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o— Introduction

Vector similarity search is a new search paradigm inspired by a hybrid data type that integrates both high-dimensional embeddings and structured
attributes. Given a query vector and a filter constraint on structured attributes, it identifies k objects from large-scale datasets based on two criteria:
(1) their attributes must match the filter and (2) they are the k nearest neighbors (kNNs) to the query vector within the set of filtered data objects.
While both industry and academia have developed efficient solutions to vector similarity search, they cannot address the challenge involved in
searching across multi-sourced datasets, which is widely applied in scenarios like collaborative pharmaceutical development. It serves as the core
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