools have difficulty in accu-
rately parsing spatial queries due to the intricate geometric re-
lationships and diverse query types inherent to spatial data. Re-
cently, GPT-4, a prominently discussed large language model
(LLM), excels in parsing the semantics of natural language
queries (NLQs) over spatial data, spawning a new paradigm
of NLIDB. However, one of the primary constraints is the
insufficiency of datasets tailored for executable languages,
which necessitates prompt engineering or fine-tuning using
newly developed corpus. Reliance on prompts to consistently
incorporate operator is not advisable, as this approach intro-
duces a trade-off in accuracy [22]. Additionally, the design
and creation of specialized corpus for fine-tuning are often
cost-prohibitive. R2.C1

R3.C3

1https://spacy.io/

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

https://spacy.io/

2

Taking NLQ1 as an example, several steps have to be
performed to process the natural language query including
understanding the meaning “the border of Nanjing”, retrieving
the corresponding data, utilizing appropriate operators (e.g.,
boundary, nn), and formatting the executable language. We
report the actual border of Nanjing, all parks and also mark the
result (solid square) in Figure 1. However, ChatGPT produces
a diamond shape to represent the border of Nanjing but this
does not accurately transform the query.

EXAMPLE 1. NLQ1: “List the 12 closest parks to the
border of Nanjing.”

Regarding the issue of structured language construction,
SQL may encounter difficulties when handling complicated
spatial queries with multidimensional data. Existing NLIDBs
rely on optimizers to generate final query results after
translating natural language to SQL [23]. The reliance can
reduce control over data and performance, which are crucial
aspects in spatial databases. We explore the possibility of
transforming natural languages into executable languages that
can handle different operations and optimize queries, such
as operator selection and combination. Explicit textual plans
help understanding what the optimizer does. Although the
executable level is complex to utilize, the user has full control
over the steps of manipulating data. The full power of the
kernel system is available, including the latest incorporated
types or index structures. Taking NLQ1 as an example,
SQL utilizes the keywords ORDER BY and LIMIT and the
operator ST Distance to compute the 12 nearest parks, while
the executable language provides affluent spatial semantics
directly using the operator distancescan.R2.C1

R3.C3 We propose a natural language interface for spatial database,
named NALSpatial, which works in two phases. Phase (i) fo-
cuses on natural language understanding. We coarsely extract
entities to generate a candidate entity set by NLP tools.
The candidate entity set is then pruned using pre-constructed
knowledge bases and the entity information extraction
algorithm to determine the precise entities, including the
number of nearest neighbors, distance threshold, spatial
relations, and locations. Moreover, we train the pre-built
corpus to identify query types. The corpus is constructed
utilizing ChatGPT and exclusively includes spatial NLQs,
which simplifies construction and ensures quality compared
to a corpus containing pairs of NLQs and executable database
queries for spatial data. Our semantic understanding approach
effectively addresses the issues of extensive training data and
external knowledge supplementation associated with schema
and value linking. Phase (ii) is dedicated to natural language
translation. The structured language model is selected by the
query type, and then key entity information is filled into
the model following the mapping rules, which ultimately
generate the executable language. To reduce the complexity
of constructing structured language models, mapping rules and
templates for structured languages are built directly from query
types, thus avoiding the need for enumeration. NALSpatialR2.C1

R2.C3
R3.C3 supports five kinds of spatial queries including (i) basic

queries, (ii) range queries, (iii) nearest neighbor queries, (iv)
spatial join queries and (v) aggregation queries. Our proposal

is developed in an open-source extensible database system
SECONDO [24] but not confined to a particular system. The
framework can be adapted for other spatial databases such as
PostGIS2, as long as syntax rules for databases are followed
and operators in the structured language models are replaced
with operators of counterpart functionality.

Our main contributions are summarized as follows:
• We propose a framework to address the issue of trans-

forming natural language queries over spatial data into
executable database queries.

• To parse natural language, we present an algorithm that
extracts key entities, and construct a spatial natural lan-
guage query corpus for identifying query types.

• We design structured language models for five kinds
of queries including basic queries (distance, direction,
length and area), range queries, nearest neighbor queries,
spatial join queries (join conditions involve location and
distance) and aggregation queries (aggregation functions
include count, sum and max).

• We develop NALSpatial in a prototype database system
and conduct a comprehensive experimental study using
real datasets. The results demonstrate the advantage of
our framework under various settings.

This paper is an extension to the work presented in [25].
There are four major differences from the original version:
(i) the studied problem is comprehensively defined and the
related work is extensively discussed; (ii) the natural language
understanding module involves fundamental spatial queries
and the procedure of query type identification is introduced;
(iii) the supported queries and structured language models
are formalized in natural language translation; (iv) the ex-
perimental evaluation is extended by conducting comparative
evaluation and performance verification, and the generality is
demonstrated by comparing NALSpatial with GPT-4o.

The rest of the paper is organized as follows. We review
the related work in Section II and provide an overview of
the framework in Section III. Natural language understanding
and natural language translation are introduced in Section IV
and Section V, respectively. The experimental evaluation is
reported in Section VI. Section VII concludes the paper.

II. RELATED WORK

We briefly review (i) spatial databases and (ii) natural
language interfaces for databases.

A. Spatial databases

The growth of mobile computing devices and the continu-
ous evolution of positioning technologies have significantly
augmented the production of spatial data [26]. Therefore,
there is a growing demand for efficient processing of spatial
data. In response to this, several prototype systems have been
developed to manage spatial data, such as GeoSpark [27],
Ganos [28] and SECONDO [24]. GeoSpark is a cluster com-
puting system designed for visualizing large-scale geospatial
data. Ganos offers comprehensive support for cloud-native
databases, specifically tailored for processing moving objects

2https://postgis.net/

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

https://postgis.net/

3

and 3D scene data. SECONDO is an extensible database
system designed for conducting research on spatial data and
moving objects, which offers users a wide range of basic and
specialized operators, with the flexibility of integrating custom
implementations. In the context of spatial data owned by
multiple parties, data federation is an effective way to securely
query and analyze distributed data [29]. Existing works on
spatial databases primarily including the following four parts
but little effort has been devoted to NLQ.

(i) Spatial data partitioning. A recent study by Shehab
et al. [3] involves an enhanced partitioning algorithm for
SpatialHadoop. To select an appropriate partitioning method
for spatial data, a significant analysis in the context of rein-
forcement learning is presented [4].

(ii) Spatial indexing. Cong et al. [30] propose a location-
aware indexing framework for top-k text retrieval leveraging
the inverted file and R-tree. In 2018, Kraska et al. [31] first
introduced the concept of learned indexing and developed re-
cursive model index. LISA [32] is a learned index for spatial
data that employs machine learning models to generate the
data layout and thus adapt to diverse datasets.R1.C3

(iii) Spatial keyword queries. A qualitative study by Ahmed
et al. describes how to find the spatial regions where a given
keyword is in the top k most frequent keywords [10]. Luo et
al. apply instant spatial keyword queries to the road networks
by addressing typographical errors in keywords [11].

(iv) Spatial crowdsourcing. The core issue of spatial crowd-
sourcing is how to efficiently assign tasks to workers [33],
[34]. A visual analysis system is built to present real-time
task assignment and help users analyze the process of task
assignment [12].

B. Natural language interfaces for databases

The Transformer architecture has led to notable success of
LLMs in NLP tasks [35]. The models effectively capture the
deep structure and semantic information of language by pre-
training and fine-tuning [36]. Decoder-only, encoder-only and
encoder-decoder are the principal structures of LLMs.

(i) The decoder-only model, represented by GPT [37],
[38], exclusively comprises a decoder and generates output
sequences progressively through an autoregressive approach.
The model is suitable for generative tasks such as text
generation and dialogue systems [39]. However, due to the
autoregressive nature, the model exhibits limited effectiveness
when processing long texts.

(ii) The encoder-only model, represented by BERT [40],
contains only an encoder and extracts context through bidirec-
tional training. This architecture is applicable to tasks involv-
ing context comprehension and supervised learning. Lacking
a direct output generation mechanism, the model is unsuitable
for generative tasks. In addition, the model cannot handle
variable-length outputs in sequence-to-sequence tasks.

(iii) The encoder-decoder model, represented by T5 [41],
consists of an encoder and a decoder. The encoder maps the in-
put sequence to a high-dimensional contextual representation,
and the decoder uses this representation to generate the output
sequence. The architecture excels in tasks requiring global

TABLE I
TRANSFORMATION METHODS FOR NATURAL LANGUAGE QUERIES

Approach Typical methods Domain Target language

Rule-
based

PRECISE [15] Relational SQL
NaLIR [43], [44] Relational SQL
ATHENA [45] Relational SQL
NL2CM [18] Crowd mining OASSIS-QL
NALMO [46] Moving Objects Executable language

of SECONDO

Machine
learning-
based

SpatialNLI [47] Spatial Lambda expression
IRNet [48] Relational SQL
ValueNet [49] Relational SQL
Unnamed method [50] Relational SQL
Unnamed method [51] RDF Q/A SPARQL

information transfer, such as machine translation and sum-
mary generation [42]. However, the computational resource
demands of the model are high.

The improvement of NLP contributes to the development of
NLIDB. Notably, the growing popularity of ChatGPT opens
new possibilities for NLP in NLIDB. ChatGPT supports NLQ
over spatial data and provides a reasonable SQL framework.

EXAMPLE 2. NLQ2: “Can you tell me what POIs are
available in Jiangning District?”

ChatGPT transforms NLQ2 into the following structured
language:

SELECT POI.name
FROM POI
JOIN district
ON ST Within(POI.geom, district.geom)
WHERE district.name = ‘Jiangning District’;

The SQL employs the ST Within function to check whether
each POI is within Jiangning District. ChatGPT extracts the
entity information, including POI and district, along with
identifying the query type as a spatial join query.

However, ChatGPT is mainly oriented to traditional rela-
tional databases and has limited ability to represent spatial
data. While ChatGPT can adeptly process straightforward
objects like points, its representation capability falters when
dealing with more intricate objects such as lines and regions
(e.g. “the border of Nanjing” in NLQ1).

Several NLIDBs have been developed to tackle the signif-
icant challenges of semantic parsing and structured language
generation [2]. To address these issues, researchers have pro-
posed two primary approaches: (i) rule-based and (ii) machine
learning-based. The typical methods for each approach are
shown in Table I.

The rule-based approach for NLIDB requires explicit rules
to facilitate the translation of natural language queries into
structured language queries. For example, PRECISE [15]
defines the concept of semantic ease of processing, which is
utilized to identify a subset of natural language queries that
can be precisely translated into SQL. To handle more complex
natural language queries, PRECISE leverages user interaction
to facilitate semantic understanding. Moreover, NL2CM [18]
decomposes natural language queries into generic and inde-

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

4

Fig. 2. The architecture of NALSpatial.

pendent parts using an individual expression detector. The
two parts are then processed separately and recombined to
generate the final structured languages. While the rule-based
approach can yield superior results in certain domains, the
semantic representation of natural language queries raised by
users may be limited [46].

The machine learning approach can be used to directly learn
the mapping from natural language to the semantic represen-
tation, eliminating the need for an intermediate representation
like a parse tree [49]. SpatialNLI [47] leverages an external
spatial understanding model to extract spatial entities, followed
by a natural language transformation model seq2seq that learns
the semantic structure. IRNet [48] identifies the columns and
tables mentioned in the NLQ and assigns different types to
the columns based on how the columns are mentioned. A
grammar-based neural model is then employed to synthesize
an intermediate representation that connects natural language
and SQL. Finally, IRNet infers SQL from the intermedi-
ate representation. Nevertheless, the performance of machine
learning-based approach is significantly contingent on the
quality of the training data. Consequently, some researchers
strive to amalgamate deterministic algorithms with machine
learning techniques to enhance overall performance [52].

The majority of NLIDB systems are primarily developed
for relational databases. However, owing to the distinctiveness
and intricacy of spatial data, one needs NLIDB systems in the
spatial database domain in which the availability of suitable
training sets is rather limited.

III. THE FRAMEWORK

A. An overview
NALSpatial takes queries over spatial data expressed by

natural languages in English as input. The output is the
transformed executable language, contingent upon the specific
database management system in use. The framework consists
of two phases: (i) natural language understanding and (ii)
natural language translation, as illustrated in Figure 2.

The task of phase (i) is to analyze a natural language query
to obtain accurate semantic meaning and context. In order

Fig. 3. An example dataset.

to effectively extract key entity information, NLP techniques
and deep learning algorithms are utilized and the corpus and
knowledge bases are applied. Then, the procedure compre-
hends the query intent and determines the query type. Users
are able to customize queries during this phase. NALSpatial
adapts to a variety of spatial data types and query operations,
providing a flexible and sustainable solution for evolving data
requirements. The task of phase (ii) is to transform the com-
prehended query into an executable language to manipulate
the underlying spatial data. Key semantic information and
query operators are combined to construct the executable lan-
guage. NALSpatial achieves high adaptability to the underly-
ing database by dynamically adjusting the structured language
models. This design ensures the generality of NALSpatial,
enabling it to seamlessly integrate and run on any spatial
database without excessive modifications.

B. Query transformation flow

EXAMPLE 3. NLQ3: “Which district has the largest num-
ber of parks in Nanjing?”

Considering NLQ3 and the dataset in Figure 3, the work-
flow is as follows.

Extract the key semantic information, including (i) the
entities and (ii) the query type. The named entity recognition

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

5

function of spaCy is employed to obtain cardinal and quantity
lists from the NLQ. By making use of the position of the word
nearest, closest or neighbor, the number of nearest neighbors
is determined from the cardinal list. According to the presence
of the word meter or kilometer, the distance threshold is
determined from the quantity list. Furthermore, by utilizing the
tokenization function of spaCy, a list of nouns is obtained from
the NLQ. Subsequently, the spatial relations and locations are
determined based on whether the nouns in the list exist in
the knowledge bases. Finally, the query type is determined
using the model trained on the corpus. The spatial relations
of NLQ3 are determined as district and park and the query
type is an aggregation query for the maximum value.

Query composition. We combine operators to pre-build
structured language models for each type of query. Aggre-
gation queries for the maximum value in the SECONDO
system use operators (i) interior, (ii) sortby and (iii) head.
The operator interior determines whether a point is inside a
region. The operator sortby sorts a relation by attributes in
ascending or descending order. The operator head extracts
the first i objects of a relation according to the parameter
i. In Section V, we illustrate structured language models for
the SECONDO system and define rules for mapping entities
in natural language queries to undetermined elements in the
models. According to the extracted key semantic information,
structured language models and mapping rules, executable
database queries can be combined.

Furthermore, NALSpatial is able to transform non-spatial
NLQ into SQL, as illustrated in Figure 2.

Syntactic analysis. Following the identification as a type
of non-spatial query, the syntactic analysis is conducted on
the natural language query to specify its goal and condition.
The goals of queries can be divided into two categories:
(i) attributes of relations, e.g. “population”, (ii) functions of
attributes, e.g. “the largest population”. The conditions of
queries consist of attribute names, relationship words, and
attribute values. Relationship words are classified into two
types: (i) comparative relationship, e.g. “population greater
than 4000”, (ii) fixed collocation, e.g. “population between
4000 and 5000”. We pre-construct two mapping tables, one
storing attributes and their corresponding description in natural
language, and the other storing relationship words and their
corresponding description in natural language. During the
process of syntactic analysis, we utilize the mapping tables
and knowledge bases, employing string matching algorithms
to determine the goals and conditions of queries. If the goal
and condition of the query do not belong to the same relation,
we need to join different relations.

Combination of SQL. The identified goal and condition
of the query, and relation are transformed into the SELECT
clause, WHERE clause and FROM clause, respectively. The
final generated SQL is as follows:

SELECT ⟨goal of the query⟩
FROM ⟨table name⟩
WHERE ⟨condition of the query⟩;

EXAMPLE 4. NLQ4: “Return the largest postcode of cities
with a population greater than 500000.”

Fig. 4. Natural language understanding.

Performing syntactic analysis on NLQ4, we identify the
goal as “the largest postcode” and the condition as “population
greater than 500000”. In accordance with the mapping tables,
“largest”, “postcode”, “population” and “greater than” are
mapped to the function MAX, the attribute PLZ, the attribute
Bev and the relationship >, respectively. The goal and con-
dition of NLQ4 belong to the relation city. The goal is
transformed into the clause “SELECT MAX(PLZ)” and the
condition is transformed into the clause “WHERE Bev >
500000”. The corresponding SQL for NLQ4 is:

SELECT MAX(PLZ)
FROM city
WHERE Bev > 500000;

IV. NATURAL LANGUAGE UNDERSTANDING

This process is conducted in tandem with the location
knowledge base and spatial relation knowledge base, facili-
tating the extraction of key entity information, as illustrated
in Figure 4. The entity information includes the number of
nearest neighbors, distance threshold, spatial relations and
locations. Furthermore, the pre-constructed corpus is used to
train an LSTM network as a model that recognizes query
types. The relevant definitions are as follows.

DEFINITION 1 (The number of nearest neighbors). Let
k be the number of nearest neighbors, and word NN be a
word from {“nearest”, “closest”, “neighbor”}. If a natural
language query does not contain word NN , we set k = 0.
If a natural language query contains word NN , let K be the
set of cardinal numbers in the natural language query.

(i) If |K| = 0, k = 1.
(ii) If |K| = 1, k = k1 ∈ K.

(iii) If |K| > 1, let D (word1, word2) be the number of
words between word1 and word2 in a natural language
query. k = n ∈ K, where ∀ki ∈ K, we have

D (n,word NN) = min
1≤i≤|K|

D (ki, word NN) (1)

EXAMPLE 5. Consider the query “List the 12 closest parks
to the border of Nanjing.”. We have “closest” and K = {12}.
According to Definition 1, we have k = 12. Consider the query

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

6

“List the 12 closest parks to the road 3.”. We have “closest”
and K = {12, 3}. The distance between 12 and the word
“closest” is the shortest for all cardinal numbers in K and
thus we have k = 12.

DEFINITION 2 (Entity). An entity is a tuple E =
(k, d, relation, location), in which

(i) k stores the number of nearest neighbors.
(ii) d stores the distance threshold.

(iii) relation is an array of dictionaries storing spatial rela-
tions.

(iv) location is an array of strings storing locations.

A. Entity extraction for queries

In light of (i) the need for expeditious processing and
comprehensive functionality, and (ii) the preference for Python
as the development language, spaCy is chosen as the NLP
tool, with NLTK as a potential alternative. The framework
implementation predominantly relies on the tokenization and
named entity recognition functions offered by spaCy.

Before processing natural language queries, we construct
two knowledge bases with the foundation of spatial database:
(i) location knowledge base and (ii) spatial relation knowledge
base. The location knowledge base comprehensively archives
details concerning all locations within the spatial database. Si-
multaneously, the spatial relation knowledge base encapsulates
information pertaining to all spatial relations within the spatial
database, encompassing unique identifiers, names, and spatial
properties. The establishment of the knowledge bases involves
the digitalization of location and spatial relation information,
which is then segregated and stored in distinct CSV files,
thereby constituting the foundation for the location knowledge
base and the spatial relation knowledge base.

We propose an algorithm for extracting key entity in-
formation from NLQs over spatial data, including (i) the
number of nearest neighbors, (ii) distance threshold, (iii)
spatial relations and (iv) locations. The specific details are
outlined in Algorithm 1. To extract the number of nearest
neighbors, the named entity recognition function of spaCy
is used to obtain a list of cardinal numbers from the NLQ.
Subsequently, in accordance with Definition 1, the number of
nearest neighbors is determined. In the process of extracting
the distance threshold, the named entity recognition function
of spaCy is utilized to collect a list of quantities from the
NLQ. The distance threshold is expressed as a quantity phrase
indicative of a distance value. Leveraging the number and
the associated distance unit in the phrase, the precise value
of the distance threshold in meters is determined. For the
extraction of spatial relations and locations, the tokenization
function of spaCy is used to obtain a list of nouns or proper
nouns from the NLQ. Then according to whether the words
in the list correspond to entries in the knowledge bases, the
spatial relations and locations are determined. The knowledge
bases are searched using hash tables. Conflicting elements
are stored by linked lists and a dynamic resizing strategy
is employed to enhance performance and memory utilization.
Given the hash table capacity and number of elements, denoted
as capacity and size, respectively, the load factor is defined by

Algorithm 1 EIE (Entity information extraction)
Input: natural language expression, Q;

location knowledge base, LKB;
spatial relation knowledge base, SRKB;

Output: an entity, E
1: doc ← nlp (Q)
2: for token ∈ doc do
3: if token means the number of neighbors then ▷

Definition 1
4: E.k ← token
5: if token means the distance threshold then
6: E.d ← get threshold(token)
7: if token.pos = NOUN ∨token.pos = PROPN then
8: noun list.append(token.text)
9: for word ∈ noun list do

10: if search(word, SRKB.name) then
11: E.relation.append(word)
12: if search(word, LKB.name) then
13: E.location.append(word)
14: return E

load factor =
size

capacity
. The strategy expands or reduces

the hash table and re-hashes all elements when the load factor
exceeds or falls below the specified threshold. R1.C1

The analysis of time complexity. Assuming the number
of words in a natural language query is len, m represents the
number of locations in the location knowledge base and n is
the number of relations in the spatial relation knowledge base,
we can deduce that m is greater than n (since a spatial relation
involves at least one location). The time complexity of dynam-
ically adjusting the hash table is O(m). Hash table expansion
is typically conducted in a multiplicative manner, resulting in
a low frequency of rehashing operations. Assuming the ini-
tial capacity of the hash table is 64, expansions are triggered
when the number of elements reaches ⌊load factor×64⌋+1,
⌊load factor × 128⌋+ 1, or ⌊load factor × 256⌋+ 1. The
time complexity of searching the knowledge bases is O(1),
resulting in O(len) for Algorithm 1. R1.C1

B. Query type identification

We construct a query corpus over spatial data for model
training3. The corpus contains 3000 queries classified into
five categories: (i) basic query, (ii) range query, (iii) nearest
neighbor query, (iv) spatial join query and (v) aggregation
query. Each query is marked with accurate type. The queries
are extracted from 60 relevant research papers and further
expanded manually. The construction process of the corpus
is detailed as follows:

(i) Query extraction. We extract 60 robust NLQs over spatial
data from papers in the relevant domain, as presented in
Table II. Under the guidance of experts in the field of spatial
databases, the queries are reviewed to ensure the relevance to
the research on natural language transformation.

3https://github.com/nuaaer16/NALSpatial/tree/main/LSTM

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

https://github.com/nuaaer16/NALSpatial/tree/main/LSTM

7

TABLE II
EXAMPLE QUERIES IN THE CORPUS

Example NLQ Type

Original Calculate the distance from Mount Huang to Mount Tai. BQRLS What’s the distance from Mount Huang to Mount Tai?

Original What restaurants are located in Jiangning District? RQRLS Could you provide a list of restaurants located in Jiangning
District?

Original Find the two nearest lakes to West Lake. NNQRDE Find the five nearest lakes to West Lake.

Original What restaurants are within 2 kilometers of each subway
station? SJQ

RDE What parks are within 2 kilometers of each subway station?

Original How many amusement parks are there in Los Angeles? AQRLS Please provide the number of amusement parks in Los
Angeles.

RDE, Replace data entities; RLS, Replace language styles;
BQ, Basic query; RQ, Range query; NNQ, Nearest neighbor query;
SJQ, Spatial join query; AQ, Aggregation query.

TABLE III
PERFORMANCE OF DIFFERENT TRAINING MODELS ON CORPUS

Model Training time Prediction accuracy

TextCNN 5s 98.79%
LSTM 1s 99.60%
BERT 92s 99.58%

(ii) Manual expansion. We utilize ChatGPT to perform data
augmentation by replacing data entities and language styles
to expand the corpus to 3000 queries. Three experts are then
selected to review the queries produced by ChatGPT based on
the following criteria, including compliance of query types,
clarity of semantics, unambiguity of entity expression, and
absence of grammatical errors. Through manual review andR1.C2

R3.C2 proofreading, we ensure the high quality of the corpus, making
it applicable to a wide range of research on spatial data queries
and practical application scenarios.

Considering the examples in Table II, for the query “Find
the two nearest lakes to West Lake.”, we identify the word
“two” as a number of nearest neighbors. New queries are
generated by replacing “two” with other numbers. For the
query “Calculate the distance from Mount Huang to Mount
Tai.”, we recognize the words “Mount Huang” and “Mount
Tai” are locations. Keeping the locations constant, new queries
are generated by expressing the distance calculation using
alternative language styles.

When selecting an appropriate model, the corpus is par-
titioned into a training set and a test set with a ratio of
8:2. TextCNN, LSTM, and BERT models are employed for
training, and the results are presented in Table III. Both LSTM
and BERT exhibit comparable prediction accuracy on the test
set, surpassing the performance of TextCNN. However, the
training time for BERT is approximately 1.5 minutes due to
its large number of parameters, whereas LSTM completes
training in approximately 1 second. BERT does not have
a significant advantage in solving classification challenges
involving small samples, multiple categories and short texts.

On the contrary, TextCNN and LSTM with simple structures
and less training time, are viable solutions. LSTM network is
chosen based on the following considerations:

(i) For classification tasks, although feedforward networks
like CNN exhibit superior performance, LSTM can faithfully
represent or simulate human behaviors, logical developments
and cognitive processes of neural organizations, and it is
suitable for handling complex tasks [53].

(ii) The number of queries in the corpus is not particu-
larly large and training overly complex deep learning models
probably results in overfitting. Compared to recently proposed
models such as Transformer and BERT, LSTM is simple and
easy to implement.

V. NATURAL LANGUAGE TRANSLATION

The selection of the structured language model is contingent
upon the query type, and subsequently, the key entity infor-
mation is filled into the model following the mapping rules,
culminating in the derivation of the executable language. The
relevant definitions are as follows.

Let Type(p) ∈ {point, line, region} denote the data type
of a location p. We define a generic function compLoc to
determine if locations p and q share any common parts,
namely:

compLoc(p, q) =

intersects(p, q) if Type(p) ∈ {line, region}

∧Type(q) ∈ {line, region}
within(p, q) if Type(p) = point

∧Type(q) = region
(2)

DEFINITION 3 (Spatial range query). Given a set of
spatial objects R and a query location p, the spatial range
query returns all objects fulfilling the condition involving a
certain spatial predicate and the query location, denoted by
set R

′
= {r | r ∈ R ∧ compLoc(r, p)}.

DEFINITION 4 (Nearest neighbor query). Given a set of
spatial objects R, a query location p and a positive integer k,
the nearest neighbor query returns a set R

′
=

{
r
′

1, ..., r
′

k

}
⊆

R, where ∀r ∈ R−R
′
, we have

dist(r, p) ≥ max
1≤i≤k

dist
(
r
′

i, p
)

(3)

DEFINITION 5 (Spatial join query). Spatial join queries are
categorized into two types according to the join conditions.

• Given two sets of spatial objects R and S, the spatial
join query returns a set T = {(p, q) | p ∈ R ∧ q ∈
S ∧ compLoc(p, q)}.

• Given two sets of spatial objects R and S with a distance
threshold d, the distance join query returns a set T =
{(p, q) | p ∈ R ∧ q ∈ S ∧ dist(p, q) ≤ d}.

DEFINITION 6 (Spatial aggregation query). Aggregation
queries are categorized into three types based on the aggrega-
tion functions.

• Given a set of spatial objects R and a location p, the
spatial aggregation query for quantity returns an integer
n =

∣∣∣R′
∣∣∣, where R

′
= {r | r ∈ R ∧ compLoc(r, p)}.

The result of the aggregation query for quantity on two

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

8

sets of spatial objects R and S is a set R
′
= {r′ | r′ ∈

R∧r′
.Cnt =

∣∣∣S′
∣∣∣ , S′

= {s | s ∈ S∧ compLoc(s, r
′
)}}.

• Given a set of spatial objects R = {r1, ..., rn} and a
location p, the spatial aggregation query for sum returns
a floating-point number

f =

n∑
i=1

area (intersection (ri, p)) (4)

• Given two sets of spatial objects R and S, the spatial
aggregation query for maximum value returns an object
p ∈ R

′
, where R

′
= {r′ | r′ ∈ R ∧ r

′
.Cnt =

∣∣∣S′
∣∣∣ , S′

=

{s | s ∈ S ∧ compLoc(s, r
′
)}}, we have

p.Cnt = max
1≤i≤|R|

r
′

i.Cnt (5)

DEFINITION 7 (Structured language models, SLMs).
SLMs are built upon syntax rules and represent executable
database queries by combining operators and entities. For-
mally, SLM = (L,O,E), in which

(i) L is the set of syntax rules for the database language.
(ii) O is the set of operators in the database.

(iii) E = Ek ∪ Ed ∪ Eplace ∪ Erelation, is the set of
entities. Here, Ek, Ed, Eplace and Erelation respectively
denote the set of numbers of nearest neighbors, distance
thresholds, locations and spatial relations.

EXAMPLE 6. Consider the nearest neighbor query in the
SECONDO system. We have L = {query ⟨value expression⟩;},
O = {createtree, distancescan}, E = Ek ∪Eplace ∪Erelation,
and SLM in Table IV.

A. Structured language models

We outline the structured language models in Table IV.
In the models, ⟨k⟩, ⟨d⟩, ⟨place⟩ and ⟨relation⟩ represent the
undetermined number of nearest neighbors, distance threshold,
location and spatial relation, respectively. If a location is
stored within a spatial relation, the ⟨place⟩ in the model is
replaced with the following statement, where ⟨tmp relation⟩
and ⟨name⟩ respectively represent the spatial relation and the
name of the location.

(⟨ tmp relation ⟩ feed filter [.Name = “ ⟨ name ⟩ ”] extract
[GeoData])

We present key operators in Table V including name, sig-
nature and meaning. For example, the operator feed converts a
relation into a stream of tuples. The operator consume collects
a stream of tuples and converts them into a relation in the
database, and the operator count outputs the number of tuples.
The operator filter, followed by a filter condition, collects
tuples from the stream that satisfy the condition.

B. Structured language construction

In the natural language understanding phase, we obtain
key entities and the type of NLQ. Entities and the structured
language model are selected according to the query type, and
then executable database queries are constructed based on

TABLE IV
STRUCTURED LANGUAGE MODELS

Structured language model

(i) Basic query

distance query distance (⟨place1⟩, ⟨place2⟩);
direction query direction (⟨place1⟩, ⟨place2⟩);
length query size (⟨place⟩);
area query area (⟨place⟩);

(ii) Range query

range query query ⟨relation⟩ feed filter [.GeoData intersects ⟨place⟩]
consume;

(iii) Nearest neighbor query

nearest neighbor query ⟨relation⟩ creatertree[GeoData] ⟨relation⟩ dis-
tancescan [⟨place⟩, ⟨k⟩] consume;

(iv) Spatial join query

location join query ⟨relation1⟩ feed a ⟨relation2⟩ feed b symmjoin
[.GeoData a intersects ..GeoData b] consume;

distance join query ⟨relation1⟩ feed a ⟨relation2⟩ feed b symmjoin
[distance(.GeoData a, ..GeoData b) ≤ ⟨d⟩] consume;

(v) Aggregation query

quantity query ⟨relation1⟩ feed extend [Cnt: fun(t: TUPLE)
⟨relation2⟩ feed filter [.GeoData intersects
attr(t,GeoData)] count] consume;

sum query ⟨relation⟩ feed extend [IntersectionArea: area (
intersection (.GeoData, ⟨ place ⟩))] sum [Intersec-
tionArea];

maximum query ⟨relation1⟩ feed extend [Cnt: fun(t: TUPLE)
⟨relation2⟩ feed filter [.GeoData intersects attr
(t,GeoData)] count] sortby [Cnt desc] head [1] consume;

Fig. 5. Structured language construction.

mapping rules. The process of structured language construc-
tion is illustrated in Figure 5.

Mapping rules. When constructing an executable language,
according to the rules shown in Figure 5, each element in the
entity E can be mapped to the corresponding element in the
set of undetermined elements {⟨k⟩, ⟨d⟩, ⟨place⟩, ⟨relation⟩} in
the structured language models SLM. A distinct relational link

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

9

TABLE V
OPERATORS IN SECONDO

Operator Signature Meaning

filter stream × filter condition → stream Filter the elements of the stream by a predicate.
distance {point, line, region} × {point, line, region} → real Compute the distance between two spatial objects.
direction point × point → real Compute the direction between two points.
size line → real Return the length of a line.
area region → real Return the area of a region.
intersects {line, region} × {line, region} → bool TRUE, if both arguments intersect.
intersection {point, line, region}× {point, line, region} → T, where T is point if point is one

of the arguments, otherwise T is the argument having the smaller dimension
Intersection of two spatial objects.

distancescan rtree × relation × object × int k → stream Compute the k nearest neighbors for a query object.
sortby stream × attribute × asc / desc → stream Sort a stream of tuples by a given list of attributes.
head stream × int n → stream Fetch the first n elements from a stream.

Fig. 6. Entities required for each query type.

exists between E and SLM.

E → SLM (6)

Our NALSpatial supports five types of queries including (i)
basic queries, (ii) range queries, (iii) nearest neighbor queries,
(iv) spatial join queries and (v) aggregation queries. Distinct
types require specific entities, as depicted in Figure 6. We
explain the process of constructing the structured language for
each type of queries through illustrative examples of NLQs.

Basic query. When transforming a basic query, the required
entity is location. The operators used in the query are (i)
distance, (ii) direction, (iii) size and (iv) area. The distance
operator returns the distance between two locations, the direc-
tion operator furnishes the angle from one location to another,
the size operator provides the length of a line and the area
operator computes the area of a region.

Range query. When transforming a range query, the neces-
sary entities include (i) relation and (ii) location. If the spatial
attribute of relation and the data type of location are line or
region, the intersects operator is utilized to return all objects
in relation that intersect location. If the spatial attribute of
relation is point, the data type of location is restricted to region
and the ininterior operator is utilized to return all objects in
relation that are located within location.

EXAMPLE 7. NLQ5: “What are the roads that intersect
Zhixing Road?”

During the natural language understanding phase, we deter-
mine that the type is range query with the spatial relation being
road and the location being Zhixing Road. The executable
language for NLQ5 is:

query road feed filter [.GeoData intersects (road feed filter
[.Name = “Zhixing Road”] extract [GeoData])] consume;

In the executable language for NLQ5, both the spatial
attribute of road and the data type of Zhixing Road are
line, and the intersects operator is used. According to the
knowledge bases, Zhixing Road is stored in the relation road.
To map ⟨place⟩ in the model, the following statement should
be used instead of “Zhixing Road”.

(road feed filter [.Name = “ Zhixing Road”] extract [
GeoData])

Nearest neighbor query. When transforming a nearest
neighbor query, the required entities encompass (i) relation,
(ii) location and (iii) the number of nearest neighbors. The
operators used in the query are (i) createtree and (ii) distances-
can. The operator createtree creates a R-Tree for relation. The
operator distancescan computes the k nearest objects in the
relation to the location, based on the provided location, objects
indexed by the R-tree and the number of nearest neighbors.

EXAMPLE 8. NLQ6: “Please tell me what are the 10
closest POIs to the border of Nanjing?”

During the natural language understanding phase, we de-
termine that the type is nearest neighbor query with the
spatial relation being poi, the location being NJBorderLine
and the number of nearest neighbors being 10. The executable
language for NLQ6 is:

query poi creatertree[GeoData] poi distancescan [NJBor-
derLine, 10] consume;

Spatial join query. When transforming a spatial join query,
the essential entities involve (i) relation and (ii) distance
threshold. The operators used in the query are (i) symmjoin, (ii)
intersects and (iii) distance. The symmjoin operator combines
objects from two relations, similar to the keyword JOIN in
SQL. The operators intersects and distance are used to form
the join condition of the symmjoin operator.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

10

TABLE VI
THE GENERALITY OF STRUCTURED LANGUAGE MODELS

SECONDO PostGIS

L
query ⟨value expression⟩; SELECT ⟨value expression⟩;
let ⟨identifier⟩ = ⟨value
expression⟩;

CREATE ⟨object⟩ ⟨identifier⟩;

delete ⟨identifier⟩; DROP ⟨object⟩ ⟨identifier⟩;

O

distance ST Distance
area ST Area
intersects ST Intersects
intersection ST Intersection

E Ek ∪ Ed ∪ Eplace ∪ Erelation

SLM query distance (⟨place1⟩,
⟨place2⟩);

SELECT ST Distance (⟨place1⟩,
⟨place2⟩);

query ⟨relation⟩ feed fil-
ter [.GeoData intersects
⟨place⟩] consume;

SELECT * FROM ⟨relation⟩
WHERE ST Intersects (⟨ relation
⟩.GeoData, ⟨place⟩);

EXAMPLE 9. NLQ7: “What are the POIs within 1.5 kilo-
meters from the center of each district in Nanjing?”

During the natural language understanding phase, we deter-
mine that the type is distance join query, involving the spatial
relations poi and district, and the distance threshold is 1500
meters. The executable language for NLQ7 is:

query poi feed a district feed b symmjoin [distance (
.GeoData a, ..GeoData b) ≤ 1500.0] consume;

Aggregation query. When transforming an aggregation
query, the required entities consist of (i) relation and (ii)
location. The operators used in the query are (i) count, (ii)
sum, (iii) sortby, (iv) head, (v) intersects and (vi) intersection.
The operator count is used with intersects to calculate the
number of objects in the relation that intersect the location.
The operators sum and intersection are collaboratively utilized
to compute the total area of the intersection between the
relation and the location. The operator sortby is used with
head to determine the maximum of an attribute in the relation.

EXAMPLE 10. NLQ8: “Can you tell me the total area of
the districts in Nanjing intersecting with the Yangtze River
Basin?”

During the natural language understanding phase, we de-
termine that the type is aggregation query for sum, with the
spatial relation being district and the location being Yangtze
River Basin. The executable language for NLQ8 is:

query district feed extend [IntersectionArea: area (inter-
section (.GeoData, Yangtze River Basin))] sum [Intersec-
tionArea];

C. Discussion

The generality of structured language models. The
structured language models in Table IV can be applied to
spatial database systems other than SECONDO, as long as
the operators and functions are replaced with operators and
functions of the counterpart functionality in other systems.
For example, the correspondence between SECONDO and
PostGIS is given in Table VI. In the CREATE and DROP
statements of PostGIS, ⟨object⟩ denotes operation objects such

TABLE VII
SPATIAL DATA STATISTICS

Dataset #tables #points #lines #regions

berlintest 50 3040 4708 330
nanjingtest 6 9000 887 13
chinawater 2 0 8399 2907

as FUNCTION, INDEX, TABLE and TYPE. For PostGIS, the
structured language model for a range query can be obtained
from Table VI as follows:

SELECT *
FROM ⟨relation⟩
WHERE ST Intersects(⟨relation⟩.GeoData, ⟨place⟩);

In the model, the operator ST Intersects is used.
When transforming the natural language of a nearest neigh-

bor query, the operators used in PostGIS are (i) ST Distance,
(ii) ORDER BY and (iii) LIMIT. The ST Distance operator is
used to calculate the distance. This operator is integrated into
the query alongside the ORDER BY clause, which facilitates
sorting results in ascending order by the calculated distances.
To further refine the output, the LIMIT clause is applied,
restricting the results to the top k spatial objects.

VI. EXPERIMENTAL EVALUATION

The framework is implemented in a computer (Intel(R)
Core(TM) i5-10210U CPU, 1.60 GHz, 8 GB memory, 512
GB disk) running Ubuntu 20.04 (64 bits, kernel version 5.14.0-
1051-oem). NALSpatial is integrated into the SECONDO sys-
tem as an algebra module4, and an operator named spatial nl
is developed. Within the system, users can use the operator
to transform natural language queries over spatial data into
executable database queries.

A. Datasets

Three datasets are used, and the statistics are reported
in Table VII. (i) The berlintest dataset encapsulates urban
geographic data of Berlin, encompassing public transport,
POIs and rivers, with 50 spatial relations and 8078 locations.
The locations are comprised of 3040 points, 4708 lines and
330 regions. The dataset is available in SECONDO by default.
(ii) The nanjingtest dataset stores districts, part of roads and
POIs information in Nanjing, with 6 spatial relations and 9900
locations. The locations consist of 9000 points, 887 lines and
13 regions. (iii) The chinawater dataset stores partial water
system in China, including diverse water bodies such as rivers,
lakes and ponds, with 2 spatial relations and 11306 locations.
The locations involve 8399 lines and 2907 regions.

Test cases. We construct 100 test cases, including (i) 20
range queries, (ii) 20 nearest neighbor queries, (iii) 30 spatial
join queries and (iv) 30 aggregation queries. The structure
and semantics of basic queries are relatively straight forward
compared to the other four types of queries over spatial data.
The test cases do not contain instances of basic queries due
to simplicity. The detailed query list is provided in Appendix.

4Our code is publicly available at https://github.com/nuaaer16/NALSpatial.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

https://github.com/nuaaer16/NALSpatial

11

B. Evaluation metrics

We define three metrics to evaluate the transformation
method including (i) response time, (ii) translatability and (iii)
translation precision.

DEFINITION 8 (Translatability). Given the set of exe-
cutable queries generated by the system and the set of input
natural language queries, denoted by E and N , respectively,

the translatability is defined by T =
|E|
|N |

.

DEFINITION 9 (Translation precision). Given the set of
executable queries that meet the expected results and the set
of natural language queries input into the system, denoted by
ER and N , respectively, the translation precision is defined

by TP =
|ER|
|N |

.

Response time denotes the duration necessary for the system
to translate the input NLQ into the executable language. Trans-
latability characterizes the likelihood of the system accurately
translating NLQs into executable database queries. The metric
is quantified as the ratio of accurately translated queries to the
overall number of queries presented to the system. Translation
precision refers to the probability that the output result of the
translated executable language matches the expected outcome,
and it is defined as the ratio of executable queries producing
the expected results to the total number of queries.

C. Experimental results

We conduct two experiments: (i) comparative experiment
and (ii) performance verification experiment.

1) Comparative experiment: We implement three baseline
methods: SpatialNLI [47], IRNet [48] and ATHENA++ [54].
Our framework is compared with the three methods in terms
of response time, translatability and translation precision.
Additionally, we conduct a comparison with GPT-4o, focusing
on translatability and translation precision.

In the test cases, the average response time, translata-
bility and translation precision of NALSpatial, SpatialNLI,
IRNet and ATHENA++ are shown in Figure 7. Due to
the spatial comprehension model, SpatialNLI has the most
average response time and the highest translation precision.
IRNet demonstrates an average response time comparable to
NALSpatial, yet exhibits lower translatability and translation
precision than NALSpatial. Based on the identification of
key entity information using the spatial domain ontology,
ATHENA++ has the least average response time but the
lowest translatability and translation precision. Considering the
average response time, translatability and translation precision
comprehensively, NALSpatial achieves the best performance.

Performance of NALSpatial. The experimental results
show that (i) the average response time is about 2.5 seconds,
(ii) the translatability is 95% and (iii) the translation preci-
sion is 92%. The queries that the method fails to translate
accurately are Q6, Q14, Q17, Q41 and Q54. The reason for
Q6 is that the method mistakenly identifies Road as a spatial
relation and fails to recognize Lingrui Road as a location. The
reason for Q14 is that spaCy incorrectly identifies flaechens

Fig. 7. The average response time, translatability and translation precision of
the systems.

as a verb, and the method fails to recognize the Flaechens
relation. The reason for Q17 is that the berlintest dataset
stores street information in the strassen relation, and there
is no street relation. The method is unable to recognize the
semantic similarity between street and strassen. The reason
for Q41 is that the method mistakenly identifies radius as a
location Radis in the POI relation. The reason for Q54 is that
the model for identifying query types incorrectly classifies
the query as a range query, and the query is a spatial join
query. The executable languages generated by the method for
Q21, Q31 and Q79 do not match the expected results. The
reason for Q21 is that the method mistakenly interprets the
intention of the query as finding the 10 nearest POIs to the city
center of Nanjing, rather than the boundary line of Nanjing.
The reason for Q31 is that the method mistakenly identifies
Mehringdamm as a location in the relation UBahnhof instead
of the intended relation strassen. The reason for Q79 is that
the method mistakenly interprets the intent as an aggregation
for sum, and the query is an aggregation query for quantity.

SpatialNLI. The experimental results show that (i) the
average response time is about 5 seconds, (ii) the trans-
latability is 95% and (iii) the translation precision is 93%.
The queries that SpatialNLI does not accurately translate are
Q6, Q14, Q41, Q54 and Q93. The reasons are the same as
NALSpatial. For Q93, the method mistakenly identifies rbahn
as the UBahn relation using the edit distance. Using cosine
similarity, the method can recognize the semantic similarity
between street and strassen, allowing Q17 to be accurately
translated into an executable database query. The executable
languages generated by the method for Q21 and Q79 do not
match the expected results. The spatial comprehension model
identifies Mehringdamm as a location in the strassen relation,
and the executable language corresponding to Q31 aligns with
the expected results.

IRNet. The experimental results show that (i) the average
response time is about 2.8 seconds, (ii) the translatability is
94% and (iii) the translation precision is 91%. The queries
that IRNet is unable to accurately translate are Q14, Q17,
Q41, Q42, Q50 and Q54. The reasons for Q14, Q17, Q41
and Q54 are the same as in NALSpatial. The reasons for Q42
and Q50 are that the NLP tool NLTK fails to recognize the

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

12

(a) (b)

(c) (d)
Fig. 8. Translatability and translation precision of each query type. (a)
NALSpatial. (b) SpatialNLI. (c) IRNet. (d) ATHENA++.

phrase consisting of decimals and meter or kilometer as a
quantity. The method is able to identify Lingrui Road as a
location and Q6 can be accurately translated into an executable
language. In the generated executable languages, the NLQs
that yield results inconsistent with expectations are the same
as in NALSpatial, and the same reasons also apply here.

ATHENA++. The experimental results show that (i) the
average response time is about 1.9 seconds, (ii) the trans-
latability is 92% and (iii) the translation precision is 90%.
The method fails to translate the queries Q14, Q17, Q41,
Q42, Q50, Q54, Q61 and Q88. The reasons for the first six
queries are the same as in IRNet. The reasons for Q61 and
Q88 are that the spatial domain ontology and the Relational
Store cannot recognize PLZBoundaries as a spatial relation.
The executable languages generated by the method for Q31
and Q79 do not match the expected results. The reasons are
the same as in NALSpatial. Leveraging the spatial domain
ontology, the method accurately understands the intent of Q21
(finding the 10 nearest POIs to the boundary of Nanjing), and
the executable language corresponding to Q21 aligns with the
expected results.

The translatability and translation precision of each query
type in the four methods are shown in Figure 8. Range queries
are simple in structure but heavily rely on the extraction of
locations. In all methods, the translatability and translation
precision of the range query do not exceed 90%. Nearest
neighbor queries require the largest number of entities with
complex structures, and their formats are similar. In the test
cases, the nearest neighbor queries can be well translated
into executable statements. The translatability and translation
precision of spatial join queries are significantly influenced by
NLP tools. Aggregation queries demonstrate relatively stable

TABLE VIII
EVALUATION OF NALSPATIAL AND GPT-4O

Framework RQ NNQ SJQ AQ

T TP T TP T TP T TP

NALSpatial 85% 85% 100% 90% 93.3% 93.3% 100% 96.7%
GPT-4o 45% 45% 75% 75% 83.3% 83.3% 76.7% 76.7%
GPT-4o+1SL 65% 65% 85% 85% 93.3% 93.3% 90% 90%
RQ, Range query; NNQ, Nearest neighbor query;
SJQ, Spatial join query; AQ, Aggregation query;
T, Translatability; TP, Translation precision.

translation precision, ranging from 93% to 97%.
Furthermore, we compare NALSpatial and GPT-4o in terms

of the translatability and translation precision. The evaluation
conducted by Gao et al. [55] emphasizes that OpenAI
Demonstration Prompt for GPT-4 and GPT-3.5-TURBO is
a good choice in the zero-shot scenario. Moreover, GPT-4
demonstrates proficiency in learning mappings from question-
SQL pairs [56]. Considering the effectiveness of prompts
and the complexity of formulation, GPT-4o is prompted using
the 1-Shot Learning (1SL) strategy, which provides table
schemas (annotated with the “#” sign) and a golden example
of transforming natural language into SQL. To illustrate this,
the prompt for the chinawater dataset is provided in Appendix.
The experimental results demonstrate that the 1SL strategy has
the potential to enhance the performance of GPT-4o, as illus-
trated in Table VIII. GPT-4o can accurately represent locations
with the assistance of prompts. Nevertheless, the selection of
an appropriate operator to determine the spatial relationship
between the locations remains a significant challenge. In
contrast, NALSpatial employed the knowledge bases to extract
and represent locations without additional user interaction, and
also permitted the utilization of spatial operators that were
already incorporated into the database. The transformation of
range queries is contingent upon the identification of locations
and the application of spatial operators, making GPT-4o less
proficient in transforming range queries than NALSpatial. R1.C2

R3.C2
2) Performance verification: We evaluate the translation

process by configuring the following parameters: (i) the pro-
portion of the range to the entire data space, (ii) the number of
neighbors, (iii) the join condition, (iv) the statistical function
and (v) the size of the dataset. The experimental results show
that the translatability and translation precision of NALSpatial
are not affected by the factors demonstrating the stability of the
framework. Furthermore, ablation experiments are conducted
to validate the effectiveness of each module in the framework.

The effect of the range size. We progressively increase the
range size according to area and construct 10 range queries for
each district, targeting the same geographic information. The
NLQs are divided into four groups by the range {Xuanwu,
Yuhuatai, Qixia, Jiangning District}. The average response
time is reported in Figure 9a. The translatability is 100% and
the translation precision is 90%.

The effect of the number of neighbors. We select 10
nearest neighbor queries and expand to 40 queries by varying
the number of nearest neighbors from the domain {1, 8, 16,
32}. The average response time is reported in Figure 9b. The

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

13

(a) (b) (c) (d)
Fig. 9. Response time. (a) The effect of the range size. (b) The effect of the number of neighbors. (c) The effect of join conditions. (d) The effect of statistical
functions.

translatability is 100% and the translation precision is 100%.
The effect of join conditions. We select 10 spatial join

queries and expand to 40 queries by varying the join conditions
to location intersection, distance less than 800 meters, distance
less than 1 kilometer or distance less than 1.5 kilometers.
The NLQs are divided into four groups according to the join
conditions. As Figure 9c shows, the average response time of
each group ranges from 2.25s to 2.35s. The translatability and
translation precision are both 90%.

The effect of statistical functions. We select 10 aggrega-
tion queries and expand to 30 queries by varying the aggrega-
tion functions to count, sum or max. The NLQs are divided into
3 groups by the aggregation functions {count, sum, max}. As
Figure 9d shows, the translatability is 100% and the translation
precision is 90% for all groups. The function sum incurs
the most average response time, while the function max has
the least average response time. Aggregation queries with the
sum function involve location identification and calculation
of the intersection area, resulting in the most response time.
Aggregation queries with the max function mainly involve
relation identification, resulting in the least response time.

The effect of the dataset size. The chinawater dataset
is expanded using HydroSHEDS5 data. Four groups of tests
are conducted by the number of locations in the dataset {10k,
100k, 1M, 10M}. In the test cases, the average response time
for each group is approximately 2.5 seconds, the translatabil-
ity is 95% and the translation precision is 92%. Furthermore,
given the chinawater dataset with 10k locations, we scale the
test cases by the set {10, 20, 40, 80}. The experimental results
show that the average response time of each group remains
around 2.5 seconds. We conclude that the time cost of the
translation process is independent of the dataset size.R1.C1

Ablation experiments. We evaluate the entity information
extraction rate EI, query type recognition rate QT,
translatability T, translation precision TP, and response time
RT of the ablated frameworks, and the experimental results in
the test cases are shown in Figure 10, where -KB, -Corpus,
-MR, and -SLM represent the elimination of the knowledge
bases, corpus, mapping rules, and structured language models.
The experimental results show that when the knowledge bases
are removed, the framework is forced to rely on NLP tools to
understand semantics, which significantly impairs the ability
to extract entities. When eliminating the corpus, only 13

5https://www.hydrosheds.org/products

Fig. 10. Results of ablation experiments.

queries are transformed by randomly assigning query types.
The framework is unable to achieve efficient generation of
structured languages due to the absence of mapping rules.
The elimination of the spatial relation knowledge base or
structured language models results in the failure to construct
structured languages. Therefore, the modules in the framework
are interdependent and exhibit optimal conversion performance
when operating as a unified system. R2.C2

R3.C1

VII. CONCLUSION

The paper proposes a framework named NALSpatial for
transforming NLQs over spatial data into executable database
query statements. NALSpatial supports a variety of spatial
query types including (i) basic queries, (ii) range queries,
(iii) nearest neighbor queries, (iv) spatial join queries and
(v) aggregation queries. We conduct extensive experiments to
evaluate NALSpatial in comparison with alternatives. The ex-
perimental results indicate that NALSpatial is capable of effec-
tively transforming natural language queries over spatial data
into executable database query statements. Future research
directions include supporting novel types of spatial queries
and extending the coverage of executable query statement.

REFERENCES

[1] V. Pandey, A. van Renen, A. Kipf, and A. Kemper, “How good are
modern spatial libraries?” Data Sci. Eng., vol. 6, no. 2, pp. 192–208,
2021.

[2] Y. Li and D. Rafiei, “Natural language data management and interfaces:
Recent development and open challenges,” in SIGMOD, 2017, pp. 1765–
1770.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

https://www.hydrosheds.org/products

14

[3] A. Shehab, A. Elashry, A. Aboul-Fotouh, and A. M. Riad, “An enhanced
partitioning approach in spatialhadoop for handling big spatial data,” Int.
J. Comput. Intell. Syst., vol. 16, no. 1, p. 15, 2023.

[4] K. Hori, Y. Sasaki, D. Amagata, Y. Murosaki, and M. Onizuka, “Learned
spatial data partitioning,” in aiDM@SIGMOD, 2023, pp. 3:1–3:8.

[5] S. Zhang, S. Ray, R. Lu, and Y. Zheng, “SPRIG: A learned spatial index
for range and knn queries,” in SSTD, 2021, pp. 96–105.

[6] J. Wu, Y. Zhang, S. Chen, Y. Chen, J. Wang, and C. Xing, “Updatable
learned index with precise positions,” Proc. VLDB Endow., vol. 14, no. 8,
pp. 1276–1288, 2021.

[7] M. H. Moti, P. Simatis, and D. Papadias, “Waffle: A workload-aware
and query-sensitive framework for disk-based spatial indexing,” Proc.
VLDB Endow., vol. 16, no. 4, pp. 670–683, 2022.

[8] F. Zardbani, N. Mamoulis, S. Idreos, and P. Karras, “Adaptive indexing
of objects with spatial extent,” Proc. VLDB Endow., vol. 16, no. 9, pp.
2248–2260, 2023.

[9] J. Zhao, Y. Gao, G. Chen, and R. Chen, “Towards efficient framework
for time-aware spatial keyword queries on road networks,” ACM Trans.
Inf. Syst., vol. 36, no. 3, pp. 24:1–24:48, 2017.

[10] P. Ahmed, A. Eldawy, V. Hristidis, and V. J. Tsotras, “Reverse spatial
top-k keyword queries,” VLDB J., vol. 32, no. 3, pp. 501–524, 2023.

[11] C. Luo, Q. Liu, Y. Gao, L. Chen, Z. Wei, and C. Ge, “TASK: an efficient
framework for instant error-tolerant spatial keyword queries on road
networks,” Proc. VLDB Endow., vol. 16, no. 10, pp. 2418–2430, 2023.

[12] Q. Wu, Y. Li, H. Li, D. Zhang, and G. Zhu, “AMRAS: A visual analysis
system for spatial crowdsourcing,” Proc. VLDB Endow., vol. 15, no. 12,
pp. 3690–3693, 2022.

[13] B. Li, Y. Cheng, Y. Yuan, Y. Yang, Q. Jin, and G. Wang, “ACTA:
autonomy and coordination task assignment in spatial crowdsourcing
platforms,” Proc. VLDB Endow., vol. 16, no. 5, pp. 1073–1085, 2023.

[14] X. Lin, K. Wei, Z. Li, J. Chen, and T. Pei, “Aggregation-based dual het-
erogeneous task allocation in spatial crowdsourcing,” Frontiers Comput.
Sci., vol. 18, no. 6, p. 186605, 2024.

[15] A. Popescu, O. Etzioni, and H. A. Kautz, “Towards a theory of natural
language interfaces to databases,” in IUI, 2003, pp. 149–157.

[16] Y. Li, I. Chaudhuri, H. Yang, S. Singh, and H. V. Jagadish, “Danalix:
a domain-adaptive natural language interface for querying XML,” in
SIGMOD, 2007, pp. 1165–1168.

[17] Z. Jia, A. Abujabal, R. S. Roy, J. Strötgen, and G. Weikum, “TEQUILA:
temporal question answering over knowledge bases,” in CIKM, 2018, pp.
1807–1810.

[18] Y. Amsterdamer, A. Kukliansky, and T. Milo, “A natural language
interface for querying general and individual knowledge,” Proc. VLDB
Endow., vol. 8, no. 12, pp. 1430–1441, 2015.

[19] S. Bird, “NLTK: the natural language toolkit,” in ACL, 2006, pp. 69–72.
[20] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,

and D. McClosky, “The stanford corenlp natural language processing
toolkit,” in ACL, 2014, pp. 55–60.

[21] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza: A
python natural language processing toolkit for many human languages,”
in ACL, 2020, pp. 101–108.

[22] X. Zhou, Z. Sun, and G. Li, “DB-GPT: large language model meets
database,” Data Sci. Eng., vol. 9, no. 1, pp. 102–111, 2024.

[23] H. Kim, B. So, W. Han, and H. Lee, “Natural language to SQL: where
are we today?” Proc. VLDB Endow., vol. 13, no. 10, pp. 1737–1750,
2020.

[24] R. H. Güting, T. Behr, and C. Düntgen, “SECONDO: A platform for
moving objects database research and for publishing and integrating
research implementations,” IEEE Data Eng. Bull., vol. 33, no. 2, pp.
56–63, 2010.

[25] M. Liu, X. Wang, J. Xu, and H. Lu, “Nalspatial: An effective natural
language transformation framework for queries over spatial data,” in
SIGSPATIAL/GIS, 2023, pp. 57:1–57:4.

[26] A. Eldawy and M. F. Mokbel, “The era of big spatial data: A survey,”
Found. Trends Databases, vol. 6, no. 3-4, pp. 163–273, 2016.

[27] J. Yu and M. Sarwat, “Geosparkviz: a cluster computing system for
visualizing massive-scale geospatial data,” VLDB J., vol. 30, no. 2, pp.
237–258, 2021.

[28] J. Xie, Z. Chen, J. Liu, and et al., “Ganos: A multidimensional, dynamic,
and scene-oriented cloud-native spatial database engine,” Proc. VLDB
Endow., vol. 15, no. 12, pp. 3483–3495, 2022.

[29] X. Pan, Y. Tong, C. Xue, and et al., “Hu-fu: A data federation system
for secure spatial queries,” Proc. VLDB Endow., vol. 15, no. 12, pp.
3582–3585, 2022.

[30] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most
relevant spatial web objects,” Proc. VLDB Endow., vol. 2, no. 1, pp.
337–348, 2009.

[31] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in SIGMOD, 2018, pp. 489–504.

[32] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan, “LISA: A learned index
structure for spatial data,” in SIGMOD, 2020, pp. 2119–2133.

[33] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowd-
sourcing: a survey,” VLDB J., vol. 29, no. 1, pp. 217–250, 2020.

[34] Y. Tong, Y. Zeng, B. Ding, L. Wang, and L. Chen, “Two-sided online
micro-task assignment in spatial crowdsourcing,” IEEE Trans. Knowl.
Data Eng., vol. 33, no. 5, pp. 2295–2309, 2021.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[36] B. Min, H. Ross, E. Sulem, and et al., “Recent advances in natural
language processing via large pre-trained language models: A survey,”
ACM Comput. Surv., vol. 56, no. 2, pp. 30:1–30:40, 2024.

[37] T. B. Brown, B. Mann, N. Ryder, and et al., “Language models are
few-shot learners,” Advances in neural information processing systems,
vol. 33, pp. 1877–1901, 2020.

[38] L. Ouyang, J. Wu, X. Jiang, and et al., “Training language models
to follow instructions with human feedback,” Advances in Neural
Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.

[39] X. Qiu, T. Sun, Y. Xu, and et al., “Pre-trained models for natural
language processing: A survey,” Sci. China Technol. Sci., vol. 63, no. 10,
p. 1872–1897, 2020.

[40] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT, 2019, pp. 4171–4186.

[41] C. Raffel, N. Shazeer, A. Roberts, and et al., “Exploring the limits of
transfer learning with a unified text-to-text transformer,” J. Mach. Learn.
Res., vol. 21, pp. 140:1–140:67, 2020.

[42] M. Lewis, Y. Liu, N. Goyal, and et al., “BART: denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” in ACL, 2020, pp. 7871–7880.

[43] F. Li and H. V. Jagadish, “Nalir: an interactive natural language interface
for querying relational databases,” in SIGMOD, 2014, pp. 709–712.

[44] F. Li and H. V. Jagadish, “Constructing an interactive natural language
interface for relational databases,” Proc. VLDB Endow., vol. 8, no. 1,
pp. 73–84, 2014.

[45] D. Saha, A. Floratou, K. Sankaranarayanan, and et al., “ATHENA: an
ontology-driven system for natural language querying over relational
data stores,” Proc. VLDB Endow., vol. 9, no. 12, pp. 1209–1220, 2016.

[46] X. Wang, M. Liu, J. Xu, and H. Lu, “NALMO: transforming queries in
natural language for moving objects databases,” GeoInformatica, vol. 27,
no. 3, pp. 427–460, 2023.

[47] J. Li, W. Wang, W. Ku, Y. Tian, and H. Wang, “Spatialnli: A spatial
domain natural language interface to databases using spatial comprehen-
sion,” in SIGSPATIAL/GIS, 2019, pp. 339–348.

[48] J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J. Lou, T. Liu, and D. Zhang, “To-
wards complex text-to-sql in cross-domain database with intermediate
representation,” in ACL, 2019, pp. 4524–4535.

[49] U. Brunner and K. Stockinger, “Valuenet: A natural language-to-sql
system that learns from database information,” in ICDE, 2021, pp. 2177–
2182.

[50] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettlemoyer,
“Learning a neural semantic parser from user feedback,” in ACL, 2017,
pp. 963–973.

[51] P. Tong, Q. Zhang, and J. Yao, “Leveraging domain context for question
answering over knowledge graph,” Data Sci. Eng., vol. 4, no. 4, pp. 323–
335, 2019.

[52] K. Affolter, K. Stockinger, and A. Bernstein, “A comparative survey
of recent natural language interfaces for databases,” VLDB J., vol. 28,
no. 5, pp. 793–819, 2019.

[53] H. Liu, T. Zhang, F. Li, M. Yu, and G. Yu, “A probabilistic genera-
tive model for tracking multi-knowledge concept mastery probability,”
Frontiers Comput. Sci., vol. 18, no. 3, p. 183602, 2024.

[54] J. Sen, C. Lei, A. Quamar, and et al., “ATHENA++: natural language
querying for complex nested SQL queries,” Proc. VLDB Endow., vol. 13,
no. 11, pp. 2747–2759, 2020.

[55] D. Gao, H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding, and J. Zhou, “Text-
to-sql empowered by large language models: A benchmark evaluation,”
Proc. VLDB Endow., vol. 17, no. 5, pp. 1132–1145, 2024.

[56] S. Sun, Y. Zhang, J. Yan, Y. Gao, D. Ong, B. Chen, and J. Su, “Battle
of the large language models: Dolly vs llama vs vicuna vs guanaco vs
bard vs chatgpt - A text-to-sql parsing comparison,” in EMNLP, 2023,
pp. 11 225–11 238.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3525587

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 13,2025 at 06:48:02 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Spatial databases
	Natural language interfaces for databases

	The Framework
	An overview
	Query transformation flow

	Natural Language Understanding
	Entity extraction for queries
	Query type identification

	Natural Language Translation
	Structured language models
	Structured language construction
	Discussion

	Experimental Evaluation
	Datasets
	Evaluation metrics
	Experimental results
	Comparative experiment
	Performance verification

	Conclusion
	References

