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The boom of e-commerce has stimulated enormous logistic demands



l Some companies and their products/services
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Robotized warehouses are expected to improve the performance



l A typical robotized warehouse
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l A typical robotized warehouse
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l A typical robotized warehouse
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l Transportation steps can be viewed as route planning 
problem
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l Given: A warehouse layout and a set of robots

Problem Statement 11
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l Given: A warehouse layout and a set of robots
l Given: Queries in an online manner

l A query< 𝒐, 𝒅 > contains origin 𝒐 and destination 𝒅
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l Given: A warehouse layout and a set of robots
l Given: Queries in an online manner
l Output: Collision-free routes for queries that 

holistically minimize the total makespan
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l Optimization Goal: Minimizing the Makespan
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𝒕

Makespan: 𝑴 = 𝒕𝒆 − 𝒕𝒃

𝒕𝒃: time of the first 
query emerging

𝒕𝒆: time of the last 
route finished

An query emerges. A rack 
requires delivery

The last rack has 
been returned.

Robots deliver racks 
back and forth.



l Constraints: All routes for robots should be collision-free

l Two types of collision
l Static: Collisions against static racks
l Dynamic: Collisions against other robots in motion
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Note: We model the space in a grid-based manner conventionally.

𝑠𝑡# = 2

𝑠𝑡$ = 1

Collision at 𝑡 = 4

𝑠𝑡# = 1
𝑠𝑡$ = 2

Collision at 𝑡 = 3,4



l Challenges
l Traditional methods[1] directly search on the grid-based space

Problem Statement 16

[1] G. Sharon, Conflict-based search for optimal multi-agent pathfinding, AI’15.
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Constraints of dynamic collisions 
forces us to consider temporal dimension

A direct search on grids
leads to a 3D search space.
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l Main Idea
l Leverage the regular pattern of warehouses
l Re-formalize the layout into “strips” 
l Search route in a two-level manner.

l Workflow

Our Solutions 18
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l Workflow: Strip-based representation
l Split warehouse aisles into “strips” (leverage regular patterns)
l The width of each strip is only one
l Aggregate strips as vertices and build new graph- Strip Graph
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l Main Idea
l Leverage the regular pattern of warehouse
l Re-formalize the layout into “strips”
l Search routes in a two-level manner.

l Workflow
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l Workflow: Planning overview
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l Workflow: Inter-strip Route Planning
l Find the vertices that contain 𝒐, 𝒅
l Perform shortest path on strip graph

l Note: it specifies the edge weight by calling intra-strip planning 
when searching for a vertices. 

Our Solutions 22

𝑣!

𝑣# 𝑣% 𝑣& 𝑣' 𝑣( 𝑣) 𝑣$ 𝑣*

𝑣!"



l Workflow: Intra-strip Route Planning
l Searching a collision-free route within a 1-D spatial space
l Each route form polylines in the 2-D search space (1-D 

temporal and 1-D spatial)
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l Workflow: Intra-strip Route Planning
l Searching a collision-free route within a 1-D spatial space
l Each routes form polylines in the 2-D search space (1-D 

temporal and 1-D spatial)
l Collision can be easily detected by
simply check segment intersections
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l Workflow: Intra-strip Route Planning
l A toy example
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l Workflow: Inter-strip Route Planning
l Find the vertices that contain 𝒐, 𝒅
l Perform shortest path finding on strip graph

l Note: it specifies the edge weights by calling intra-strip 
planning when searching for a vertex. 
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l Workflow: Inter-strip Route Planning
l When finding a route within a strip, it can return a time cost for inter-

strip level

Our Solutions 27

𝑔+

𝑔

𝑔

𝑔+
adjacent grids adjacent grids

Edge weight is 8

Edge weight is 1

𝑣!

𝑣# 𝑣% 𝑣& 𝑣' 𝑣( 𝑣) 𝑣$ 𝑣*

𝑣!"

𝑜𝑟𝑖

𝑑𝑠𝑡 𝑣, 𝑣-



l Other details: Multiple adjacent grids issue
l Two strips may have multiple adjacent grids. However, strip 

graph cannot distinguish along which adjacent grid the route 
will transfer to other strips (only one edge).
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l Other details: Multiple adjacent grids issue
l Two strips may have multiple adjacent grids. However, strip graph 

cannot distinguish along which adjacent grid the route will transfer 
to other strips (only one edge).

l Simply adopt a lazy change strategy: ie leave the current aisle as 
late as possible. (pick the red rack will change at blue grids)
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l Other details: Index for acceleration
l We manage planned routes (a set of segments) into different 

sets by their slopes. Then build index based on the time-span 
for faster collision-detection.
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l Validation Environment
l Dataset

o Synthesized and real data from Geekplus Technology Co., Ltd.

l Simulator
o Collects information of robots, racks and pickers, executes task planning algorithm.

l Running Information
l CPU: CPU Intel(R) Xeon(R) Platinum 8269CY CPU T 3.10GHz
l Memory: 20GB
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l Compared methods
l Simple A* Planning(SAP): Search directly in a 3-D space.
l Replanning(RP)[1]: Planning ignoring collisions, if collision occurs then replanning
l Time Window-based Planning (TWP)[2]: Planning only in a time-window horizon
l Adaptive Cached Planning (ACP)[3]: Use a cache for previous situation

l Evaluation metrics
l Makespan: Total time duration from the first query emerges till the last query finished
l Time consumption (TC): execution time cost in sections
l Memory consumption (MC): execution memory cost in 100MB
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[1] J.Sˇvancara, et al. Onlinemulti- agent pathfinding. AAAI, 2019. 
[2] J.Li, et al. Lifelong multi-agent path finding in large-scale warehouses. AAAI, 2021.
[3] D. Shi, et al. Adaptive taskplanning for large-scale robotized warehouses. ICDE, 2022.



l Time efficiency

Experiments 34
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Our SRP can averagely outperform 37.3x than other methods



l Time cost breakdown
l Intra-strip cost takes 80%
l Index helps reducing time cost by 50%
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l Memory efficiency

Experiments 36

Our SRP steadily beat other methods over all different datasets
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l Effectiveness

Experiments 37

Our SRP still maintains a competitive effectiveness.
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l We propose a strip-based framework to replace the 
widely adopted grid-based warehouse representation.

l We devise an efficient route planning algorithm which 
contains inter- and intra- strip stages on new 
framework.

l Experiments on real history data validate the 
performances on effectiveness and efficiency.
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