-li
NP
XS

5. KDD

-l-

S SR Gh# ¥

UNIVERSIDADE DE MACAU m R S

\USEES/ UNIVERSITY OF MACAU

3 _,.‘f’?___!# '

August 3-7, 2025

2425

~

N G UNIVERSI

FedMetro: Efficient Metro Passenger Flow Prediction via Federated Graph Learning
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Metro passenger flow prediction plays a crucial role in urban transportation e, X , ;

management, enabling applications such as station congestion alerts, timetable f | (TDERT N

optimization, and transportation recommendations. Accurate metro passenger flow _ e R
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prediction relies heavily on Spatial-Temporal Graph Neural Networks (STGNNS5s), I 3; 7 PP

which leverage the spatial-temporal patterns embedded 1n Automatic Fare Collection —| & | ‘
(AFC) data to model complex correlations across metro networks. - X

\ MLP - 7 3

B | e . SANSEVS RO ISR i aedssasilsiity . ST [
La— i Global Correlation Aggregation ¢ Parameters Aggregation

M
AGG! = - AGG! W,b,P = FedAVG(W,, b, P;)

@ Hadamard product @ Add @ Multiply | | TTTmTmmmmmmmmmmmssssssmmmmmmmmemsl e ’
; "'{\_: ¥

FedMetro System Ouveruview

E! € RNivde
Sever

e e

B Results

Evaluations on three real-world metro AFC datasets demonstrate that FedMetro significantly
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outperforms baseline methods, achieving up to 17.08% higher accuracy while reducing
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federated inference communication overhead by 77.99%. Practical deployments further

confirm 1ts effectiveness in delivering accurate station-level predictions across metro lines.
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Challenges
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Federated graph learning has emerged as a promising paradigm for privacy-
preserving training of STGNNSs, enabling collaborative modeling of spatial-temporal

Metric Value
N
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correlations. However, existing federated graph learning approaches are not directly
applicable to the accurate prediction of metro passenger flow, as they face the
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following three significant challenges.
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The results of communication compression study
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passenger flow spatial-temporal correlations without sharing raw AFC data, ensuring Metrics

compliance with privacy regulations.This method models the global metro passenger Ablation study on BJMetro

flow correlations, overcoming the challenges of time-evolving spatial correlations

and the heterogeneity of temporal correlations, thereby improving the accuracy of - = | S— | .

metro passenger flow predictions. Furthermore, we significantly reduce i \/\ o |

communication overhead by dynamically sparsifying the spatial correlation graph, 2 g 0] == AEE

while maintaining high prediction accuracy and effectively addressing “: . f W /\//\f/\"f\/\ /\\ .! \1 / 1T _'i;__'f_
communication bottlenecks in federated inference. We use a client-server federated * ol 7 fwl ) \ \/ Yo \ ﬁ\ — u f].—_i\__l__i L
learning framework. The server is responsible for global correlations and training ] / % | | \ 1' — _i‘ T A
parameters aggregation, while the client consists of three modules: 22 7 2l Zl 1 I B R ‘5 ‘ ) _-R_J
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» Communication Compression (a) Comparison of metric value  (b) Comparison of predicted and actual value

* Correlations Recovery and Training Comparison of deployment performance  Visualization of prediction results
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