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Abstract
Data isolation has become an obstacle to scale up query processing over big data, since sharing raw data among data owners is
often prohibitive due to security concerns. A promising solution is to perform secure queries over a federation of multiple data
owners leveraging secure multi-party computation (SMC) techniques, as evidenced by recent federation studies on relational
data. However, existing solutions are highly inefficient on spatial queries due to excessive secure distance operations for query
processing and their usage of general-purpose SMC libraries for secure operation implementation. In this paper, we propose
Hu-Fu, the first system for efficient and secure spatial query processing on a data federation. Hu-Fu seamlessly supports five
mainstream spatial queries at scale, while ensuring both data and query privacy (i.e., sensitive spatial information of data
owners and query users). The idea is to decompose the secure processing of a spatial query into asmany plaintext operations and
as few secure operations as possible, where fewer secure operators are involved and all of them are implemented dedicatedly.
As a working system, Hu-Fu supports not only query input in native SQL, but also heterogeneous spatial databases (e.g.,
PostGIS, GeoMesa, and SpatialHadoop) at the backend. Extensive experiments show that Hu-Fu usually outperforms the
state-of-the-arts in running time and communication cost while guaranteeing security.
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1 Introduction

Efficient processing of spatial queries over large-scale data is
essential for a wide spectrum of smart city applications, such
as taxi-calling [59] and logistics planning [60]. Although the
volume of spatial data continues to grow, it becomes increas-
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ingly difficult for these applications to take full advantage of
the big spatial data due to the data isolation problem (a.k.a.
isolated data) [39, 45, 47]. Spatial datasets at city or nation
scale are often privately possessed and separately owned by
multiple parties, where sharing raw data among parties or
uploading rawdata to a third party (e.g., a cloud) is prohibitive
due to legal regulations (e.g., GDPR [49]) or commercial rea-
sons.

A promising paradigm to tackle the data isolation prob-
lem is to perform secure queries over a data federation
[14], which consists of multiple data owners (a.k.a. data
silos) who agree on the same schema and manage their own
data autonomously. Note that this paradigm differs from
conventional federated databases [41] in the extra security
requirement. In general, secure query processing over data
federation can be solved by well-known techniques such
as secure multi-party computation (SMC) [24]. Yet, only
recently did pioneer studies such as SMCQL [14] and Con-
clave [50] take the first step towards practice with efficient
query execution plans upon SMC libraries for (relational)
data federation. Unsurprisingly, more applications are being
built on federations of spatial data owners.

Example 1 AMAP[3] (GaoDeMap inChina) has unitedover
8 Chinese travel companies into an integrated taxi-calling
platform to offer users the taxis resources from all partici-
pating companies. A spatial data federation can protect the
distribution of taxis’ locations of each company (i.e., data
silo), which could be a business secret, from leaking to oth-
ers. This privacy concern for data silos is commonly referred
to as data privacy [27].

Example 2 DuringCOVID-19, severalmobile network oper-
ators (e.g., China Mobile [4] and China Telecom [5])
cooperated as a data federation to identify individuals who
had contacts with infectious patients through their location
data [6]. Executing spatial queries (e.g., range query) over a
data federation helps identify contacts of infectious patients
across multiple organizations’ spatial data without compro-
mising privacy. Here, strict privacy requirements go beyond
the data privacy since the locations of patients, which appear
in queries, also need protections. The privacy concern for
spatial data in queries is referred to as query privacy [27].

Due to legal regulations (e.g., GDPR [49]), protecting
data privacy is now common in real-life scenarios, espe-
cially when spatial location implies the travel patterns or
personal trajectories of a user. Query privacy is equally
important, but perhaps gets less attention in existing research
on data federation. Query privacy also has numerous real-
world applications, such as navigation, location-based social
networking, location-based advertising, and POI search [17,
28].

Nevertheless, directly adapting the state-of-the-art data
federation solutions [14, 50] to spatial data can be ineffi-
cient. From our empirical study (Sec. 2.2) of a kNN query
on a real dataset, they are at least 142× slower, and have
at least 1, 216× higher communication cost than plaintext
query processing. There are two reasons for such inefficiency.
(i) Existing solutions process spatial queries with excessive
secure distance operations, which occupy over 90% of the
time cost. For example, SMCQL [14] and Conclave [50]
would securely sort spatial objects by distances to the query
point and pick the top-k objects, where each sorting involves
numerous secure distance comparisons. (ii) Previous studies
[14, 50] are built on general-purpose SMC libraries, which
may sacrifice the efficiency of specific operations for other
considerations. For example, our experiment shows that the
secure summation in ObliVM [38], the SMC library adopted
by SMCQL [14], can be accelerated by 15× via dedicated
implementations [23].

In this paper, we aim at efficient and secure spatial queries
over a data federation, which we call federated spatial
queries.Wemainly study five queries (federated range query,
range counting, kNN query, distance join, and kNN join)
commonly seen in spatial database research [21, 57] and fol-
low the semi-honest adversary model adopted by previous
work [14, 50, 53]. Moreover, we develop a more practical
solution than [14, 50] by eliminating the need for an honest
broker and supporting more data silos (these studies support
at most three data silos whereas we tested up to ten).

To this end, we propose Hu-Fu [7], a system for effi-
cient and secure processing of federated spatial queries.
As explained above, secure operations are usually slow
and easily become the efficiency bottleneck. Thus, the key
idea of Hu-Fu is to decompose a federated spatial query
into as many plaintext operations while minimizing secure
distance-related operations without compromising privacy.
The decomposition aims to achieve two goals: (i) reduce the
number of distance-related operations to the minimum, and
(ii) implement secure operations faster than those in general-
purpose SMC libraries. To realize this idea and implement
a practical system, Hu-Fu consists of three components:
an query rewriter with novel decomposition plans, a set of
drivers adaptable to heterogeneous databases and an easy-
to-use query interface with SQL support. Specifically, the
query rewriter identifies a set of plaintext and secure oper-
ators for the query execution plan to handle the queries of
interest. It ensures diverse privacy requirements, as explained
in Examples 1 and 2: data privacy only, or both data and query
privacy. The drivers provide implementations of secure oper-
ators with dedicated SMC protocols and plaintext operators
as interfaces on top of the heterogeneous spatial databases
adopted by different data silos. The query interface supports
spatial queries in native SQL for easy usage.
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Contribution. Our main contributions and results are sum-
marized as follows.

• To the best of our knowledge, Hu-Fu is the first system on
efficient and secure spatial queries over a data federation,
and is also available on GitHub [7].

• We devise novel decomposition plans for federated spa-
tial queries. After decomposition, an execution plan
involves only a limited number of secure operators that
can be effectively supported with fast and dedicated
implementations.

• Hu-Fu is an efficient, easy-to-use system that supports
query input in SQL and heterogeneous spatial databases,
e.g., PostGIS [10], Simba [57], GeoMesa [26], Spa-
tiaLite [11], and SpatialHadoop [21].

• Extensive evaluations show that Hu-Fu usually outper-
forms the state-of-the-arts [14, 50] in efficiency. Com-
pared with two strong baselines, namely SMCQL-GIS
and Conclave-GIS, which are extended from SMCQL
[14] and Conclave [50] to spatial queries, Hu-Fu is up to
4 orders of magnitude faster and 5 orders of magnitude
lower in communication overhead than SMCQL-GIS and
Conclave-GIS with the same security level.

Compared with the preliminary version [46] of this work,
we havemade the following newcontributions. (i)Weexpand
our scope to a new and challenging setting where both data
and query privacymust be preserved.Hu-Fu also provides the
corresponding SQL query interface. (ii) The query rewriter
is extended and optimized to handle all five spatial queries
in this new setting. (iii) In drivers, two additional secure
operators are tailored to fulfill the extra privacy requirement.
(iv) Extensive evaluations are conducted to show the perfor-
mance.
Roadmap. In the rest of this paper, we define our problem
scope and identify the inefficiency of existing solutions in
Sec. 2. We present an overview of Hu-Fu in Sec. 3 and elab-
orate on the three functional components in Sec. 4, Sec. 5, and
Sec. 6. Finally, we present the evaluations in Sec. 7, review
the related work in Sec. 8, and conclude in Sec. 9.

2 Problem statement

This section clarifies our problem scope and highlights the
technical challenges when developing Hu-Fu.

2.1 Problem scope

A data federation F (“federation” as short) consists of n data
silos {Fi } (“silos” as short), where each silo holds massive
spatial objects. Each spatial object o has a location lo and
(optionally) other attributes. The federation supports feder-

ated spatial queries over the spatial objects of all silos under
the following settings.

• Spatial Queries. The federation supports mainstream
spatial queries like range query, range counting, kNN
query, distance join, and kNN join [40, 57].

• Autonomous Databases. Each data silo is an autonomous
database that manages (e.g., deletes and inserts its own
spatial objects and prohibits sharing its spatial objects in
plaintext with the other data silos [14–16, 50].

• Semi-honest Adversaries. Each silo honestly executes
queries received and returns authentic results, but may
attempt to infer data from other silos during query exe-
cution. This assumption is common in query processing
over a data federation [14–16, 50].

Moreover, the query processing methods should consider
the following requirements thoughtfully.

• Efficiency Requirements.We care about the running time
and communication cost to execute exact queries over
multiple silos. Short running time is often desirable since
real-life applications may process massive queries and
expect prompt responses. Minimal communication cost
is critical in distributed query processing [41] and secure
query processing [27]. Approximate query processing
over data federation [16, 20, 61] is out of our scope
because applications such as contact tracing require accu-
rate results. We consider multiple silos as aligned with
real-world applications. Similar to existing solutions [14,
50], the storage efficiency,whichmainly depends on silos
themselves, is not our primary concern.

• Privacy Requirements. We consider two different types
of privacy requirements [24, 27].

(1) Data privacy: each data silo should not deduce any
sensitive data from others, and no additional sensitive
data should be revealed to the query user, except for
the final query answer.

(2) Query privacy (optional): the spatial location of a
user’s query cannot be revealed to data silos.

Remark. In practice, the need for query privacy may vary
across applications. For example, in scenarios such as a
passenger requesting a taxi-calling service through AMAP
[3], query privacy may be unnecessary. This is because the
platform ultimately needs to know the passenger’s pickup
location. Conversely, in situations like performing contact
tracings based on a patient’s location, query privacy becomes
crucial to prevent the disclosure of sensitive spatial infor-
mation to data silos. For ease of presentation, we classify
federated spatial queries into two kinds: asymmetric queries
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(which require data privacy only) and symmetric queries
(which require both data privacy and query privacy).

To satisfy the privacy requirements, some existing systems
[14, 50] assume the existence of a trusted broker responsible
for collecting partial answers, which may contain sensitive
data, from each silo. In reality, even if brokers (e.g., Acx-
iom [2]) charge high fees for their data broker services, there
is still a risk of them leaking sensitive data for personal gain
[1]. Thus, we explore solutions without reliance on a trusted
broker.

2.2 Main challenges

Federated queries can be realized by secure multi-party com-
putation (SMC) [24], as in prior studies for relational data
[14, 50]. Nevertheless, our empirical study shows that they
are highly inefficient on spatial queries.

2.2.1 Inefficiency on federated spatial queries

As an illustrative study, we perform an asymmetric federated
kNN query by extending SMCQL [14] and Conclave [50],
two representative solutions to secure query processing on
(relational) data federations.
Overview of Existing Solutions. The common framework
[14, 50] for secure query processing over a data federation
decomposes query execution into plaintext queries within
each silo and secure computations of the partial results across
silos. Existing solutions differ in the SMC techniques used
for secure operations, with garbled circuits (GC) and secret
sharing (SS) as themainstreams [24]. For example, SMCQL-
GIS [14] uses a prevalent GC based library, ObliVM [38],
to support two silos. Conclave-GIS [50] adopts an SS based
technique (Sharemind [18]), which enables query processing
on three silos.
Setup.SMCQL-GIS [14] andConclave-GIS [50] are extended
to asymmetric federated kNN queries as follows. Following
the “plaintext + secure” processing pipeline, each silo first
conducts a plaintext kNN query and returns the k nearest
points (along with their distances) to the query point. Then,
the final kNNs are derived by a top-k operation from these
returned points, which are securely sorted by their distances
to the query point.We experimentwith two siloswith k = 16.
Other details of experimental setups are elaborated in Sec.
7.1.
Result. Figure 1 plots the (average) running time and com-
munication cost to process an asymmetric federated kNN
query leveraging existing solutions [14, 50]. The results are
averaged over 50 queries. Compared with Public, i.e., plain-
text kNN query execution without any privacy protection,
the secure counterpart incurs 142× to 212× longer running
time and 1, 216× to 22, 510× higher communication cost.
Although the method SMCQL-GIS yields shorter running

Table 1 Percentage of time spent for plaintext or secure operations in
an asymmetric federated kNN query

Existing solution Plaintext(%) Secure(%)

SMCQL-GIS [14] 0.14 99.86

Conclave-GIS [50] 0.10 99.90

Fig. 1 Inefficiency of Conclave-GIS and SMCQL-GIS on asymmetric
federated kNN query, where SMCQL-GIS and Conclave-GIS are our
extensions on SMCQL [14] and Conclave [50] to spatial queries (see
Sec. 7.1)

time and lower communication overhead thanConclave-GIS,
it is limited to scenarios with only two silos due to its reliance
on garbled circuits (GC). Yet it still takes 2.86 seconds to
answer a federated spatial query, which can hurt user experi-
ences in applications where query time efficiency is critical.

2.2.2 Understanding the efficiency bottleneck

Prior studies are inefficient on federated spatial queries for
the following reasons.

• Excessive Secure Distance Operations.When processing
the test query, over 99% time is spent on secure oper-
ations (e.g., secure distance comparisons) as shown in
Table 1. Specifically, SMCQL-GIS and Conclave-GIS
adopt sorting to find kNNs among nk candidates by using
O(nk log(nk)) secure distance comparisons. A single
secure distance comparison in SMCQL-GIS takes 209
ms, while in Conclave-GIS it takes 248 ms, which equals
the time required for at least 106 plaintext comparisons.

• Reliance on General-Purpose Libraries. Existing meth-
ods use general-purpose libraries to implement secure
operations (e.g., ObliVM [38] in SMCQL [14]). General-
purpose libraries sometimes sacrifice efficiency for gen-
eralization or compatibility. For example, the secure
summation used in Hu-Fu can be 16× faster than that
in ObliVM (see Sec. 7). As will be shown in Sec. 4,
federated spatial queries can be processed with only a
few secure operations. This facilitates acceleration by
dedicated protocols specifically tailored for these secure
operations.

Takeaway. Our study shows that existing secure query pro-
cessing solutions (e.g., [14, 50]) for data federations are
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Fig. 2 Foundation architecture of Hu-Fu

inefficient for spatial queries. The inefficiency comes from
(i)massive secure distance operations, and is exacerbated by
(ii) adopting general-purpose libraries for these SMC oper-
ations. In response, we propose Hu-Fu, a solution with (i) a
novel execution plan for federated spatial queries that involve
notably fewer secure operations (see Sec. 4) and (ii) each
secure operator can be implemented in high efficiency via
dedicatedmethods (see Sec. 5). As next, we give an overview
of Hu-Fu and elaborate on its functional modules in the fol-
lowing.

3 Hu-Fu overview

Hu-Fu is a solution that enables efficient and secure spatial
queries over a data federation. It addresses the inefficiency
of federated spatial query processing via two modules: (1)
a novel query rewriter that decomposes federated spatial
queries into plaintext and secure operators, with the for-
mer executed within each silo and the latter across silos;
(2) drivers that implement these operators as plaintext and
secure primitives leveraging dedicated algorithms and opti-
mizations. Hu-Fu also contains a transparent query interface
to support federated spatial querieswritten in native SQL.We
will briefly explain its architecture and workflow as follows.

3.1 Architecture

Figure 2 shows the architecture of Hu-Fu, which consists
of three modules: query rewriter, drivers, and query inter-
face. From a functional perspective, the query rewriter and

Fig. 3 Illustration of Hu-Fu workflow

drivers optimize the query efficiency, and the query interface
improves the usability of Hu-Fu.
Query Rewriter (Sec. 4). It decomposes mainstream spa-
tial queries (federated range query, range counting, kNN
query, distance join, and kNN join) into plaintext opera-
tors (executed within silos) and secure operators (executed
across silos). We define three plaintext operators (plaintext
range query, range counting, and kNN query) and five secure
operators (secure summation, count comparison, set union,
distance comparison, and location perturbation) as the basic
operators. We also design novel execution plans that decom-
pose these federated spatial queries into basic operators.
Drivers (Sec. 5) Hu-Fu’s drivers implement the basic opera-
tors defined in the query rewriter as efficient primitives that
can adapt to heterogeneous spatial databases at the back-
end. Each operator is implemented by a specific primitive.
Specifically, secure operators are implemented as secure
primitives with dedicated optimizations [18, 23, 32, 34].
Plaintext operators are implemented as plaintext primitives
on top of the underlying spatial databases, which support var-
ious systems, e.g., PostGIS [10], SpatiaLite [11],MySQL [8],
GeoMesa [26], Simba [57] and SpatialHadoop [21].
Query Interface (Sec. 6)This module (1) provides a transpar-
ent and unified federation view to users, and (2) supports both
asymmetric and symmetric federated spatial queries written
in SQL. We implement the query interface by extending the
schema manager and parser of Calcite [19]. We also provide
interfaces such as JDBC for easy integration of Hu-Fu to
users’ programs.

3.2 Workflow

Figure 3 depicts the workflow of Hu-Fu for querying a data
federation of n silos. The query interface and query rewriter
are deployed on the user’s machine to provide a portal for
spatial services, while each silo runs a driver that interacts
with its underlying spatial database.
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In the workflow, a user’s SQL-based federated spatial
query is first parsed by the query interface. Then, the query
rewriter transforms and optimizes the query into a sequence
of plaintext and secure operators. These operators are exe-
cuted as primitives by the drivers: plaintext primitives run
locally on spatial databases to produce intermediate results,
while secure primitives assemble these partial results to
obtain the final answer, which is returned to the user via
the query interface.

4 Query rewriter

This section presents the design of the query rewriter in
Hu-Fu, which decomposes a federated spatial query into
basic operators to form the query execution plan. Specifi-
cally, we first introduce the involved basic operators in Sec.
4.1. Next, we explain the overall decomposition strategies
in Sec. 4.2. Then, we introduce the rewriter of asymmetric
federated spatial queries in Sec. 4.3 from two categories:
radius-known and radius-unknown queries. Since asymmet-
ric federated spatial queries do not assume query privacy, we
also propose efficient solutions to symmetric federated spa-
tial queries in Sec. 4.4. Finally, we discuss practical issues in
Sec. 4.5.

4.1 Basic operators

Our acceleration strategy is to decompose queries into basic
operators so that the majority of distance-related operations
occur within silos in plaintext, thereby reducing the need
for secure operations across silos. The selection principle of
basic operators is explained below.

4.1.1 Operator selection principles

There are two categories of basic operators in Hu-Fu: plain-
text and secure operators. The plaintext operators handle
local queries within each individual silo, while the secure
operators perform atomic computations over sensitive data
in a privacy-preserving manner.

• Plaintext Operators. They can involve the distance-
related operations compulsory in spatial queries, but
should be common operations widely supported by
diverse spatial databases.

• Secure Operators. They should avoid distance-related
operations unless strictly necessary, and efficiently imple-
mented operators are preferable.

Adhering to these principles, we select three plaintext
operators and five secure operators, which will be elaborated
in Sec. 4.1.2 and Sec. 4.1.3, respectively.

4.1.2 Plaintext operators

We define three plaintext operators: plaintext range query,
range counting, and kNN query. These operators are per-
formed within each silo Fi . Hence, they can be conducted in
plaintext without compromising security.

Definition 1 (Plaintext Range Query/Counting) Given a silo
Fi and a query rangeR, the plaintext range query RQ(Fi ,R)

retrieves the spatial objects in Fi that fall within R, and the
plaintext range counting RC(Fi ,R) returns the number of
such objects.

Definition 2 (Plaintext kNNQuery) Given a silo Fi , a query
object q, and a positive integer k, the plaintext kNN query
kNN(Fi , q, k) retrieves the k nearest spatial objects in Fi to
the query object q.

Theplaintext operators complywith theprinciples described
in Sec. 4.1.1, because they are supported by almost all spatial
databases. They are implemented as plaintext primitives in
Hu-Fu drivers, which we defer to Sec. 5.1. The query range
can be various shapes, such as circles and rectangles. For
ease of presentation, we mainly focus on circular ranges in
this section and discuss extensions to other shapes in Sec.
4.5.

4.1.3 Secure operators

We define five secure operators: summation, count compari-
son, set union, distance comparison, and location perturba-
tion. The first three secure operators are designed to preserve
data privacy, while the latter two secure operators aim to
protect query privacy.

Definition 3 (Secure Summation) Given n data silos {Fi }
each holding a private value vi , this operator SUM sums up
these values, i.e., SUM(v1, · · · , vn) = ∑n

i=1 vi , while pro-
tecting the privacy of vi in silo Fi from all other silos Fj

(∀ j �= i).

Definition 4 (Secure Count Comparison) Given n data silos
{Fi } each holding a private count vi and a public constant
k, this operator CMP compares the sum of these counts with
k, i.e., CMP(v1, · · · , vn, k) = sign(

∑n
i=1 vi − k), without

leaking the sum
∑n

i=1 vi or the count vi in silo Fi to any
other silos Fj (∀ j �= i).

Definition 5 (Secure Set Union) Given n data silos {Fi } each
holding a set of spatial objects Si = {oi1, · · · , oimi

}, this oper-
ator SUN computes the union of spatial objects from all silos,
i.e., SUN(S1, · · · , Sn) = ∪n

i=1Si , without leaking the spatial
objects Si in silo Fi to any other silos Fj (∀ j �= i).

Definition 6 (Secure Distance Comparison) Given a query
user holding a private location lq , a data silo holding a private
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location lo, and a distance threshold r , this operator DCMP
compares the distance between lq and lo with the threshold r ,
i.e.,DCMP(lq , lo, r) = sign(dist(lq , lo)−r),without leaking
the location of either party (i.e., the user or silo) to the other.

Definition 7 (Secure Location Perturbation) Given a pri-
vate location x ∈ R

2, this operator GeoI obfuscates it
into a location z = GeoI(x) while satisfying (ε, δ)-Geo-
Indistinguishability (Geo-I) [54]. The privacy requirement
of (ε, δ)-Geo-I is satisfied iff the following inequality holds
for any two locations x, x ′ in the location set and any location
subset Z :

Pr[GeoI(x) ∈ Z ] ≤ eεdist(x,x ′) · Pr[GeoI(x ′) ∈ Z ] + δ (1)

where Pr[GeoI(x) ∈ Z ] is the probability that the perturbed
location belongs to the subset Z , and ε, δ represent the pri-
vacy preservation level of Geo-I.

ε-Geo-I [13] adapts the de facto standard privacy notion,
differential privacy [36], to protect location data, where ε is
known as the privacy budget. (ε, δ)-Geo-I relaxes the defini-
tion of ε-Geo-I by allowing a small failure probability δ. This
way of relaxation has gainedwidespread usages in (standard)
differential privacy [36].
Remark. The secure operators comply with the principles in
Sec. 4.1.1 since (1)most of themdonot involve distance oper-
ations (with the exception of secure distance comparison) and
(2) all of them have dedicated and efficient implementations
(see Sec. 5.2 for details).

4.2 Overview of our decomposition strategies

In the following, we formally define the federated spatial
queries and introduce our taxonomy to categorize them (Sec.
4.2.1). We then elaborate on the main ideas of our decompo-
sition strategies for each category (Sec. 4.2.2).

4.2.1 Federated spatial queries and taxonomy

Before diving into our decomposition strategies, we first
define the five federated spatial queries. The privacy require-
ment below includes either data privacy alone or both data
and query privacy defined in Sec. 2.1.

Definition 8 (Federated Range Query/Counting) Given a
federation F of n data silos {Fi }, and a query range R, a
federated range query retrieves all spatial objects located
withinR, while a federated range counting returns the num-
ber of such objects. Both queries need to satisfy the privacy
requirement.

Definition 9 (Federated Distance Join) Given a federation F
of n data silos {Fi }, an input dataset Q of spatial objects, and

a distance radius r , a federated distance join retrieves all pairs
of objects (q, o) where q ∈ Q, o ∈ F such that the distance
dist(lq , lo) ≤ r , while satisfying the privacy requirement,
i.e.,

Q �	r F = {(q, o) | q ∈ Q, o ∈ F,dist(lq , lo) ≤ r}.

Definition 10 (Federated kNN Query/Join) Given a federa-
tion F of n data silos {Fi }, a query object q, and a positive
integer k, a federated kNN query retrieves the k nearest
objects in F to the query object q, i.e.,

∀o ∈ kNN(q),∀o′ ∈ F \ kNN(q),dist(q, o) ≤ dist(q, o′).

When the query objects form an input dataset Q, a federated
kNN join retrieves all pairs of objects (q, o) where q ∈ Q
and o belongs to the kNN of q in F , i.e.,

Q �	kNN F = {(q, o) | q ∈ Q, o ∈ kNN(q)}.

Both queries need to satisfy the privacy requirement.

Taxonomy. The above queries can be categorized from two
orthogonal dimensions: the scope of the privacy requirement
and whether the searching radius (of the query range) is
explicitly given. Specifically, based on whether query pri-
vacy is included in the privacy requirement, the queries are
classified into asymmetric and symmetric queries (see the dif-
ferences inSec. 2.1).Basedonwhether the searching radius is
explicitly given, the queries are classified into radius-known
and radius-unknown queries. Intuitively, the federated range
query, range counting, and distance join belong to radius-
known queries, while the federated kNN query and kNN join
belong to radius-unknown queries.

4.2.2 Main idea of our decomposition strategies

Basic Principle. In Hu-Fu, the core principle of the query
rewriter is to decompose federated spatial queries into as
many plaintext operators and as few secure operators as pos-
sible such that a large portion of the query can be executed in
plaintext without compromising security. At a high level, a
federated spatial query is initially processed using plaintext
operators within each silo, and their results are then securely
assembled to form the final outcome. At the minimum, one
secure operator is compulsory, and additional secure opera-
tors may be required if there are interactions across silos.

Based on the aforementioned basic operators and tax-
onomy of queries, we now introduce the main ideas of
decomposing different categories of queries.
Main Idea for Asymmetric Queries with Data Privacy Solely.
Our idea is elaborated as follows:
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• Radius-Known Queries. A radius-known query (e.g.,
federated range query and range counting) can be decom-
posed into the corresponding plaintext operators within
each silo and only one secure operator (e.g., a secure set
union or a secure summation) for assembling the partial
results across silos.

• Radius-Unknown Queries. Each radius-unknown query
(e.g., federated kNN query) is viewed as an iterative pro-
cess of trialing different search radii until exactly k spatial
objects are found within the circular search area. This
execution can be converted into multiple radius-known
queries (e.g., federated range counting), with the number
of radius-known queries minimized by a binary search.
Each iteration utilizes a secure operator to ensure data
privacy.

Key Insight for SymmetricQueries with BothData andQuery
Privacy. When additionally considering query privacy, our
key insights are as follows:

• Radius-Known Queries. A native solution employs a
secure distance comparison operator for every spatial
object, but leads to excessive secure distance operations.
Instead, we first obfuscate the sensitive query location
using a secure location perturbation operator to create
a noised location that can be safely published to each
silo. Then, leveraging the previous idea for radius-known
queries, each silo identifies a small set of candidates. For
each candidate, a secure distance comparison operator
verifies if its distance to the query location is within the
specified radius, while protecting query privacy.

• Radius-UnknownQueries.Similar to the aforementioned
ideas for decomposing radius-unknown queries, we can
still decompose them into a series of radius-known
queries.

4.3 Decomposing asymmetric queries with data
privacy only

This subsection proposes our methods for decomposing
radius-knownqueries (Sec. 4.3.1) and radius-unknownqueries
(Sec. 4.3.2), which only consider data privacy. The decom-
position plans are summarized in Table 2.

4.3.1 Decomposing radius-known queries

Among the five queries, the federated range query, range
counting, and distance join are radius-known queries.
Decomposition Plan. (1) Federated range query can be
decomposed inton plaintext range queries, eachwith a radius
r , where each plaintext operator retrieves the partial result
within each one of the n silos. Afterwards, a secure set
union operator assembles these partial result while main-

taining data privacy. (2) Similarly, federated range counting
can be decomposed into n plaintext range counting opera-
tors to obtain n partial counts. These partial counts will later
be aggregated by a secure summation operator. (3) Feder-
ated distance join is equivalent to requesting federated range
queries |R| times, each of which follows the previous plan.
Complexity Analysis. Let TRQ and TRC denote the time
complexity of plaintext range query and range counting,
respectively. |S| denotes the size of returned set. Based on
the complexities of secure operators (see Sec. 5.2), the time
complexity and communication cost of the radius-known
queries are as follows. (1) Federated range query takes
O(TRQ + n + |S|) time and O(n + |S|) communication cost.
(2) Federated range counting takes O(TRC + n3) time and
O(n2) communication cost. (3)Federated distance join takes
O(|R| · TRQ + n + |S|) time and O(n + |S|) communication
cost.

4.3.2 Decomposing radius-unknown queries

Federated kNN query and kNN join are classified as radius-
unknown queries due to the absence of an explicitly given
range. Their decomposition plan is to first get an appropriate
range and then filter the points in the range, as explained in
detail below.
Decomposition Plan. Similar to the relation between feder-
ated range query and federated distance join in Sec. 4.3.1,
federated kNN join can be viewed as |R| independent fed-
erated kNN queries. Hence, we mainly explain how to
decompose a federated kNN query.

• Basic Idea. Recall from Sec. 4.2, the strategy to decom-
pose radius-unknown queries is to convert them into
multiple rounds of radius-known queries. We first derive
a radius r via a binary search and then retrieve the spa-
tial objects within this search range. For each radius r ,
we securely check whether the counting result is smaller
than k. As long as r falls between the kth and the (k+1)th
nearest distance to the query object q, the spatial objects
within this range are precisely the k nearest neighbors.

• Algorithm Details. Alg. 1 illustrates the decomposition
of a federated kNN query. Lines 1-8 derive the radius r .
We initialize a lower bound (l = 0) and upper bound
(u = U ) of the radius, where U can be set as the spatial
area’s diameter or a user-defined value. A binary search is
then performed to find the appropriate radius until reach-
ing the distance precision ε0 (lines 2-9). In each iteration,
r is set to (l + u)/2. For each r , a plaintext range count-
ing operator is executed within each silo, and a secure
count comparison operator is invoked to compare the
total count with the integer k (lines 4-5). If the total count
is less than k (i.e., sign < 0), indicating an undersized
radius, l will be increased to r . Conversely, if the total
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Table 2 The number of basic operators in the decomposition plans of asymmetric federated spatial queries

Category Federated spatial query #(Plaintext operator) #(Secure operator)
Range query Range counting Count comparison Set union/Summation

Radius-known Range query n 0 0 1/0

Range counting 0 n 0 0/1

Distance join n|R| 0 0 |R|/0
Radius-unknown kNN query n O(n logU ) O(logU ) 1/0

kNN join n|R| O(n|R| logU ) O(|R| logU ) |R|/0
Radius-known queries only involve one type of secure operators (secure summation or set union). Radius-unknown queries are executed in multiple
rounds which additionally require secure count comparisons to ensure security. n is the number of silos, R is the input dataset in spatial joins, and
U is the upper bound for the binary-search radius

count exceeds k (i.e., sign > 0), u will be decreased
to r . The binary search ensures that the final radius r is
sufficiently close to the kth nearest distance. Finally, a
plaintext range query is executed on each silo, and the
partial results are collected using a secure set union (lines
9-10).

In Alg. 1, the distance precision ε0 is initially set based
on the application requirement. For example, many spatial
applications (e.g., taxi-calling) have aminimumdistance pre-
cision requirement that is typicallymeasured inmeters. Then,
ε0 can be set to 1 meter.
Complexity Analysis.Alg. 1 requires O(log U

ε0
) = O(logU )

iterations to obtain the final radius, where ε0 is a constant to
denote this radius’s precision. In each iteration, the plaintext
range counting takes O(TRC) time, and the secure count com-
parison takes O(n) time and O(n2) communication cost. In
lines 9-10, Alg. 1 performs a plaintext range query that takes
O(TRQ) time and a secure set union that takes O(n + k)
time and O(n + k) communication cost. Overall, the total
time complexity is O((TRC + n) · logU + TRQ + k), and
the communication cost is O(n2 · logU + k). Intuitively, the
complexity of federated kNN join is equal to that of federated
kNN query, multiplied by a factor |R|.
Example 3 Figure 4 illustrates the procedure of Alg. 1 with
a query point (4, 4) and k = 3 over 3 silos, where the
objects with the same color belong to the same silo. The
query rewriter decomposes this query into multiple rounds
of radius-known queries. In the 1st round, a plaintext range
counting with center (4, 4) and radius 4 is sent to each silo
and a secure count comparison with k is performed across
silos. And we get 10 objects, which is greater than k. Hence
in the 2nd round, the radius decreases to 2 and is sent to each
silo for plaintext range counting and secure count compari-
son. There are 2 objects, which is fewer than k. Thus, in the
3rd round, the radius increases to 3, and the procedure con-
tinues, where the secure count comparison results implies
that sign = 0 and the search terminates. Finally, the basic
operators, including the plaintext range query with the cen-

Algorithm 1: Asymmetric federated kNN query

Input: federation F , query object q, integer k
Output: the (exact) query answer ans

1 [l, u] ← [0,U ], where U is a predefined upper bound;
2 while u − l ≥ ε0 do
3 r ← (l + u)/2, R ← circle(q, r);
4 foreach silo Fi ∈ F do // perform in parallel
5 vi ← plaintext range counting RC(Fi ,R);

6 sign ← secure count comparison CMP({vi }, k);
7 if sign < 0 then l ← r ;
8 else if sign > 0 then u ← r ;
9 else break;

10 foreach silo Fi ∈ F do // perform in parallel
11 Si ← plaintext range query RQ(Fi , circle(q, r));

12 return ans ← secure set union SUN(S1, · · · , Sn);

ter (4, 4) and radius 3 and secure set union, are performed to
retrieve the 3 query answers.

Optimization via Differential Privacy.We exploit differential
privacy [36] to further accelerate federated kNN query and
federated kNN join from two aspects.

• Tighten Predefined Upper Bound. We ask each Fi to
perform a plaintext kNN query operator and return the
kth object’s distance Ui to the query point . Since
directly returning such values may violate the data pri-
vacy requirement, we apply the truncated Laplacian
mechanism [15] on it. That is, let each silo add a positive
noise and obtain the perturbed value Ũi . We can tighten
the upper bound as the shortest distance in all silos, i.e.,
U = min{Ũi }, since there must be at least k objects in
this range.

• Reduce Running Time and Communication Cost in
Secure Count Comparison. The secure count compari-
son in Alg. 1 compares

∑n
1 vi with k, resulting in O(n2)

running time and communication cost. However, when∑n
1 vi differs significantly from k, this can be reduced to

O(n) by using the Laplacianmechanism [36] in differen-
tial privacy. This mechanism injects a noise into the local
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Fig. 4 Running example for (asymmetric) federated kNN query (k = 3)

Algorithm 2: Symmetric federated range query

Input: federation F , query object q, radius r
Output: the (exact) query answer ans

1 q ′ ← secure location perturbation GeoI(q);
2 r ′ ← r + dist(lq , lq ′ ), range R′ ← circle(q ′, r ′);
3 foreach silo Fi ∈ F do // perform in parallel
4 Candi ← plaintext range query RQ(Fi ,R′)
5 for silo Fi ∈ F do // perform in parallel
6 foreach candidate spatial object o ∈ Candi do
7 sign ← secure distance comparison DCMP(lq , lo, r);
8 if sign ≤ 0 then ans ← ans ∪ {o}

count in each silo, and then perturbed counts are aggre-
gated in plaintext. If the perturbed total count is much
smaller or larger than k, we directly adjust the threshold
without running the secure operator.

4.4 Decomposing symmetric queries with both data
privacy and query privacy

This subsection presents our methods for decomposing
radius-knownqueries (Sec. 4.4.1) and radius-unknownqueries
(Sec. 4.4.2) with both data and query privacy. The decompo-
sition plans are summarized in Table 3.

4.4.1 Decomposing radius-known queries

Since query locationmust be protected in symmetric queries,
radius-known queries can no longer be decomposed into
plaintext range query/counting within each silo directly.
Instead, we use the Geo-I mechanism [13, 54] to preserve
the query privacy, as detailed below.
Decomposition Plan for Federated Range Query. Alg. 2
presents the decomposition plan for federated range queries.
Initially, a secure location perturbation operator is applied
to generate an obfuscated object q ′. Next, the search radius
is increased by the distance from location lq to lq ′ (line 2).
This ensures that the expanded query range, denoted by a

circle centered at q ′ with a radius r ′ = r +dist(lq , lq ′), com-
pletely covers the intended query area. Within each silo, a
plaintext range query is then performed using the expanded
query range (line 3). As a result, each silo obtains a set of
candidates for the query answer. To refine these candidates,
secure distance comparison operators are employed to filter
out those outside the true query range and collect the final
answer while satisfying both data privacy and query privacy
(lines 4-7).

Example 4 Figure 5 presents an illustrative example for Alg.
2. Suppose the query object q is located at (2.5, 2.5) and
the radius r of the circular query range is 1.6. By using
the secure location perturbation operator, q is obfuscated
into q ′ located at (4, 4), so the radius r ′ is increased to
1.6 + √

(2.5 − 4)2 + (2.5 − 4)2 = 3.7 (lines 1-2 of Alg.
2). After executing the plaintext range query operator with
the expanded query range, we identify 3, 2, and 5 candidates
(marked in different colors) in all three silos (line 3). Finally,
each candidate is further refined by the secure distance com-
parison operator.

Extension to Other Radius-Known Queries. The decompo-
sition plan for federated range counting is almost identical
to Alg. 2. The key difference lies in line 7, where federated
range counting only needs to aggregate the counts. When
dealing with federated distance join, it is initially converted
into a series of (symmetric) federated range queries. Subse-
quently, each federated range query is decomposed by Alg.
2.

4.4.2 Decomposing radius-unknown queries

Similar to the binary search procedure in Alg. 1, a symmet-
ric federated kNN query can be broken down into multiple
rounds of (symmetric) radius-known queries. Besides, fed-
erated kNN join can still be decomposed into a series of
independent federated kNN queries. Thus, we focus primar-
ily on the necessary modifications for federated kNN queries
in the following.
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Table 3 The number of basic operators in the decomposition plans of symmetric federated spatial queries

Category Federated spatial query #(Plaintext operator) #(Secure operator)
Range query kNN query Location perturbation Distance comparison Set Union

Radius-known Range query n 0 1 |Cand| 1

Range counting n 0 1 |Cand| 0

Distance join n|R| 0 |R| |R| · |Cand| |R|
Radius-unknown kNN query O(n logU ) n 1 + n O(|Cand| logU ) 1

kNN join O(n|R| logU ) n|R| (1 + n)|R| O(|Cand| logU · |R|) |R|
n is the number of silos, |R| is the size of the input dataset R in spatial joins, U is the upper bound for the binary-search radius, and |Cand| is the
total number of candidate objects from all data silos

Fig. 5 Examples for decomposing (symmetric) federated range query and kNN query

Naive Decomposition Plan. A naive extension of Alg. 1 can
be time-consuming due to the trivial upper bound of the
search radius. If the initial upper bound is set too high, the
decomposed radius-known queries will require a large num-
ber of secure distance operations, which becomes the major
efficiency bottleneck.
Optimized Decomposition Plan. To overcome the limitation
of the naive method, we devise Alg. 3 to compute a tighter
upper bound based on the perturbed location. Specifically,
line 1 perturbs the query object q into q ′ privately. In line 2,
plaintext kNN query is performed in each silo to identify the
k nearest neighbors to q ′. However, we cannot send the kth
nearest distances to the user’s client as the upper bound, since
it leaks information about locations in the data silos. Instead,
each silo obfuscates the kth nearest neighbor oi ∈ NNi into
a noised spatial object o′

i (lines 3-4). In line 5, each silo
locally computes its own upper bound Ui and sends it to the
user’s client. Finally, the upper bound can be safely set as the
minimum value among {Ui } (line 6).
Example 5 Figure 5 illustrates Alg. 3. In line 1, the query
object q located at (2.5, 2.5) is perturbed into the object q ′
located at (4, 4). Each silo then performs a plaintext kNN
query with k = 2 on q ′. The top-2 nearest neighbors in three
silos are denotedby NN1-NN3,whereoi is the farthest object
to q ′ within NNi . For example, the object o1 at (2, 4) has a
distance of 2 to q ′. However, revealing this distance directly

Algorithm 3: Compute tight upper bound for optimizing sym-

metric federated kNN query

Input: federation F , query object q, integer k
Output: the upper bound U for binary-search radius

1 q ′ ← secure location perturbation GeoI(q);
2 foreach silo Fi ∈ F do // perform in parallel
3 NNi ← plaintext kNN query kNN(Fi , q ′, k)
4 oi ← argmaxo∈NNi {dist(lo, lq ′ )};
5 o′

i ← secure location perturbation GeoI(oi );
6 Ui ← dist(lq ′ , lo′

i
) + dist(lo′

i
, loi );

7 return U ← dist(lq , lq ′ ) + min{Ui | i = 1, · · · , n};

may leak spatial information about o1. Instead, Alg. 3 lever-
ages a secure location perturbation operator to obfuscate o1
to o′

1 located at (0, 6). Similarly, o2 and o3 are perturbed to
o′
2 and o

′
3, respectively. Based on the Euclidean distances, we

haveU1 = 7.30,U2 = 5.16, andU3 = 5.24 (line 5). Finally,
we pick the minimum from {Ui } and derive the tight upper
bound U = 5.16 + 2.12 = 7.28.

The correctness of Alg. 3 is proved in Lemma 1.

Lemma 1 The upper bound U in Alg. 3 is no shorter than
the kth nearest distance to the query object q in the data
federation F.
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Proof Let d∗ denote the kth nearest distance to q, so d∗
should satisfy the following inequality:

d∗ ≤ max{dist(lq , lo) | o ∈ NNi },∀i ∈ [1, n] (2)

According to the triangle inequality, we have

dist(lq , lo) ≤ dist(lq , lq ′) + dist(lq ′, lo) (3)

Based on (2) and (3), we can derive that

d∗ ≤ dist(lq , lq ′)+max{dist(lq ′, lo) | o ∈ NNi },∀i ∈ [1, n]

Since max{dist(lq ′, lo) | o ∈ NNi } = dist(lq ′ , loi ) based on
the line 3 of Alg. 3, we have

d∗ ≤ dist(lq , lq ′) + dist(lq ′, loi ),∀i ∈ [1, n]

Based on the triangle inequality for dist(lq ′, loi ) and the def-
inition of Ui in line 5 of Alg. 3, we have

d∗ ≤ dist(lq , lq ′) + (
dist(lq ′ , lo′

i
) + dist(lo′

i
, loi )

)

≤ dist(lq , lq ′) +Ui (4)

According to the inequality in (4) and the definition of U in
line 6, we can now prove d∗ ≤ U .

Remark. In Alg. 3, the k nearest neighbors NNi of the per-
turbed location q ′ are used to derive the upper bound. Notice
that {NNi } do not necessarily encompass all the query results
of the original location q. By contrast, with Lemma 1, the
federated range query/counting during the binary-search can
ensure that the candidate set includes the exact kNN of q.

4.5 Discussion

We provide further discussions on the query rewriter. Due to
the page limitation, please refer to our full paper [7] for the
security proof, algorithm details, or evaluation results related
to the following discussions.
Security of Query Rewriter. We prove the security of our
query rewriter based on the composition lemma in [29]. The
idea is to show the decomposition plans for radius-known
queries and radius-unknown queries will not reveal any extra
information other than the final result due to the usage of
secure operators. We also present a case study that proves it
is hard for a semi-honest adversary to attack Hu-Fu.
Handling Ties in kNN Queries. In federated kNN queries,
we may encounter ties where multiple spatial objects share
the same distance (i.e., the kth nearest distance r∗) to the
query object q. Here, we must resolve two technical issues:
(1) identifying the presence of ties, and (2) retrieving exactly
k nearest neighbors.

(1) Line 8 (sign = 0) ofAlg. 1 indicates the current search
radius covers exactly k objects (i.e., no ties). If sign �= 0
during the binary-search, then there are ties.

(2) Once ties are identified, we proceed to retrieve exactly
k spatial objects. Let [l, u] denote the lower and upper bounds
of r∗. First, we use a federated range query with the circular
range circle(q, l) to cache the nearest neighbors that are not
part of the ties. We denote the number of these objects as kl .
Next, we select k − kl objects from the tied ones by sequen-
tially requesting objects from all data silos until we reach
the desired count. Finally, we use a secure union operator to
collect the cached partial answers from all data silos.
Extension to Rectangular Query Range. The decomposition
plan for radius-known queries can be extended to accom-
modate rectangular-shaped of query ranges. For asymmetric
queries, the extension can be seamlessly implemented by
using plaintext range query/counting operators for rectangu-
lar query ranges, which are typically supported by spatial
database systems. For symmetric queries, where the query
object (i.e., the rectangle center) is private, our extension
proceeds as follows.Wefirst compute the rectangle’s circum-
scribed circle. Next, by querying the circumscribed circle
with lines 1-4 of Alg. 2, we identify potential candidates.
Finally, we securely verify if a candidate (x, y) lies within
the rectangle [(xL , xR), (yL , yR)] using the Yao’s garbled
circuit (GC) protocol [24] to check the inequalities x ≥ xL ,
x ≤ xR , y ≥ yL , and y ≤ yR . The Yao’s GC protocol here
can be implemented using ObliVM [38].
BeyondMainstream Spatial Queries. The query rewriter also
supports aggregation queries, e.g., the aggregate attribute
on the result of kNN query or range query. For example,
the range aggregate query can be decomposed similarly to a
federated range counting. Our solution can be also extended
to support approximate spatial queries by replacing the exact
methods for the plaintext operators with approximate ones.
While this is easy to implement, it may be hard to achieve a
good balance between efficiency and accuracy.

5 Drivers

In Hu-Fu, a driver is deployed on each data silo, consisting
of both plaintext primitives (Sec. 5.1) and secure primitives
(Sec. 5.2). Here, plaintext primitives refer to the implemen-
tations of plaintext operators that leverage the local spatial
database at each silo. Secure primitives, on the other hand,
indicate our secure protocols tailored for the secure operators
defined in Sec. 4.1.3.

Unlike existing systems [14, 50], Hu-Fu aims to sup-
port heterogeneous databases through drivers. In this way,
Hu-Fu can enhance usability and avoid costly data migration
compared to these solutions that assume local databases are
homogeneous. To achieve this, the main difficulties include
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(1) drivers must integrate with the query rewriter to convert
plaintext operators into diverse query formats used by data
silos, and (2) drivers must offer default implementations of
plaintext operators for local databases that lack support.

5.1 Plaintext primitives

Plaintext primitives implement plaintext range query, range
counting, and kNN query. They are implemented as an inter-
face on top of the underlying spatial databases for portability
and to harness existing range query and range counting
implementations.
Primitive Implementation.Theplaintext primitives are imple-
mented by the underlying spatial databases.

• For databases that support these plaintext queries, e.g.,
Simba [57] and PostGIS [10], we utilize the built-in func-
tions for these queries or generate the corresponding SQL
request. For example, in PostGIS [10], a plaintext range
counting on silo Fi with the center p and radius r of a cir-
cular range can be implemented by requesting the SQL
below.

SELECT COUNT (*) FROM Fi
WHERE ST_DWithin(p, Fi .location ,

r);

• When databases lack native support for any query, the
drivers offer a default implementation based on their sup-
ported queries and indexes. For example, GeoMesa [26]
does not inherently support range counting, so we extend
range counting by calling a range query and subsequently
counting the result size.

Time Complexity. In modern spatial databases, plaintext
range query, range counting, and kNN query can take
O(logm + |S|), O(logm), and O(logm) time [40], where
m is the data size and |S| is the output size.
Remark. In practice, the actual performance of plaintext
primitives depends on the native implementation of the local
spatial database at each silo. Thus, when silos utilize hetero-
geneous spatial databases, the efficiency of federated spatial
queries can be limited by the slowest plaintext primitive (see
Sec. 7.5).

5.2 Secure primitives

The secure primitives, including secure summation, count
comparison, set union, distance comparison, and location
perturbation, are independent of local databases.
Primitive Implementation. Each secure primitive is opti-
mized with a tailored secure protocol as follows.

Secure Summation. This primitive is based on [23]. Ini-
tially, each silo Fi holds a private value vi and all n silos

agree on n distinct public parameters {ui }. Each silo Fi then
selects a random polynomial of degree n − 1 in the form
ti (x) = (

∑n−1
k=1 aik x

k) + vi , where aik is the random coeffi-
cient independently generated by silo Fi , and vi denotes the
private value (i.e., local count) of silo Fi . These variables are
kept secret from others by silo Fi . Next, each silo Fi evalu-
ates its polynomial at the public parameters {u1, · · · , un}
and sends the resulting value ti (u j ) to every other silo
Fj . Once the silo Fj receives all values {ti (u j )|i �= j}
from the other silos, we have S(u j ) = ∑n

i=1 ti (u j ) =
(
∑n−1

k=1(u j )
k ∑n

i=1 aik)+
∑n

i=1 vi . Afterward, this silo sends
S(u j ) to the query user. The user can interpret each S(u j )

as a linear equation S(u j ) = ∑n−1
k=1(u j )

k zk + zn in n
unknown variables zk , where zk = ∑n

i=1 aik (for k < n) and
zn = ∑n

i=1 vi . Now, the user can solve the system of linear
equations using the received coefficients {u j } and constants
{S(u j )} via Gauss elimination, and obtain the unknown vari-
able zn (i.e., the sum of vi ).

Secure Count Comparison. The primitive compares the
constant k with the sum of each silo Fi ’s private range count
vi and prevents the leakage of either vi or

∑n
i=1 vi to the

silo Fj and the query user. The main idea is evaluating
X(

∑n
i=1 vi − k) rather than directly computing

∑n
i=1 vi − k

to avoid disclosing the actual sum of vi , where X is a positive
randomnumber. Next, we implement this secure primitive by
using existing secure multiplication protocol [18]. Specif-
ically, this protocol [18] assumes that two multiplicands,
X and Y , are partitioned into n shares xi and yi , where
X = ∑n

i=1 xi and Y = ∑n
i=1 yi . Each silo Fi holds the

corresponding shares xi and yi , where xi is randomly gener-
ated by this silo and yi = vi − k

n . Together, the multiplication
XY happens to be (

∑n
i=1 xi )(

∑n
i=1 vi −k). Finally, the com-

parison result is inferred from the sign of XY .
Secure Set Union. We implement this primitive based on

the two-phase union method in [32] with additional opti-
mizations. In the first phase, each silo appends its results
into a global set, along with some fake records. Then, in
the second phase, these fake records are removed from the
set. To reduce the communication cost, the number of fake
records shouldbe as fewaspossible. Thus,weuse theLaplace
mechanism [36] in differential privacy to control the num-
ber of fake records. Moreover, by splitting the global set into
batches, parallel executions are enabled for each silo to inde-
pendently append and remove fake records from each batch,
thereby resulting in a shorter latency.

Secure Distance Comparison. We leverage fully homo-
morphic encryption (FHE), the BGV scheme [12], to imple-
ment this primitive in three key steps.

(1) Encrypt User’s Data: the query user encrypts their
location (xq , yq) and the threshold r using the public key, i.e.,
E(xq), E(yq), E(r), where E(·) is the encryption function.
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The encrypted data and public key are then sent to the data
silo.

(2) Compute Garbled Distance Difference: by using
FHE, the data silo computes the encrypted difference E(�)
between the square of distance dist(lq , lo) and square of
threshold r as follows:

� = dist(lq , lo)2 − r2 = (xq − xo)
2 + (yq − yo)

2 − r2

E(�) = (E(xq ) − E(xo))
2 + (E(yq ) − E(yo))

2 − E(r)2

To further obfuscate the value of E(�), the silo applies a ran-
dom polynomial function f (·) that only has odd powers and
positive coefficients in each term, The obfuscation here pre-
vents the user from inferring the exact distance dist(lq , lo)
after decryption, thereby protecting the silo’s location pri-
vacy.

(3) Decrypt: upon receiving f (E(�)) from the silo, the
user decrypts it with the secret key and obtains f (�). The
final result is derived based on the sign of f (�) without
knowing the exact value of �.

Secure Location Perturbation. We implement this primi-
tive based on the BPL mechanism in [54]. This mechanism
obfuscates the original location (x, y) in the polar coordinate
system. The polar angle θ is uniformly sampled from [0, 2π ].
The polar radius r is sampled based on the −1 branch of the
LambertW function. If the sampled radius r is too long, itwill
be truncated into a random value in [0, R], where R is a safe
upper bound of radius based on the privacy parameters ε, δ.
The resulting perturbed locations are (x+r cos θ, y+r sin θ).
Complexity Analysis. The secure summation takes O(n3)
time and O(n2) communication cost. The secure count com-
parison requires O(n) time and O(n2) communication cost.
The time complexity and communication cost of secure set
union are O(n+|S|), where |S| is the output size. The secure
distance comparison (between two parties) takes O(1) time
and communication cost, since the complexity of the BGV
scheme [12] used for this primitive primarily depends on
constant security parameters. The time complexity and com-
munication cost of secure location perturbation are also
O(1) due to the usage of differential privacy mechanism.

6 Query interface

For easy usability, the query interface of Hu-Fu offers a uni-
fied federation view to users (Sec. 6.1) and supports federated
spatial queries in SQL (Sec. 6.2).

6.1 Unified federation view

Hu-Fu’s query interface provides a federation view to users,
while the detailed informationof silos is hidden.This not only
enables users to send queries without caring about the silo
organization, but also protects the data privacy of individual
silos.

We implement this unified federation view by extending
the schema manager of Calcite [19], a popular query pro-
cessing framework. In Calcite’s schema manager, each table
is independent and indivisible. We treat silos as an abstrac-
tion layer below the table of schema manager. This means
each table comprises multiple silo objects, and each object
records the identity information of its silo. The silo identities
are used when executing secure primitives. Specifically, the
query rewriter will attach the identity information of all silo-
level tables in the table of schemamanager when distributing
secure operators. Each silo only executes the corresponding
secure primitives if the attached identity informationmatches
the one locally stored.

6.2 Federated spatial queries in SQL

Based on the unified federation view, Hu-Fu query interface
supports federated spatial queries in SQL by extending the
SQL parser of Calcite with four keywords: DWithin, kNN,
Private_DWithin, and Private_kNN. The first two
keywords are used in asymmetric queries, and the last two
are used in symmetric queries.

For example, an asymmetric federated range counting on
a circular range centered at the point p with radius r can be
expressed in SQL as

SELECT COUNT (*) FROM F
WHERE DWithin(p, F.location , r)

The WHERE clause checks whether the distance from
p to an object in F is shorter than r . Similarly, an asymmetric
federated kNN join on a relation R and federation F can be
written in SQL as

SELECT R.id , F.id
FROM R JOIN F
ON kNN(R.location , F.location , k)

The WHERE clause indicates whether a spatial object in F
belongs to the kNN set of the query point o ∈ R.

In contrast, when locations in both R and F need protec-
tion, a symmetric federated kNN join in SQL is

SELECT R.id , F.id FROM R JOIN F
ON Private_kNN(R.location ,F.location , k)

s queries can be written as SQL similarly with these four
keywords.

7 Evaluation

In this section, we first introduce the experimental setup (Sec.
7.1), and then present the overall performances of asym-
metric queries (Sec. 7.2) and symmetric queries (Sec. 7.3),
scalability tests (Sec. 7.4), and results with heterogeneous
spatial databases across silos (Sec. 7.5).
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7.1 Experimental setup

Datasets. Experiments are conducted on two datasets, with
each object having a location and unique ID.

• Multi-companySpatialData inBeijing (BJ).This dataset1

was collected by 10 companies in Beijing, in June 2019,
which has 1, 029, 081 spatial objects in total. The loca-
tions of these objects fall into an area from 39.5◦N
∼ 42.0◦N and 115.5◦E ∼ 117.2◦E. We use the dataset
to simulate a real-world federation, where each company
can be naturally regarded as a silo. During the evaluation,
we vary the silo number n and queries without altering
the spatial object distributions across silos.

• OpenStreetMap (OSM). This is a popular open dataset
to evaluate spatial queries. We mainly use this dataset
in the scalability test, where we sample 104-109 spatial
objects from the Asia dataset in the OpenStreetMap [9].
Specifically, to simulate the spatial overlaps as in the BJ
dataset, we assign a random silo ID for each point in the
dataset and make each silo have the same number of data
points.

General-Purpose Baselines. As a data federation system,
the evaluation first aims to compare Hu-Fu with existing
general-purpose data federation systems: the GIS extensions
of SMCQL [14] and Conclave [50].

• SMCQL-GIS. It adopts the principles of SMCQL [14],
a garbled circuit (GC) based solution for relational
data, to support spatial queries. We implement it with
ObliVM [38], which is used in SMCQL for GC protocols
across two silos (only) [50, 53]. Thus, it is only evaluated
over two data silos.

• Conclave-GIS. It adopts the principles of Conclave [50],
the secret sharing (SS) based solution for relational data,
to support spatial queries. It is implemented with a
different SS based library, MP-SPDZ [33], rather than
Sharemind [18] in the original Conclave, since Share-
mind is devised for only three silos [24] and it is a
commercial library. In contrast, MP-SPDZ is a popular
open-source library that supports more than three silos
based on SS.

• SMCQL-GISext & Conclave-GISext are their variants
without assuming an honest broker, and uses our secure
set union to assemble results.

These secure baselines implement federated spatial queries
by exploiting similar queries for relational data in SMCQLor

1 https://share.weiyun.com/z4QfVhVv

Conclave. Our extensions follow the strategy of having plain-
text spatial queries within each silo’s database and securely
computing the final results. Specifically, for federated range
query, these baselines execute plaintext range query in each
silo and collect the partial results by either the honest bro-
ker or our secure set union. For federated range counting,
they execute plaintext range counting and use secure sum-
mation to compute the final result. For federated kNN query,
we regard it as a top-k query with a user-defined function
(UDF). For example, each silo runs plaintext kNN query to
compute k candidate neighbors along with their distances to
the query object. Then, all n silos securely find the k near-
est neighbors among nk candidates. For federated distance
join/kNN join, we refer to their query plans for join queries
and regard a federated distance/kNN join as multiple feder-
ated range/kNN queries.
Specialized Baselines. Beyond these general-purpose data
federation systems, the evaluation also compares Hu-Fuwith
the following specialized baselines.

• Additional Baselines for Asymmetric Queries. The plain-
text baseline Public directly collects local results from
each silo without any secure operation, and serves as the
upper bound of query efficiency.

• Additional Baselines for Symmetric Queries. We con-
sider two more baselines for symmetric queries: LFHE
[34] and PINED-RQ++ [43]. LFHE [34] is an indus-
trial solution that utilizes Leveled Fully Homomorphic
Encryption (LFHE) and two mutually untrusted servers
to securely answer (exact) kNN queries over multiple
data silos. This solution can be easily extended to sup-
port secure range query and counting over a spatial data
federation. By contrast, PINED-RQ++ [43] leverages a
differentially private index (e.g., grid index for spatial
data) and AES encryption [29] to approximately answer
range queries with small errors. However, this method
assumes that the user has access to data objects outside
the query answer, potentially violating the data privacy
requirement. Nevertheless, we select PINED-RQ++ [43]
as a baseline for comparison, since it also utilizes differ-
ential privacy for filtering before verifying each candidate
through encryption.

Metrics.We assess the query efficiency by two metrics:
(1) Running time is the time cost from receiving the query

to returning the query answer to the user.
(2) Communication cost is the total network communica-

tion among the user and all data silos.
Implementation. We use PostgreSQL 10.15 with PostGIS
extension as the default spatial database for all silos. To show
the support of heterogeneous spatial data systems by Hu-Fu,
we also use MySQL 5.7 [8], SpatiaLite [11], GeoMesa
3.0.0 [26], Simba 1.0 [57], and SpatialHadoop 2.4.3 [21] as
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Fig. 6 Performance of federated kNN query

different silos, as will be explained in Sec. 7.5. They all use
spatial indexes (R-Tree in PostGIS, Simba, SpatialHadoop,
and MySQL, and R*-Tree in SpatiaLite, and Z-Curve in
GeoMesa) to speed up plaintext primitives by up to 2042×
(see our full paper [7]). Among the compared solutions,
LFHE and PINED-RQ++ are implemented in C++, while the
others are implemented in Java. The reason for using C++
for LFHE and PINED-RQ++ is due to the lack of robust
and open-source libraries in Java for the encryption methods
(e.g., CKKS [12]) they utilize.

7.2 Experiments on asymmetric queries

Parameter Setting. In this experiment, we compare the effi-
ciency of different methods for all five federated spatial
queries on the real dataset BJ. All the query points are ran-
domly sampled from the dataset. We vary the number of
silos from 2 to 10, and also test the impact of query-specific
parameters.We set k to 16 for federated kNN query and kNN
join, and the default query area of federated range query,
range counting and distance join as 0.001%, and vary them
from 4 to 64 and 0.00001% to 0.1% respectively. The range
of these query-specific parameters is aligned with previous
study [57]. When evaluating the query-specific parameters,
we use 6 silos by default.
Environment. We run this experiment on a cluster of 11
machines. Eachmachine has 32 Intel(R) Xeon(R) Gold 5118
2.30GHz processors and 64GB memory with Ubuntu 18.04
LTS. The network bandwidth between machines is up to 10
GB/s. Among the 11 machines, one is as the user and the
honest broker for SMCQL-GIS and Conclave-GIS, and the
other 10 are data silos.

Table 4 Improvement with DP in federated kNN

Silo number 2 4 6 8 10

Running time 2.9% 10.3% 19.6% 16.2% 14.0%

Communication 32.6% 31.5% 27.4% 39.4% 47.7%

7.2.1 Performance of federated kNN query

Figure 2 shows the runtime and communication cost of
(asymmetric) federated kNN query. Hu-Fu is 109.6× to
7, 198.8× faster than SMCQL-GIS and Conclave-GIS, and
has 2 to 5 orders of magnitude lower communication cost.
When the number of silos increases from 2 to 10, the run-
time and communication cost of Hu-Fu only increase by
up to 2.9× and 13.9×, while those of Conclave-GIS drasti-
cally increase by up to 153.3× and 1, 884.3×. Both metrics
of Hu-Fu increase since the secure comparison and set
union used in this query grow linearly with the silo number.
Compare with Conclave-GIS and SMCQL-GIS, the runtime
and communication cost of Conclave-GISext and SMCQL-
GISext marginally increase (less than 20 ms and 200 KB
respectively), which shows that our secure set union can effi-
ciently assemble query results without an honest broker.

We also vary k from 4 to 64 and plot the running time
and communication cost in Fig. 6b. As k increases from 4 to
64, the running time and communication cost of Hu-Fu only
increase by 0.1× and 1.1×, while those of Conclave-GIS
increase by 51.3× and 50.7×. The impact of k is less obvi-
ous than the silo number on Hu-Fu, because only the secure
set union is linearly dependent on k. Again, the efficiency
of Conclave-GISext is similar to that of Conclave-GIS. The
drastic increase in running time and communication cost of
Conclave-GIS and Conclave-GISext is expected because it
involves many secure primitives that are time-consuming.

To show the improvement of DP optimization in kNN
queries, we list the percentage of running time and com-
munication cost reduced by DP in Table 4. With DP, the
running time is reduced by up to 19.6%, and the communi-
cation cost by up to 47.7%.Comparedwith the improvement,
the overheadof injecting theDPnoise is verymarginal,which
takes 2 μs time cost and less than 1 KB communication cost
when processing one federated kNN query. Such a notable
improvement is because the complexity of DP noise injection
is O(1) and the summation only requires for transmission of
n integers, while a secure comparison has O(n) time com-
plexity and O(n2) communication cost.

7.2.2 Performance of federated kNN join

Figure 7a shows the results of (asymmetric) federated kNN
join. Results of Conclave-GIS and Conclave-GISext with 8-
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Fig. 7 Performance of federated kNN join

10 silos are omitted since they incur over 6 hours for a single
query. Hu-Fu is the most efficient, which is up to 360.2×
and 15, 814.2× faster than SMCQL-GIS and Conclave-GIS
with 247.8× and 185, 151.0× lower communication cost.
The time and communication cost of SMCQL-GISext and
Conclave-GISext slightly increase over SMCQL-GIS and
Conclave-GIS.

Figure 7b illustrates the impact of k. As k increases above
32, Conclave-GIS and Conclave-GISext require longer than
6 hours to process a federated kNN query. Thus, we can
only provide their partial results (when k ≤ 16). In contrast,
Hu-Fu demonstrates superior advantages in the efficiency,
achieving at least 553× faster and 27,404× lower communi-
cation cost compared to Conclave-GIS. As k increases from
4 to 64, the running time and communication cost of Hu-Fu
rise by 28% and 48% respectively. The experimental trends
for the federated kNN join closely resemble those observed
in the federated kNN query, since a federated kNN join is
decomposed into multiple federated kNN queries for all the
compared solutions.

7.2.3 Performance of federated range counting

Figure 8 shows the results of (asymmetric) federated range
counting. This query only returns the counting result and thus
does not need a secure set union to protect data ownership.
Hence, we exclude SMCQL-GISext and Conclave-GISext
since they only differ from SMCQL-GIS and Conclave-
GIS with an extra secure set union, which is unnecessary
in this query. Hu-Fu is up to 15.2× faster than SMCQL-
GIS with a slightly higher communication cost (within 7
KB). Considering the increasing network bandwidth, the
gap in communication cost is acceptable. Compared with
Conclave-GIS, Hu-Fu is up to 10.8× faster with 17.9× lower
communication cost. The running time and communication

Fig. 8 Performance of federated range counting

Fig. 9 Performance of federated range query

cost of Hu-Fu increase by 0.6× and 13.2× respectively when
silo number increases to 10, mainly due to the secure sum-
mation.

We also demonstrate the impact of the query area on query
efficiency in Fig. 8b. As is shown, the running time of all
methods is relatively stable. It is expected because secure
operations are the bottleneck of running time whereas the
larger query area only increases the running time of plaintext
operations.

7.2.4 Performance of federated range query

Figure 9 illustrates the results of (asymmetric) federated
range query. The efficiency of SMCQL-GIS and Conclave-
GIS is the same as Public (i.e., the non-secure baseline),
because they both rely on an honest broker to securely col-
lect partial answers in each silo without leaking them to any
others. Under this assumption, all systems can be reduced
to Public, which uses a server (e.g., an honest broker in
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Fig. 10 Performance of federated distance join

SMCQL-GIS and a center server in Public) to directly collect
local range query result from each silo. For example, Hu-Fu
with an honest broker also has the same efficiency as Public
(see our full paper [7]).

Under a more general setting without this assumption,
Hu-Fu, SMCQL-GISext andConclave-GISext have the same
efficiency because they all use our secure set union for results
assembling. The usage of secure set union only leads to a
marginal increase in running time (within 250 ms) and com-
munication cost (lower than 3.1 MB) over Public. Note that
the order of increase in running time and communication cost
matches the complexity analysis for the secure set union in
Sec. 5.2, which grows linearly with the silo number and the
size of data returned. As shown in Fig. 9b, when the query
area expands, all methods have a higher running time and
communication cost, due to the increase of the number of
spatial objects in the final result.

7.2.5 Performance of federated distance join

Figure 10 presents the performance of (asymmetric) fed-
erated distance join. Note that all the methods treat feder-
ated distance join as multiple independent federated range
queries, where the total number of these range queries is
|R| = 100 in this test. Thus, it is reasonable that the rank-
ing of all the methods is similar to that in federated range
query (see Fig. 9). The result of federated distance join when
varying the query area shows a similar pattern with that of
federated range query. This is because a federated distance
join is decomposed into multiple federated range queries for
all the compared solutions. The increase of both running time
and communication cost is caused by the increase of the num-
ber of retrieved spatial objects.

7.2.6 Summary of major findings

We have observed the following findings in the experiments
of asymmetric queries.

• Hu-Fu is up to 15, 814.2× faster than SMCQL-GIS and
Conclave-GIS, with up to 5 orders of magnitude lower
communication cost. The efficiency gain of Hu-Fu over
the baselines is more notable in federated kNN query,
kNN join, and range counting, which is at least 2.4×
faster in time cost and 4.9× lower in communication cost
than Conclave-GIS.

• SMCQL-GIS and Conclave-GIS are more efficient in
federated range query and distance join, because these
baselines are reduced to Public and need no secure oper-
ation with the honest broker. Note that for federated
range query and distance join, Hu-Fu achieves the same
efficiency as SMCQL-GISext and Conclave-GISext, the
variants of SMCQL-GIS and Conclave-GIS without an
honest broker.

• The experimental trends of federated kNN join and dis-
tance join are similar to those of federated kNN query
and range query for all compared solutions. This is rea-
sonable since a federated kNN join or distance join is
decomposed into a series of federated kNN queries or
range queries.

7.3 Experiments on symmetric queries

Parameter Setting. The parameter configurations for the
query workloads are identical to those introduced in Sec-
tion 7.2. Beyond these parameters, the privacy budget ε also
affects the query performance of Hu-Fu. In general, a smaller
ε (i.e., stricter privacy preservation) leads to lower efficiency
than a larger ε. Please refer to our full paper [7] for the evalua-
tion of varying ε inHu-Fu.Moreover, due to page limitations,
we have omitted reporting the results of the federated kNN
join. However, the query efficiency of Hu-Fu’s federated
kNN join can be inferred from the results of its federated kNN
query, as evidenced by previous experiments. We also omit
the results of SMCQL-GIS, SMCQL-GISext, and Conclave-
GISext, since their results are similar to Conclave-GIS when
answering symmetric queries. Additional baselines, LFHE
[34] and PINED-RQ++ [43], are involved in this experiment,
where PINED-RQ++ is limited to federated range query and
distance join.
Environment. Due to the expired funding support, the hard-
ware environment for testing asymmetric queries is no longer
accessible, so all solutions to symmetric queries are tested in
a new hardware environment. Specifically, this new environ-
ment is composed of 5 cloud servers. Each server has Intel
Xeon(R) Platinum 8361HC CPU 2.60GHZ processors and
32GB memory with Ubuntu 18.04 LTS OS. The network
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Fig. 11 Performance of federated range counting

bandwidth between servers is up to 1.5 GB/s and may fluctu-
ate slightly at different times. Four of the five servers act as
data silos. Since this experiment requires up to 10 data silos,
each of these four servers can host up to 3 data silos using
different processes. The remaining server is only used as the
user’s client, facilitating parallel data transmission between
data silos for compare solutions. For each query type,we gen-
erate 50 queries, repeat 10 times for each query, and report
the average results.

7.3.1 Performance of federated range counting

Figure 11 shows the results of (symmetric) federated range
counting. Hu-Fu always outperforms the compared baselines
in both running time and communication cost. Hu-Fu takes
up to 98.9× shorter runtime and up to 410.7× lower commu-
nication cost than Conclave-GIS. Hu-Fu is also up to 56.6×
faster with up to 2.7× lower communication cost compared
to LFHE.

We can also observe that as the silo number increases
from 2 to 10, the running time and communication cost of all
compared algorithms tend to increase. This pattern is reason-
able, as more data silos require more secure computations
among them. When the query area expands from small to
large, the runtime and communication overhead of Hu-Fu
increase slightly. This trend in Hu-Fu is attributable to the
increase of candidates for secure distance comparisons.

7.3.2 Performance of federated range query

Figure 12 illustrates the performance of (symmetric) fed-
erated range queries. The results of LFHE are not reported
because the running time is over 1 hour and the memory con-
sumption exceeds the server configuration (32 GB). In fact,
LFHE can only handle a small-scale dataset. For example,
LFHE already takes 13 minutes and 3 MB of communica-
tion costwhen the data size is 104.AlthoughPINED-RQ++ is

Fig. 12 Performance of federated range query

Fig. 13 Performance of federated distance join

more efficient than Hu-Fu and Conclave-GIS, it suffers from
two major drawbacks: (1) it leaks locations of the candidate
data objects that are not part of the true answer to the query
user and (2) it is only capable of retrieving approximation
results. For example, the recall of PINED-RQ++ is 72.8%-
96.8%when varying the silo number and 72.2%-92.3%when
varying the query area.

Aside from PINED-RQ++, Hu-Fu achieves the best per-
formance in the efficiency and security. It takes at least 42.7×
shorter time with at least 204.2× lower communication cost
compared to Conclave-GIS. Figure 12 exhibits a similar
trend in the efficiency variation of Hu-Fu when comparing
to the results in Fig. 11 (for federated range counting). This
similarity arises because the query decomposition plans for
symmetric federated range queries and counting are quite
identical. The main difference lies in the additional secure
set union operator required for federated range queries.

7.3.3 Performance of federated distance join

Figure 13 presents the performance of (symmetric) feder-
ated distance joins. Here, a symmetric federated distance join
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Fig. 14 Performance of federated kNN query

Table 5 Improvement with upper bound in Lemma 1

k 4 8 16 32 64

Running time 6.3× 4.2× 4.0× 3.6× 3.4×
Communication 5.0× 3.9× 3.6× 3.4× 3.1×

employs the same strategy as the asymmetric federated dis-
tance join, treating the join operation asmultiple independent
federated range queries, with |R| = 100. Therefore, the rel-
ative performance of all methods here is similar to that of
symmetric federated range query (see Fig. 12). Compared
with PINED-RQ++, although Hu-Fu incurs higher commu-
nication cost, it takes nearly the same amount of running time
and offers a more secure solution that produces the exact
query answer. Compared to Conclave-GIS, Hu-Fu is up to
90.7× faster and up to 332.5× lower in communication cost.
By contrast, LFHE is the least efficient method and cannot
respond to a join query within 6 hours, so we cannot report
its result in Fig. 13.

7.3.4 Performance of federated kNN query

Figure 14 shows the running time and communication cost
of (symmetric) federated kNN queries. We cannot report
some results of LFHE and Conclave-GIS because they can-
not terminate within 1 hour to process a single query or the
maximum memory usage is beyond the limitation (32 GB)
of the cloud server. Additionally, PINED-RQ++ is unable
to handle KNN queries, so it is excluded in this evaluation.
According to the experimental results, Hu-Fu is themost effi-
cient solution to federated kNN queries. For instance, Hu-Fu
is up to 551.8× faster than Conclave-GIS and 56.2× faster
than LFHE, with up to 380.0× and 3.0× lower communi-
cation overhead than them, respectively. Similar to previous
results, the time cost of Hu-Fu gradually increases as the silo
number increases. By contrast, the efficiency of Hu-Fu does
not notably change as k increases.

We also evaluate the improvement of using the upper
bound in Lemma 1. As shown in Table 5, this optimization
improves the running time by up to 6.3× and reduces the
communication cost by up to 5.0×.

7.3.5 Summary of major findings

The major findings in the experiments of symmetric queries
are summarized as follows.

• Hu-Fu is at least 42.7× faster than Conclave-GIS, with at
least 204.2× lower communication overhead. Compared
to LFHE, Hu-Fu is up to 56.6× faster with up to 3.0×
lower communication overhead.

• Although PINED-RQ++ ismore efficient than the others,
it suffers from three significant drawbacks: (1) violations
on the data privacy, (2) inability to provide exact answers,
and (3) limited support to only federated range queries.
By contrast, our Hu-Fu can address all these drawbacks
effectively.

• When comparing with the evaluations of asymmetric
queries in Sec. 7.2, it is evident that running time
and communication overhead both escalate when Hu-Fu
or Conclave-GIS processes symmetric queries. Conse-
quently, symmetric queries pose a greater challenge than
asymmetric queries, primarily due to the additional con-
cern for query privacy.

Remark. To assess the impact of query privacy on time effi-
ciency, we can compare the running time of asymmetric
and symmetric queries in the new hardware environment.
Our evaluation shows that the baseline Conclave-GIS takes
4, 054× longer to protect query privacy in federated range
queries, while our solution Hu-Fu reduces this gap to 59×.
Due to page limitations, please see our full paper [7] for
detailed results.

7.4 Experiments on scalability tests

In the following, we report the results of scalability tests on
asymmetric queries and symmetric queries in Sec. 7.4.1 and
Sec. 7.4.2, respectively.

7.4.1 Scalability test on asymmetric queries

Parameter Setting. In the following, we scale the total num-
ber of spatial objects from 104 to 109 over OSM dataset to
assess the scalability of Hu-Fu. Other parameters are set to
the default values as in Sec. 7.2. For example, the number of
silos is 6, k = 16 for federated kNN query and kNN join,
and the query area for federated range query, range count-
ing and distance join is 0.001%. Since SMCQL-GIS and
SMCQL-GISext only support two silos, they are excluded
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Fig. 15 Scalability test on asymmetric queries

in the scalability test. The running time and communication
cost on all five spatial queries are shown in Fig. 15.
Result and Analysis. For a fixed data size, we observe that
Hu-Fu is notably more efficient than Conclave-GIS and
Conclave-GISext on federated kNN query, kNN join and
range counting (see Fig. 15a-15c). For federated range query
and distance join, Conclave-GIS behaves the same as Public
due to the honest broker, while Hu-Fu achieves the same effi-
ciency as Conclave-GISext, which requires no honest broker.

We are more interested in the efficiency with the increase
of data size. We observe that the efficiency of federated
kNN query, kNN join and range counting is insensitive to
the increase of the data size. This is because the increase
of data size mainly affects the time cost of plaintext primi-

tives, which only accounts for a small portion (due to efficient
indexes in each silo) in the running time. In contrast, the run-
ning time and communication cost of federated range query
and distance join notably increase with the increase of the
data size because more spatial objects are retrieved in each
silo, which leads to a higher cost for both plaintext range
query and secure set union.
Takeaways. Hu-Fu trivially scales with data size for feder-
ated kNN query, kNN join and range counting, because these
queries are relatively insensitive to data size. Both metrics of
Hu-Fu increase with the data size for federated range query
and distance join, yet Hu-Fu is still reasonably efficient for
them on large-scale data. For example, in Hu-Fu, an asym-
metric federated range query takes 250 ms running time and
2.6 MB communication cost on the data size of 109.

7.4.2 Scalability test on symmetric queries

Parameter Setting.As for symmetric queries, we evaluate the
scalability of Hu-Fu by scaling the OSM dataset, gradually
increasing the total number of spatial objects from 104 to
108. The baseline selection here is identical to that in Sec.
7.3. Although we omit the results of spatial joins due to page
limitations, the scalability of the federated distance join and
kNN join can be inferred from the scalability of the federated
range query and kNN query, as demonstrated in the previous
experiments in Sec. 7.2 and Sec. 7.3.
Result and Analysis. As shown in Fig. 16, for any data size,
Hu-Fu significantly outperforms Conclave-GIS and LFHE in
both running time and communication overhead for all the
tested queries. For example, in Fig. 16a, Hu-Fu is at least
54.8× and 1375.7× faster than Conclave-GIS and LFHE,
respectively. Neither Conclave-GIS nor LFHE can efficiently
process these queries over large-scale datasets (e.g., when the
data size is over 106). After running for more than 6 hours,
neither of them have terminated, so we are unable to obtain
their full results. Moreover, when processing symmetric fed-
erated range queries, both Conclave-GIS and LFHE take at
least 2 orders of magnitude higher communication cost than
Hu-Fu.

By contrast, PINED-RQ++ is slightly faster than Hu-Fu
(no more than 2.8×) and has lower communication overhead
in Fig. 16b. However, since PINED-RQ++ may violate the
data privacy during the query processing and can only obtain
approximate results, the performance gap is acceptable. For
instance, the recall of PINED-RQ++ can be lower than 80%,
and such a low recall may lead to an unsatisfying service
experience in our motivation scenarios like contact tracing,
where accurate results are crucial.
Takeaways. Unlike the scalability tests for asymmetric
queries, the efficiency of symmetric federated range query,
range counting, and kNN query is highly sensitive to the data
size. Specifically, when processing asymmetric queries, all
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Fig. 16 Scalability test on symmetric queries

compared solutions leverage plaintext operators to filtermost
of the data objects. For example, a plaintext range query can
ensure no false positive candidate for asymmetric federated
range queries, while a plaintext kNN query results in only
k false positive candidates for asymmetric federated kNN
queries. Consequently, the number of false positive candi-
dates is (almost) independent of data size.

However, when processing symmetric queries that require
additional protections for the query location, although plain-
text operators are still used to reduce the candidate size, no
solution can ensure a constant number of false positive can-
didates. Even in our Hu-Fu, the number of candidate objects
awaiting secure verification after filtering by plaintext oper-
ators is proportional to the data size. This contributes to the
increased time and communication overhead required to pro-
cess symmetric queries compared to asymmetric ones.

7.5 Experiments on heterogeneous data silos

This experiment aims to demonstrate the feasibility of
Hu-Fu on heterogeneous spatial databases. Specifically, we
use 6 different databases for each silo on the BJ dataset:
PostGIS [10], MySQL [8], SpatiaLite [11], Simba [57],
GeoMesa [26], and SpatialHadoop [21]. Other parameters
are set as the default values as in Sec. 7.2.

Figure 17 plots the running time breakdown i.e., plaintext
vs. secure primitives for radius-unknown (i.e., asymmetric
federated kNN query) and radius-known (i.e., asymmetric
federated range counting) queries. We make the following
observations.

Fig. 17 Running time breakdown

• Given homogeneous underlying spatial databases (i.e.,
PostGIS), our Hu-Fu significantly reduces the running
time of secure primitives e.g., 3, 935.4× compared with
Conclave-GIS for federated kNN query. Such acceler-
ation in secure primitives is the primary contributor to
Hu-Fu’s gain in running time.

• Heterogeneous underlying spatial databases affect the
running time. Specifically, the running time of plain-
text primitives is limited by the slowest spatial database,
which may increase the overall query processing time. In
this experiment, the running time of plaintext primitives
notably increases from 4 ms to 579 ms when replacing
PostGISwith heterogeneous databases (where SpatiaLite
and MySQL are the slowest). It takes even longer time
than the secure primitives in Hu-Fu. The running time of
secure primitives also marginally increases, due to idle
waiting for the local results from the slowest silo.

Takeaways. Hu-Fu functions with data silos running hetero-
geneous databases. Although Hu-Fu dramatically speeds up
the secure primitives in a federated spatial query, the effi-
ciency of plaintext primitives in each silo’s databases may
affect the overall running time. Particularly, the time cost of
plaintext primitives can be limited by the slowest database
in the federation. To unleash the full potential of Hu-Fu, fast
spatial databases in each silo are recommended.

8 Related work

Distributed spatial database systems are popular solutions to
query processing on big spatial data. These systems improve
query processing via data partition and indexing techniques
(e.g., R-tree [40]) in Hadoop (e.g., SpatialHadoop [21]) or
Spark (e.g., Simba [57]). However, the data partition tech-
niques are inapplicable in a data federation since the entire
data is held by the autonomous data silos. Moreover, security
is not the major concern in these systems.

Past studies of secure spatial query processing mainly
focus on encrypted databases [30], where data is encrypted
and stored in a third-party platform (e.g., a cloud platform) to
process queries securely. For example, existing work [22, 34,
55, 58] study the secure kNN query on encrypted databases
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and prior studies [43, 48, 52, 56] focus on securely process-
ing range queries. In these studies, a data owner outsources
its data and hence the sensitive data is encrypted before being
uploaded to a third party. Intuitively, homomorphic encryp-
tion techniques (e.g., Paillier and SEAL [12]) are used to
guarantee security. Different from this setting, in a data fed-
eration, data silos autonomously manage their own data and
hence do not need to encrypt their own data and upload it
to a third party. Besides, our experiments demonstrate that
extending these solutions [34, 43] to the scenario of the data
federation can be either insecure or inefficient.

Rather than the general distributed databases or out-
sourced databases, ourwork ismore alignedwith the problem
settings of federated databases and data federation, where
the entire dataset is held in multiple autonomous databases.
Early research on federated databases focused on finding
solutions to access data in autonomous databases [41], while
recent studies on federated databases support diverse data
types, e.g., on federated graph databases [51]. Note that the
autonomous database here means that data can be only man-
aged by its held silo.

Data federation is an emerging concept developed from
federated databases. It shares a similar architecture with fed-
erated databases. Yet, the major difference is that a data
federation imposes certain secure requirements during query
processing,while a federated database does not. For example,
SMCQL [14] is probably the first secure query processing
solution over a data federation and Conclave [50] is the state-
of-the-art solution. More recent studies explored efficient
solutions to join queries [31, 37, 53] in a data federation.
All these studies adopt SMC techniques to achieve secure
query processing for relational data with exact results.

Exact federated queries have been explored for various
data types. Our preliminary work [46] and its accompanying
demonstration system [42] focus on exact federated queries
over spatial data federation. Zhang et al. [62] propose an
efficient method that leverages the Intel SGX to securely per-
form similarity searches over a data federation under metric
spaces. For example, the metric distance can be the graph
edit distance for graph data or the edit distance for sequence
data.

Existing studies also investigate approximate query pro-
cessing over a data federation. SAQE [16], Cryptε [20], and
Shrinkwrap [15] use differential privacy to trade off between
accuracy and efficiency in processing relational queries. Oth-
ers study approximate kNN queries [61] and range counting
[35, 44] over a spatial data federation. In contrast, we focus
on exact query processing, since accurate results can be cru-
cial for spatial applications like contact tracing [25].

In short, our work is inspired by the emerging trend of
secure query processing over a data federation, yet focuses
on spatial queries with exact results. Our Hu-Fu significantly
improves the efficiency of federated spatial queries over the

extensions of SMCQL [14] and Conclave [50], the state-of-
the-arts for relational data. Moreover, unlike most existing
studies that solely focus on protecting data privacy under this
emerging scenario,Hu-Fu also considers the application need
for preserving the query privacy. For example, in applications
like contact tracing, spatial queries often contain sensitive
location data of patients, thereby necessitating the protection
on the query privacy.

9 Conclusion

In this paper, we propose the first system Hu-Fu for effi-
cient and secure spatial queries over a data federation.
Existing solutions are inefficient to process such queries
due to excessive secure distance operations and the usage
of general-purpose secure multi-party computation (SMC)
libraries for implementing secure operators. To overcome
the inefficiency, we design a novel query rewriter to decom-
pose the spatial queries into as many plaintext operators
and as few secure operators as possible. In particular,
our secure operators have dedicated implementations faster
than general-purpose SMC libraries. Moreover, Hu-Fu sup-
ports heterogeneous spatial databases (e.g., PostGIS, Simba,
GeoMesa, and SpatialHadoop), as well as query input in
native SQL. Finally, extensive experiments show that Hu-Fu
is up to 4 orders of magnitude faster and takes 5 orders of
magnitude lower communication cost than the state-of-the-
arts. In the future study, we plan to support more spatial
queries, e.g., spatial keyword search.
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