
Route Planning in Warehouses Made Efficient:
A Strip-based Framework

Dingyuan Shi1, Nan Zhou1, Yongxin Tong1,

Zimu Zhou2, Yi Xu1, Ke Xu1
1 Beihang University

2 City University of Hong Kong

Outline
l Background & Motivation

l Problem Statement

l Our Solutions

l Experiments

l Conclusion

2

Outline
l Background & Motivation

l Problem Statement

l Our Solutions

l Experiments

l Conclusion

3

Background & Motivation 4

The boom of e-commerce has stimulated enormous logistic demands

l Some companies and their products/services

Background & Motivation 5

Robotized warehouses are expected to improve the performance

l A typical robotized warehouse

Background & Motivation 6

Storage Area

Picker 1

Picker 2

Picker 3

A
isle

A
isle

Aisle

Processing Area

pickup

return

delivery

processing

Rack Robot Picker

l A typical robotized warehouse

Background & Motivation 7

Storage Area

Picker 1

Picker 2

Picker 3

A
isle

A
isle

Aisle

Processing Area

pickup

return

delivery

queuing processing

Rack Robot Picker

Robot

Rack

Item

l A typical robotized warehouse

Background & Motivation 8

Storage Area

Picker 1

Picker 2

Picker 3

A
isle

A
isle

Aisle

Processing Area

pickup

return

delivery

queuing processing

Rack Robot Picker
Picker Processing Rack

Queuing Rack

l Transportation steps can be viewed as route planning
problem

Background & Motivation 9

Storage Area

Picker 1

Picker 2

Picker 3

A
isle

A
isle

Aisle

Processing Area

pickup

return

delivery

processing

Rack Robot Picker

Outline
l Background & Motivation

l Problem Statement

l Our Solutions

l Experiments

l Conclusion

10

l Given: A warehouse layout and a set of robots

Problem Statement 11

Storage Area

Picker 1

Picker 2

Picker 3

A
isle

A
isle

Aisle

Processing Area

Rack Robot Picker

l Given: A warehouse layout and a set of robots
l Given: Queries in an online manner

l A query< 𝒐, 𝒅 > contains origin 𝒐 and destination 𝒅

Problem Statement 12

Storage Area

Picker 1

Picker 2

Picker 3

A
isle

A
isle

Aisle

Processing AreaQuery: find a path from 𝑜 to 𝑑

location 𝒐

location 𝒅

l Given: A warehouse layout and a set of robots
l Given: Queries in an online manner
l Output: Collision-free routes for queries that

holistically minimize the total makespan

Problem Statement 13

Constraints

Optimization Goal

l Optimization Goal: Minimizing the Makespan

Problem Statement 14

𝒕

Makespan: 𝑴 = 𝒕𝒆 − 𝒕𝒃

𝒕𝒃: time of the first
query emerging

𝒕𝒆: time of the last
route finished

An query emerges. A rack
requires delivery

The last rack has
been returned.

Robots deliver racks
back and forth.

l Constraints: All routes for robots should be collision-free

l Two types of collision
l Static: Collisions against static racks
l Dynamic: Collisions against other robots in motion

Problem Statement 15

Note: We model the space in a grid-based manner conventionally.

𝑠𝑡# = 2

𝑠𝑡$ = 1

Collision at 𝑡 = 4

𝑠𝑡# = 1
𝑠𝑡$ = 2

Collision at 𝑡 = 3,4

l Challenges
l Traditional methods[1] directly search on the grid-based space

Problem Statement 16

[1] G. Sharon, Conflict-based search for optimal multi-agent pathfinding, AI’15.

1D
-T

em
po

ra
l D

im
en

si
on

2D Spatial Dimension

Constraints of dynamic collisions
forces us to consider temporal dimension

A direct search on grids
leads to a 3D search space.

Outline
l Background & Motivation

l Problem Statement

l Our Solutions

l Experiments

l Conclusion

17

l Main Idea
l Leverage the regular pattern of warehouses
l Re-formalize the layout into “strips”
l Search route in a two-level manner.

l Workflow

Our Solutions 18

Inter-Strip Route Planning Intra-Strip Route Planning

Strip-based representation
for warehouse

l Workflow: Strip-based representation
l Split warehouse aisles into “strips” (leverage regular patterns)
l The width of each strip is only one
l Aggregate strips as vertices and build new graph- Strip Graph

Our Solutions 19

⟨1,1⟩ ⟨1,8⟩

⟨6,8⟩

⟨2,1⟩

⟨5,1⟩

⟨6,1⟩

𝑣!: ⟨ 1,1 , 1, 8 , ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, 𝑎𝑖𝑠𝑙𝑒⟩

𝑣!": ⟨ 6,1 , 6, 8 , ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, 𝑎𝑖𝑠𝑙𝑒⟩

𝑣#: ⟨ 2,1 , 5, 1 , 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙, 𝑎𝑖𝑠𝑙𝑒⟩

𝑣 $
:⟨
2,
7
,
5,
7
,𝑣
𝑒𝑟
𝑡𝑖
𝑐𝑎
𝑙,
𝑟𝑎
𝑐𝑘
⟩

𝑣!

𝑣# 𝑣% 𝑣& 𝑣' 𝑣(𝑣) 𝑣$ 𝑣*

𝑣!"

𝑒: ⟨𝑣! , 𝑣" , 0⟩

For strips that are adjacent,
add edges between them

Each vertex contains multiple grids, which reduces the search space

l Main Idea
l Leverage the regular pattern of warehouse
l Re-formalize the layout into “strips”
l Search routes in a two-level manner.

l Workflow

Our Solutions 20

Inter-Strip Route Planning Intra-Strip Route Planning

Strip-based representation
for warehouse

l Workflow: Planning overview

Our Solutions 21

Inter-Strip Route Planning Intra-Strip Route Planning

𝑣!

𝑣# 𝑣% 𝑣& 𝑣' 𝑣(𝑣) 𝑣$ 𝑣*

𝑣!"

𝑣!: ⟨ 1,1 , 1, 8 , ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, 𝑎𝑖𝑠𝑙𝑒⟩

𝑣!": ⟨ 6,1 , 6, 8 , ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, 𝑎𝑖𝑠𝑙𝑒⟩
Temporal dimension

Sp
at

ia
l d

im
en

si
on

1

𝑔!

𝑔"

𝑔#

𝑔$

𝑔%

𝑔&

1

2

3

2

3

4
,
5

1

2
6
7

8

2 3 4 5 6 7 8

First search the routes in inter-strip level
without considering collision

Specifies routes within a strip
considering collision-avoidance

Strip representation helps confining the collision detection in a 2D space.

l Workflow: Inter-strip Route Planning
l Find the vertices that contain 𝒐, 𝒅
l Perform shortest path on strip graph

l Note: it specifies the edge weight by calling intra-strip planning
when searching for a vertices.

Our Solutions 22

𝑣!

𝑣# 𝑣% 𝑣& 𝑣' 𝑣(𝑣) 𝑣$ 𝑣*

𝑣!"

l Workflow: Intra-strip Route Planning
l Searching a collision-free route within a 1-D spatial space
l Each route form polylines in the 2-D search space (1-D

temporal and 1-D spatial)

Our Solutions 23

Temporal dimension

Sp
at

ia
l

di
m

en
si

on
1

𝑔!

𝑔#

𝑔%

𝑔&

𝑔'

𝑔(

1

2

3

2

3

4,
5

4

1

2
6
7

8

2 3 4 5 6 7 8

𝜙# = ⟨ 1,6 , [2, 5]⟩

𝜙% = ⟨ 4,4 , [4,4]⟩

𝜙 !
=
⟨ 1
,1
, [3
, 3]
⟩

𝜙 '
=
⟨ 2
,1
, [4
, 3]
⟩

𝜙 (
=
⟨ 5
,3
, [8
, 8
]⟩

𝜙& = ⟨ 4,3 , [5, 3]⟩

l Workflow: Intra-strip Route Planning
l Searching a collision-free route within a 1-D spatial space
l Each routes form polylines in the 2-D search space (1-D

temporal and 1-D spatial)
l Collision can be easily detected by
simply check segment intersections

Our Solutions 24

Temporal dimension

Sp
at

ia
l d

im
en

si
on

3

1

2

3

4

1

21 54

2

3

2

3

Collision at 𝑡 = 3

l Workflow: Intra-strip Route Planning
l A toy example

Our Solutions 25

Temporal dimension

Sp
at

ia
l

di
m

en
si

on

𝑜𝑟𝑖

𝑑𝑠𝑡

4. find a route

Temporal dimension

Sp
at

ia
l

di
m

en
si

on

𝑜𝑟𝑖

𝑑𝑠𝑡

1. try to move to 𝑑𝑠𝑡 directly
Temporal dimension

Sp
at

ia
l

di
m

en
si

on

𝑜𝑟𝑖

𝑑𝑠𝑡 2. backtrack

3. wait and try

l Workflow: Inter-strip Route Planning
l Find the vertices that contain 𝒐, 𝒅
l Perform shortest path finding on strip graph

l Note: it specifies the edge weights by calling intra-strip
planning when searching for a vertex.

Our Solutions 26

Recall

l Workflow: Inter-strip Route Planning
l When finding a route within a strip, it can return a time cost for inter-

strip level

Our Solutions 27

𝑔+

𝑔

𝑔

𝑔+
adjacent grids adjacent grids

Edge weight is 8

Edge weight is 1

𝑣!

𝑣# 𝑣% 𝑣& 𝑣' 𝑣(𝑣) 𝑣$ 𝑣*

𝑣!"

𝑜𝑟𝑖

𝑑𝑠𝑡 𝑣, 𝑣-

l Other details: Multiple adjacent grids issue
l Two strips may have multiple adjacent grids. However, strip

graph cannot distinguish along which adjacent grid the route
will transfer to other strips (only one edge).

Our Solutions 28

𝑣!

𝑣# 𝑣% 𝑣& 𝑣' 𝑣(𝑣) 𝑣$ 𝑣*

𝑣!"

l Other details: Multiple adjacent grids issue
l Two strips may have multiple adjacent grids. However, strip graph

cannot distinguish along which adjacent grid the route will transfer
to other strips (only one edge).

l Simply adopt a lazy change strategy: ie leave the current aisle as
late as possible. (pick the red rack will change at blue grids)

Our Solutions 29

𝑣!

𝑣# 𝑣% 𝑣& 𝑣' 𝑣(𝑣) 𝑣$ 𝑣*

𝑣!"

l Other details: Index for acceleration
l We manage planned routes (a set of segments) into different

sets by their slopes. Then build index based on the time-span
for faster collision-detection.

Our Solutions 30
Sp

at
ia

l d
im

en
si

on

Temporal dimension

𝑠

𝑠𝑠
Filtered out Filtered out

𝑠

Filtered out

Segments with slope 1

Segments with slope -1

Segments with slope 0

Leverage parallel property

Outline
l Background & Motivation

l Problem Statement

l Our Solutions

l Experiments

l Conclusion

31

l Validation Environment
l Dataset

o Synthesized and real data from Geekplus Technology Co., Ltd.

l Simulator
o Collects information of robots, racks and pickers, executes task planning algorithm.

l Running Information
l CPU: CPU Intel(R) Xeon(R) Platinum 8269CY CPU T 3.10GHz
l Memory: 20GB

Experiments 32

l Compared methods
l Simple A* Planning(SAP): Search directly in a 3-D space.
l Replanning(RP)[1]: Planning ignoring collisions, if collision occurs then replanning
l Time Window-based Planning (TWP)[2]: Planning only in a time-window horizon
l Adaptive Cached Planning (ACP)[3]: Use a cache for previous situation

l Evaluation metrics
l Makespan: Total time duration from the first query emerges till the last query finished
l Time consumption (TC): execution time cost in sections
l Memory consumption (MC): execution memory cost in 100MB

Experiments 33

[1] J.Sˇvancara, et al. Onlinemulti- agent pathfinding. AAAI, 2019.
[2] J.Li, et al. Lifelong multi-agent path finding in large-scale warehouses. AAAI, 2021.
[3] D. Shi, et al. Adaptive taskplanning for large-scale robotized warehouses. ICDE, 2022.

l Time efficiency

Experiments 34

��� 	�� ����
��������

���

���

���

���

��
�� �
�

���
�
�

�

��

��� 	�� ����
��������

���

���

���

���

��
�� �
�

���
�
�

�

��

��� 	�� ����
��������

���

���

���

���

��
�� �
�

���
�
�

�

��

��� 	�� ����
��������

���

���

���

���

��
�� �
�

���
�
�

�

��

��� 	�� ����
��������

���

���

���

���

��
�� �
�

���
�
�

�

��

��� 	�� ����
��������

���

���

���

���

��
�� �
�

���
�
�

�

��

Our SRP can averagely outperform 37.3x than other methods

l Time cost breakdown
l Intra-strip cost takes 80%
l Index helps reducing time cost by 50%

Experiments 35

	�� ��� ����
��������

�

	�

�

��

��
��

����������

����������
����������

�	�
	�
		�
��������

�	

�	

��
��

�����������������������
�����������������������
������������������������
������������������������

l Memory efficiency

Experiments 36

Our SRP steadily beat other methods over all different datasets

���
�� ����
��������

�

	

�

��
��
�
�

���
���
���
��
�
�

���
�� ����
��������

�

	

�

��
��
�
�

���
���
���
��
�
�

���
�� ����
��������

�

	

�

��
��
�
�

���
���
���
��
�
�

���
�� ����
��������

�

	

�

��
��
�
�

���
���
���
��
�
�

���
�� ����
��������

�

	

�

��
��
�
�

���
���
���
��
�
�

���
�� ����
��������

�

	

�

��
��
�
�

���
���
���
��
�
�

l Effectiveness

Experiments 37

Our SRP still maintains a competitive effectiveness.

Outline
l Background & Motivation

l Problem Statement

l Our Solutions

l Experiments

l Conclusion

38

l We propose a strip-based framework to replace the
widely adopted grid-based warehouse representation.

l We devise an efficient route planning algorithm which
contains inter- and intra- strip stages on new
framework.

l Experiments on real history data validate the
performances on effectiveness and efficiency.

Conclusion 39

Thank You

Q & A

40

