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Background and Motivation ;

e Online real estate platforms are using data-driven
approaches to improve their service quality.
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Broker finding service in Zillow

Broker recommendation in Ke holdings Inc.

Broker Matching is a central function for the platform



Background and Motivation

o The real estate platforms usually takes the top-k

recommendation for broker matching

House listing
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Top-k recommendation is common in broker matching




Background and Motivation :

o Top-k can lead to the overloaded phenomenon,
I.e., most clients are matched to small brokers.
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Too much workloads can decrease the service quality




Background and Motivation 7

o We further analyze the service quality of the top
brokers with highest requests in City A.
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Most brokers performs better with proper workloads




Background and Motivation :

o A few brokers are tasked to serve amounts of requests

Top-k recommendation
requests are
7 online arriving
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How to avoid the overloaded phenomenon and

orove the utility of the real estate of the platforms?



Background and Motivation :

o Towards capacity-aware broker matching

Top-k recommendation Capacity-Aware Assignment
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Background and Motivation 10

o Towards capacity-aware broker matching

As observed, the workload capacity -

Top-k recommendation ~ of brokers is heterogeneous
top broker with
unknown capacity
e 7 Rankerot
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may exceed workload

of the top broker

How to avoid the overloaded phenomenon and

orove the utility of the real estate of the platforms?



Background and Motivation ]

o Towards capacity-aware broker matching

The workload tends to be correlated
Top-k recommendation — assignment decision nearby future
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How to avoid the overloaded phenomenon and

orove the utility of the real estate of the platforms?
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Problem Statement

o Capacity-Aware Assignment (CAA) problem

Broker

workload capacity of broker

attributes of broker

13

sign-up rates of broker,

i.e. the proxy of utility

a broker b € B, b = (xb,Wb,Cb,Sb)

workload of broker

Attribute Type | Attribute Description
Age Broker’s age.
Basic Info Working Year The working years as a broker.
: Education Education background (e.g.,undergraduate, master).
Title Job title (e.g.,assistant, clerk, manager).

Work Profile

Response Rate

Dialogue rounds

Number of Housing Presentation
Number of Presentation via VR
Time of Presentation via VR
Number of Consultation via Phone
Time of Consultation via Phone
Number of Consultation via App
Time of Consultation via App
Number of Maintained Houses
Number of Served Clients
Number of Housing Transactions

The rate of the broker’s response to a request in one minute.

The average dialogue rounds via the App in recent 7/14/30/90 days.

The number of broker’s presenting houses offline in recent 7/14/30/90 days.
The number of broker’s presenting houses via VR in recent 7/14/30/90 days.
The time of broker’s presenting houses via VR in recent 7/14/30/90 days.
The number of broker answering clients via phone in recent 7/14/30/90 days.
The time of broker answering clients via phone in recent 7/14/30/90 days.
The number of broker answering clients via App in recent 7/14/30/90 days.
The time of broker answering clients via App in recent 7/14/30/90 days.

The number of houses currently maintained by the broker.

The number of clients who are served by the broker in recent 7/14/40/90 days.

The number of housing transactions through the broker in recent 7/14/40/90 days.

Preference

Districts Information
Housing Information

Broker’s preferable communities and area around POIs.
Broker’s preferable price, area and type of houses.

Key step: to estimate the unknown workload capacity




Problem Statement 1
o Capacity-Aware Assignment (CAA) problem

Ur,b ﬁ
’ qn /IVIaximizin Total utility: A
Time Interval o gl l,'“.:il.ity J 4
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Time Interval ® :
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Brokers Requests

Formulate broker matching as the batched assignment



Problem Statement i
o Capacity-Aware Assignment (CAA) problem

Ur,b ﬁw
0 _A .
Time Interval ° given utility Remarks:
(i.e. a batch) % ""

» The batched assignment modeling|

® is the first time to be catered for
‘@ / broker matching for online real
unknown capaCity --------------- :’f‘ """" estate platforms
/c _ Ur,b \ .
b % & » A unique challenge of the CAA
Time Interval L problem against the general
(i-e. a batch) % L] batched assignment lies broker’s
o capacity is not given in advance.
. 3N -
Brokers Requests

Objective: Maximum the total utility over time
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Our solution .
o Learned Assignment with Contextual Bandits

Workload Capacity Capacity Aware
Estimation Assignment
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LACB estimates the unknown broker-specific capacity

and assigns brokers to clients from a global view



Our solution 8

o Step 1: Learn the broker-specific workload
capacity via NN-enhanced contextual bandits

. +  Broker(@;) % * Broker (®) As observed, the relationship
2. g between a broker’s performance
2l e and her/his workload is complex
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model the capacity estimation as a contextual bandit



Our solution o

o Step 1: Learn the broker-specific workload
capacity via NN-enhanced contextual bandits
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Learn the broker-specific workload capacity



Our solution 2

o Step 2: makes assignments by accounting for
the dependency of assignments across batches

- A
CEl GEBLELD {rE tlle V(cr): the expected utility when a broker’s
rewards under broker’s residual capacity is cr

different workload

We can update the V(:) by Q-learning
V(cr) « V(cr) + B[u + yV(cr') —V(cr)]

| M ={(bq,73),(by,71)}
l cr1=3,cr; =1

\ @ The original utility @ The refined utility /

Making capacity aware assignment via value function



Our solution .
o Accelerating Assignment via Broker Selection

Inabatch @ 2 onD tens of
(time mterval)g requests
Thousands of ... x_m Theorem 2. Given a bipartite graph G =< U,V,E >

(|U] < |V|), and let opt pq(u) be the matched vertex of w in the
brOkers ﬁ 7 optimal assignment M. There exists an optimal assignment
M, such that for any vertex u € U, we have opta(u) €
ﬁ e T()p_ﬁil\’ where T(;lv}loﬁ” 19 a set of verz;;ces with |U| largest edge
The unbalanced bi artite ra h weight among all vertices connected u.
\_ P grapnh )
4 @ ) Corollary 1. Given an imbalanced bipartite graph G =<
- U,V,E >, we need at most |U| candidate vertices for each
) « vertex u € U to find an optimal assignment, 1.e., taking the
Hundreds of @ Top|y;, as the candidate set for any u € U.
brokers 5 \ | /
;) - Not all brokers are needed in
q assignment, and |R| brokers for a
request is enough

k A much smaller bipartite graph y

Optimize the efficiency for unbalanced assignments
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Experiments 23

Dataset
» Real-world Datasets: 3 Cities from Ke Holdings Inc.

TABLE IV: Real-world datasets.

City Dates Brokers  Requests
City A Aug. | ~ Aug. 21, 2021 5515 103106
City B Jul. T ~ Jul. 21, 2021 8155 387339

City C Jun. 8 ~ Jun. 28, 2021 3689 74831

o

o

o

0]

Synthetic Datasets:

Vary the number of brokers

Vary the number of requests

Vary the number of covering days

Vary the degree of imbalance, i.e. |R|/|B|

Factor Setting
The number of brokers |B] 500, 1000, 2000, 5000, 10000
The number of requests |R| 10K, 20K, 50K, 100K, 200K
The number of covering days Day 7, 10, 14, 17, 21
The degree of imbalance o 0.005, 0.01, 0.015, 0.02, 0.05

Experiments are conducted on a simulator of Ke
Holdings Inc., takeing the same utility function deployed



Experiments

o Comparing methods

Top-K Recommendation (Top-K)
Randomized Recommendation (RR)
Kuhn—Munkre algorithm (KM)
Constrained Top-K (CTop-K)
Assignment with NeuralUCB (AN)
LACB/LACB-Opt (ours)

Evaluation metrics

Total Utility

Time Cost

24



Experiments

e Results on real world datasets
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LACB achieves the highest
total utility

LACB-Opt and LACB perform
the same in total utility

LACB-Opt is competitive
compared to Top-k, CTop-k
and RR in the running time
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26

e Results on synthetic datasets
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LACB-Opt is 16.4~1091.9 times faster

than other KM-based algorithm
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e In-depth Analysis of Brokers

3.0
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KM Compared with Top-K,
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AN have an improvement in utility
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Conclusion 2

Identify the overload of top brokers problem for online

real estate platforms.

Design LACB, a data-driven capacity-aware assignment
scheme for broker matching and accelerate the

assignment via broker selection.

Conduct extensive experiments on real world datasets
from Ke holdings Inc., and results validate the efficiency

and effectiveness of our solutions.
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