

DarkDistill: Difficutly-Aligned Federated Early-Exit Network Training on Heteregeneous Devices

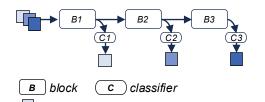
Lehao Qu¹, Shuyuan Li², Zimu Zhou², Boyi Liu^{1,2}, Yi Xu¹, Yongxin Tong¹ ¹Beihang University, ²City University of Hong Kong

Abstract

Early-exit networks (EENs), which adapt their computational depths based on input samples, are widely adopted to accelerate inference in edge computing applications. The effectiveness of EENs relies on difficulty-aware training, which tailors shallow exits for simple samples and deep exits for complex ones. However, existing difficulty-aware training schemes assume centralized environments with sufficient data, which become invalid with real-world edge devices. In this paper, we explore difficulty-aware training in a federated manner, where EENs are collaboratively trained on heterogeneous devices. We observe the *cross-model exit unalignment phenomenon*, a unique problem when aggregating local EENs into a cohesive global model. To address this problem, we design a novel *Difficulty-Aligned Reverse Knowledge Distillation* scheme named DarkDistill that preserves the difficulty-specific specialization for aggregating heterogeneous local models. Instead of direct parameter averaging, it trains difficulty-conditional data generators, and selectively transfers generated knowledge of specific difficulty among matched exits of heterogeneous EENs. Evaluations show that DarkDistill outperforms the state-of-the-arts in various fine-tuning of EENs.

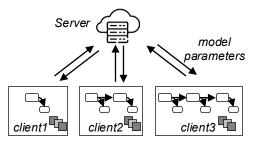
Introduction

Early-Exit Network can adjust depth based on the difficulty of the input samples. *Easy (difficult)* samples terminate at *shallow (deep)* exits



Federated Learning EEN Training leverages the data knowledge of federated clients with heterogenous resources to train the *global EEN*

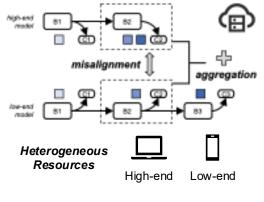
difficulty-increased training samples



Decentralized training datasets

Cross-model Exit Unalignment

Exits at equivalent depths may handle samples from disparate difficulty ranges across models

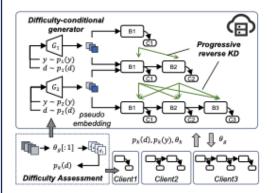


New setting, new challenges!

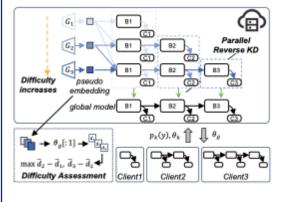
Methods

DarkDistill: Progressive Difficulty-Aligned Reverse Knowledge Distillation

- 1. Difficulty Assessment evaluates the difficulty range of local data utilize its loss on global model
- **2. Difficulty-Conditional Generators** create pseudo data for specific difficulties, supporting the knowledge distillation process
- 3. Progressive Reverse KD transfers knowledge from shallow to deep exits in adjacent layers across varied depth local EENs



DarkDistill-PL: Parallel Variant simultaneously distills the *ensemble knowledge* of all immediate knowledge to the global model parameterized by in an exit-wise manner



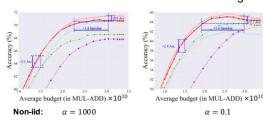
Difficulty-Aligned Knowledge Distillation

Experiments

Anytime Performance: Inference may terminate at any time. Show the average and variance of the accuracy across all exits on various datasets

Finetune	Difficulty-aware	Approach	CIFAR-100 [19]			SVHN [30]	SpeechCmds [44]
			$\alpha = 0.1$	$\alpha = 1$	$\alpha = 1000$	3 VIII [30]	Speech Chias [44]
Full	None	ExclusiveFL	26.60±3.10	49.96±11.48	41.58±7.01	85.28±2.97	87.00 _{±2.88}
		InclusiveFL [26]	40.10±2.03	58.83 _{±6.98}	61.40 ±7.01	82.95±0.34	91.90 ±1.42
		ScaleFL [16]	54.99 ±10.61	63.21±9.14	63.82 _{±9.87}	88.24±0.78	92.56±0.26
		DepthFL [18]	40.70 ±1.57	59.01±5.18	61.71±5.73	83.45±0.43	92.05 ±0.60
		ReeFL [23]	59.24±8.00	63.37 _{±7.72}	63.90 _{±8.68}	88.37 ±1.27	93.12±1.14
	BoostNet [45]	ExclusiveFL	48.68±13.66	57.57±15.12	58.65±15.31	87.30±2.89	91.07 _{±2.58}
		InclusiveFL [26]	57.10±7.21	62.96±8.12	64.01±8.24	87.86±1.66	92.91±1.10
		ScaleFL [16]	52.74±13.82	60.55±11.93	60.73±10.80	87.91 _{±0.77}	92.03±0.37
		DepthFL [18]	58.15 a 6.73	63.81 46.34	64.19 86.73	87.74 a 1.01	92.72 **0.64
		ReeFL [23]	59.01 _{±7.98}	63.08 + 9.03	63.66 + 7.31	88.39 ±1.28	93.01 ±1.18
		DarkDistill	60.48 ± 7.93	64.50 ±7.97	65.67 _{±7.48}	88.41 _{±1.46}	93.31 _{m1.13}
		DarkDistill-PL	61.05±8.19	65.12 ±7.02	65.49±7.88	88.48 ±1.57	93.42±0.98
LORA [13]	None	ExclusiveFL	44.44*18.61	52.33 _{±18.56}	52.88 ± 18.17	83.78±4.43	88.72 ±3.15
		InclusiveFL [26]	44.82 ±23.36	54.26 ±21.38	54.76 ±21.37	85.16±5.31	89.58 ±3.04
		ScaleFL [16]	22.17±23.36	30.85±30.58	32.58±31.96	76.42±13.14	58.82±34.80
		DepthFL [18]	52.17 ±14.16	57.09±14.78	57.63±14.48	85.69±2.71	90.11 #2.04
		ReeFL [23]	52.32 ±9.83	57.74±11.78	58.16 ±11.69	85.54 _{±3.00}	89.56 ±2.62
	BoostNet [45]	ExclusiveFL	50.34±13.63	55.68±15.33	56.48 _{±15.33}	84.48 _{±3.88}	88.51 _{±2.26}
		InclusiveFL [26]	54.25±11.78	59.66±11.72	59.81 _{±11.66}	85.96 ±2.50	90.38 #2.10
		ScaleFL [16]	40.46 + 22.36	47.18±24.11	48.26±24.17	81.70±3.14	80.19 ±4.83
		DepthFL [18]	55.85 _{±9.45}	60.95 + 9.20	61.45 ± 9.04	79.90±1.61	90.93 ±1.29
		ReeFL [23]	51.57 ** 9.82	58.04±11.88	58.62 a 11.91	85.44 = 2.92	89.40 #2.44
		DarkDistill	57.32 ±11.91	61.24 _{±11.06}	61.74 ±11.42	86.11 +2.16	91.06 + 2.08

Budget Performance: Evaluate the accuracy of a batch across various budget. DarkDistill is faster and more accurate across multi-settings



Faster and more accurate

Theorem

Convergence Analysis DarkDistill converges in FL with heterogeneous clients

If the learning rate γ of local training satisfies $\frac{1}{T\sqrt{o}} \le$

 $\gamma \leq \frac{1}{6M^2LT}$, DarkDistill coverages to a neighborhood of a stationary point of **standard FL** as follows:

$$rac{1}{Q}\sum_{q=1}^Q \mathbb{E}\|
abla \mathcal{L}(heta^q)\|^2 \leq rac{G_0}{\sqrt{Q}} + V_0 + rac{H_0}{T} + rac{I_0}{\sqrt{Q}}\sum_{q=1}^Q \mathbb{E}\| heta^q\|^2$$

Explaination DarkDistill converges under a properly chosen learning rate γ , which can be practically set using the local epoch count T, total communication round Q, loss smoothness L, and largest exit number M

Guide to choose suitable Ir