CASA 2024-08-25

Association for

acm

CASA: Clustered Federated Learning with Asynchronous Clients

Boyi Liu¹, Yiming Ma¹, Zimu Zhou², Yexuan Shi¹, Shuyuan Li¹, Yongxin Tong¹ ¹Beihang University ²City University of Hong Kong

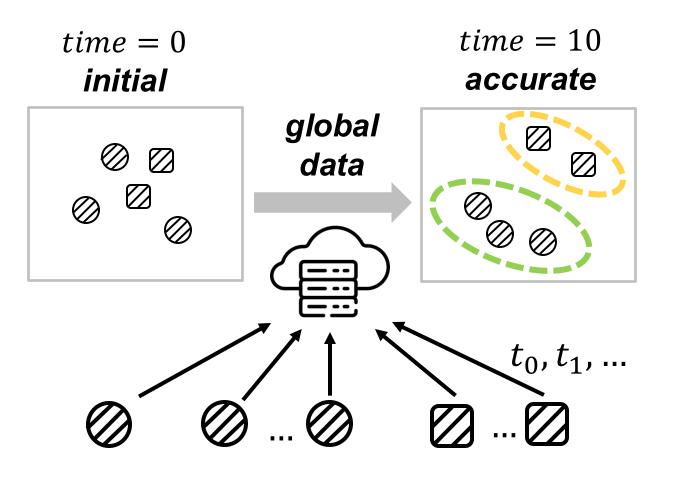
Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Clustered Federated Learning(CFL)



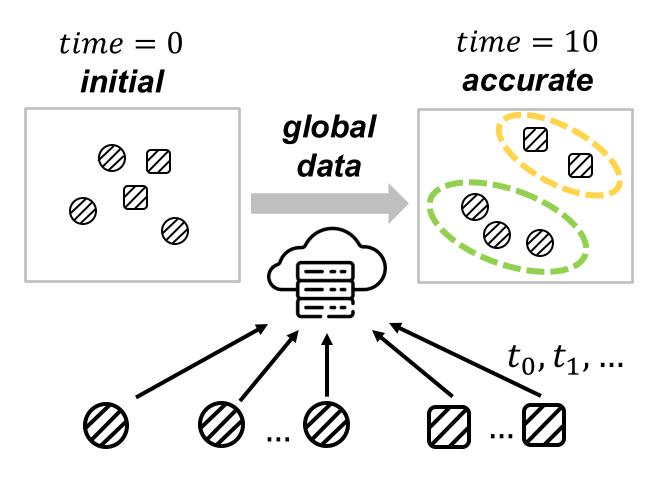
Personal Voice Assistant

Smart Keyboards

Human Activity Recognition

Data is often *heterogeneous* yet exhibits *natural clusterability*

Clustered Federated Learning(CFL)

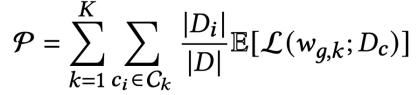


Core idea

1) Categorize clients into clusters,

- 2) Train cluster-wise global model,
- 3) Solve Non-iid problem

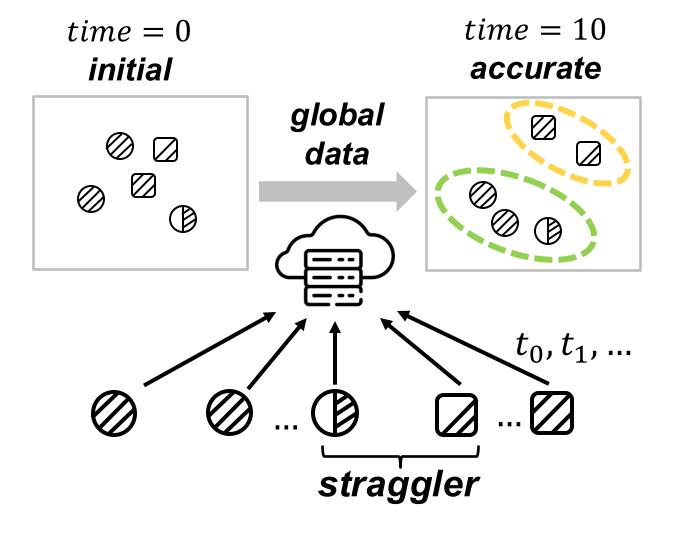
Training objective \mathcal{P}



Clustering objective ${\mathcal H}$

$$\mathcal{H} = \sum_{k=1}^{K} \sum_{c_i \in C_k} \frac{|D_i|}{|D|} \|w_i - w_{g,k}\|_2^2$$

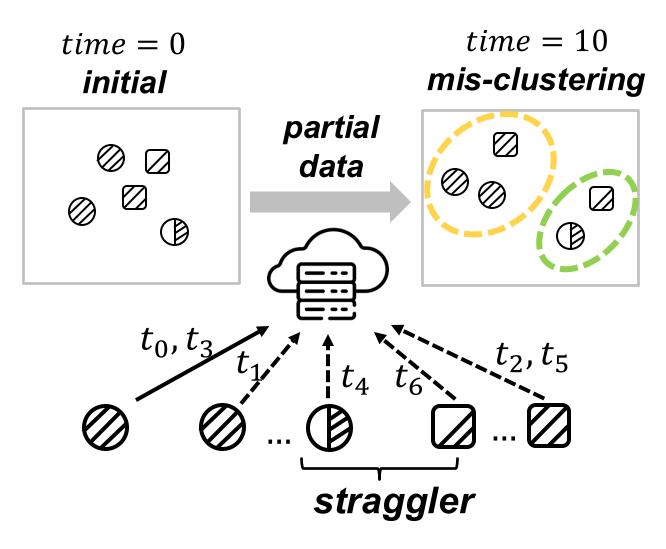
CFL Struggles with Stragglers



Device heterogeneity Low latency High latency Wait for stragglers idle time

Challenge: How to solve the inefficiency?

Integrate Asynchrony into CFL

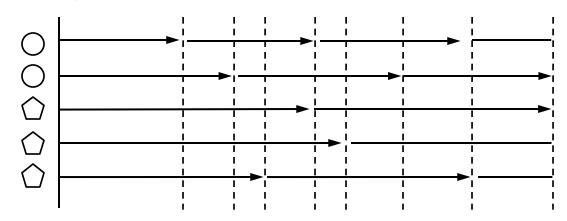


Device heterogeneity

High latency

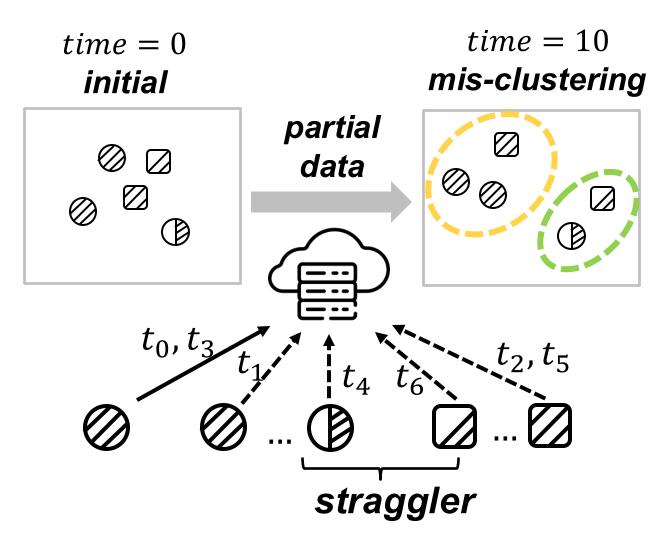
Low latency

Asynchronous setup



We don't have to wait for stragglers under asynchrony!

Integrate Asynchrony into CFL

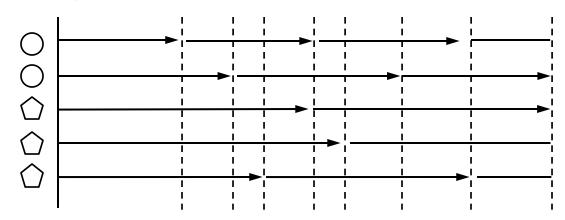


Device heterogeneity

High latency

Low latency

Asynchronous setup



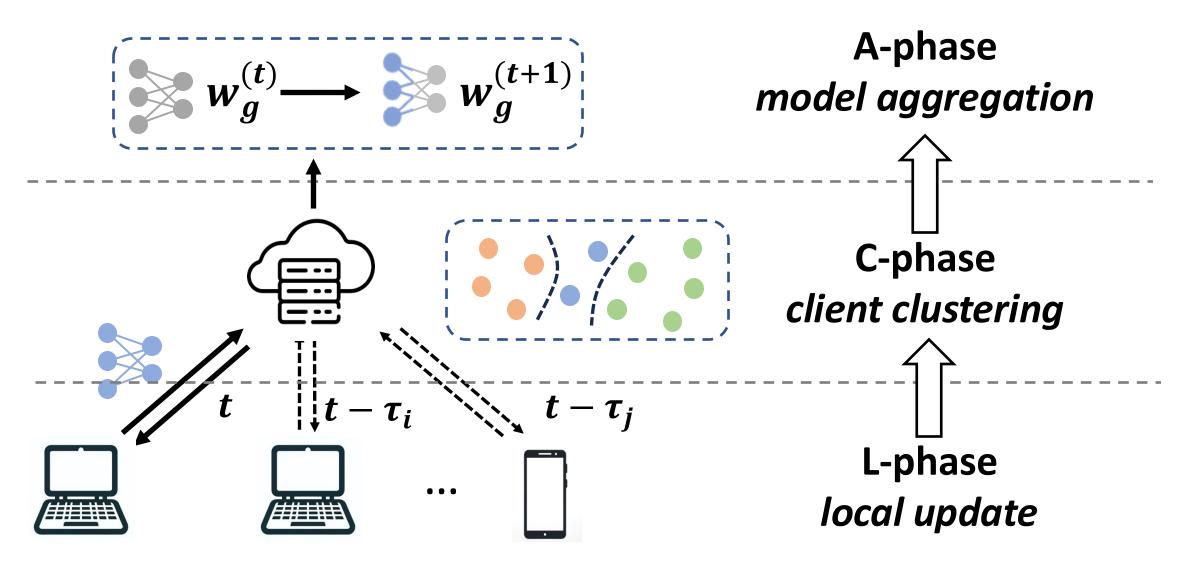
New Challenge: Can CFL adapt to asynchrony?

Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

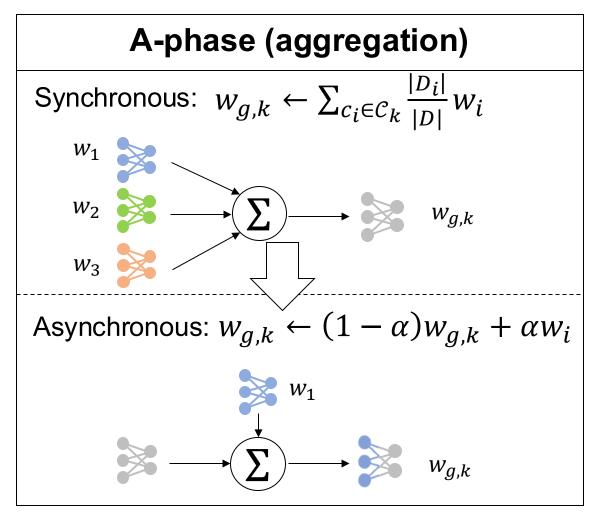
Problem Statement

• CFL Workflow under Asynchrony



Problem Statement

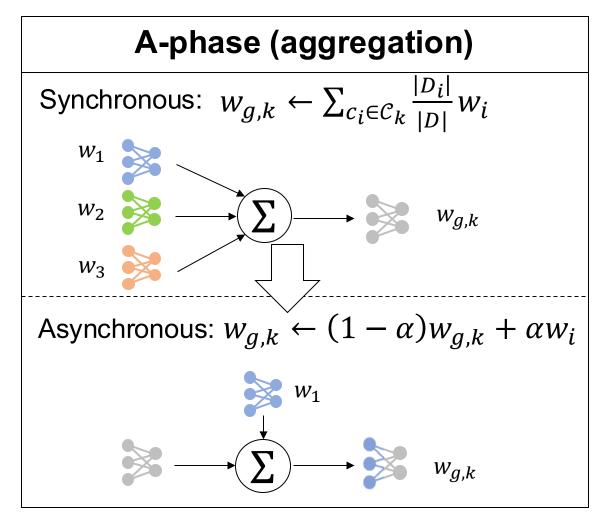
Direct Impact



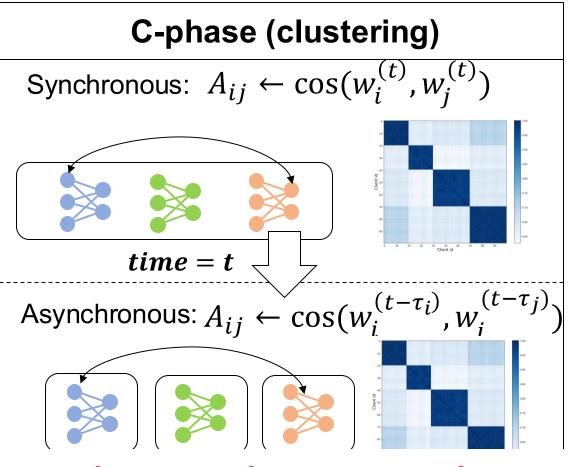
Aggregation strategy changes

Problem Statement

Direct Impact

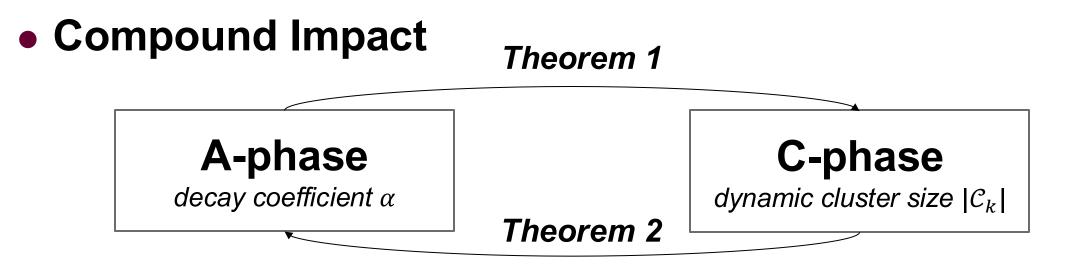


Aggregation strategy changes



Large gap! not accurate!

cosine similarity ≠ data heterogeneity



THEOREM 1. (Clustering Error under Asynchrony). When clustering relies on a similarity matrix A' derived with asynchronous model parameters, the mis-clustering rate p is bounded by:

$$p = O(\lambda \alpha \sqrt{\sum_{i=1}^{n} (\sum_{j=1}^{n} \|\tau_i - \tau_j\|^2)})$$
(4)

where $\lambda = \eta Q \theta U$, and η is the learning rate, Q is the local training steps, U is the upper bound of gradient, θ is the upper bound of staleness (details in Appendix A.1.1).

Mis-clustering rate

THEOREM 2. (Convergence of Training Objective). The training objective \mathcal{P} decreases monotonically, and thus the CFL framework converges under asynchrony, if the following condition is met:

$$\alpha \le \frac{\Omega(t)h_i}{|C_k|} \tag{5}$$

where $|C_k|$ is the size of cluster u_k , h_i is the computational capacity of c_i , and $\Omega(t)$ is a time-decreasing function (details in Appendix A.1.2).

Extra decay coefficient bound

Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

• Bi-level Asynchronous Aggregation

- **Rationale:** Meet **Theorem 2** to ensure convergence, let decay relevant to *time, computation and cluster scale*
- Cluster & Client-level Decay
 - Cluster-level Decay + Personalized Information = Client-level Decay

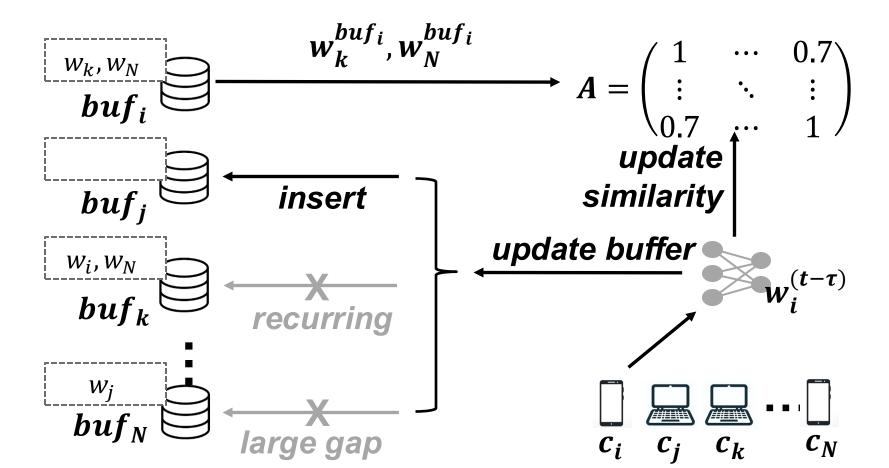
$$\alpha_{c,k}^{(t)} = \frac{\alpha_0 \Omega(t)}{\log(|C_k|)} \qquad \qquad \alpha_i^{(t)} = \begin{cases} \alpha_{c,k}^{(t)}, & \text{if } \tau_i \le r_c^{(t)} \\ \alpha_{c,k}^{(t)}/\sqrt{\tau_i}, & \text{if } \tau_i > r_c^{(t)} \end{cases}$$

- Why we decouple?
 - The cluster-level decay is not only a parameter, but a representation of cluster information, which we will discuss later

Problem unsolved: how to accurately cluster?

Buffer-Aided Dynamic Clustering

 Rationale: Meet Theorem 1 to limit τ_i – τ_j, clustering via *buffered* model parameters instead of *fresh* model parameters



Buffer-Aided Dynamic Clustering

- An interesting question: when to cluster?
 - We compare the largest eigengap $\lambda_{k+1} \lambda_k$ of similarity matrix and cluster-wise decay $\alpha_{c,k}^{(t)}$
 - We cluster only when $\alpha_{c,k}^{(t)} < (\lambda_{k+1} \lambda_k)^{\gamma}$
- Why cluster-wise decay?
 - Meet **Theorem 1** to limit α , clustering only when α is small is beneficial for accurate clustering
 - Once clustered, the $\alpha_{c,k}^{(t)}$ will be larger due to decreasing of $|C_k|$, making it more difficult for clustering again

• CASA+: Mitigating Staleness with Sparse Training

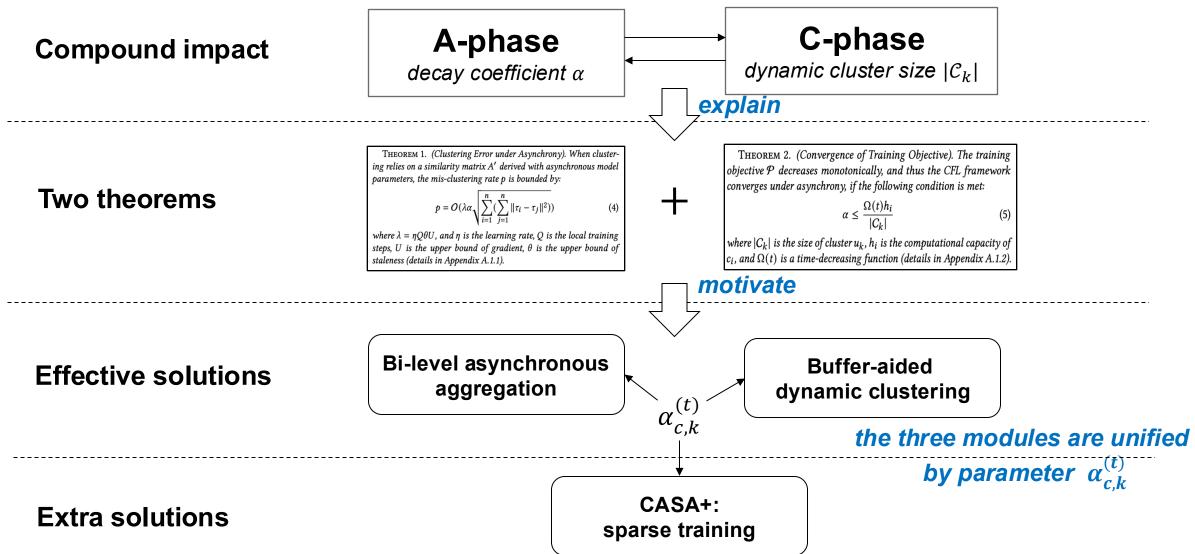
- We apply a mask to sparse the local model
- The sparse rate is relevant with divergence of decay $\alpha_{c,k}^{(t)} \alpha_i^{(t)}$
 - The *higher staleness*, the larger sparse rate!
 - The *larger cluster scale*, the larger sparse rate!
 - The *more round*, the larger sparse rate!

Rationale

- Efficiency: partial training helps to reduce computation cost
- **Staleness Robustness**: we only asynchronously aggregate under the masked area, larger mask could limit the influence of staleness

$$w_{g,k}^{(t+1)} \odot m_i^{(t-\tau_i)} = ((1-\alpha_i^{(t)})w_{g,k}^{(t)} + \alpha_i^{(t)}w_i^{(t-\tau_i)}) \odot m_i^{(t-\tau_i)}$$

Summary of our solutions



Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

• Setup

- Dataset
 - MNIST, CIFAR10, FEMNIST, IMU, HARBox
- Simulation
 - Different non-IID settings are simulated, including
 - Dirichlet distribution-based setting
 - Realistic setting
- Running Information
 - CPU: AMD Ryzen 9 5950X 16-Core Processor
 - GPU: NVIDIA GeForce RTX 3090

Experiments

Comparing methods

- Local Training:
 - Each client trains its model only with its local data
- Sync FL Algorithms:
 - FedAvg, FedProx, CFL, IFCA, ICFL
- Async FL Algorithms:
 - FedAsync, FedBuff, CFL-Async, IFCA-Async, ICFL-Async
- Ours:
 - CASA, CASA+ (CASA with sparse training)

Evaluation metrics

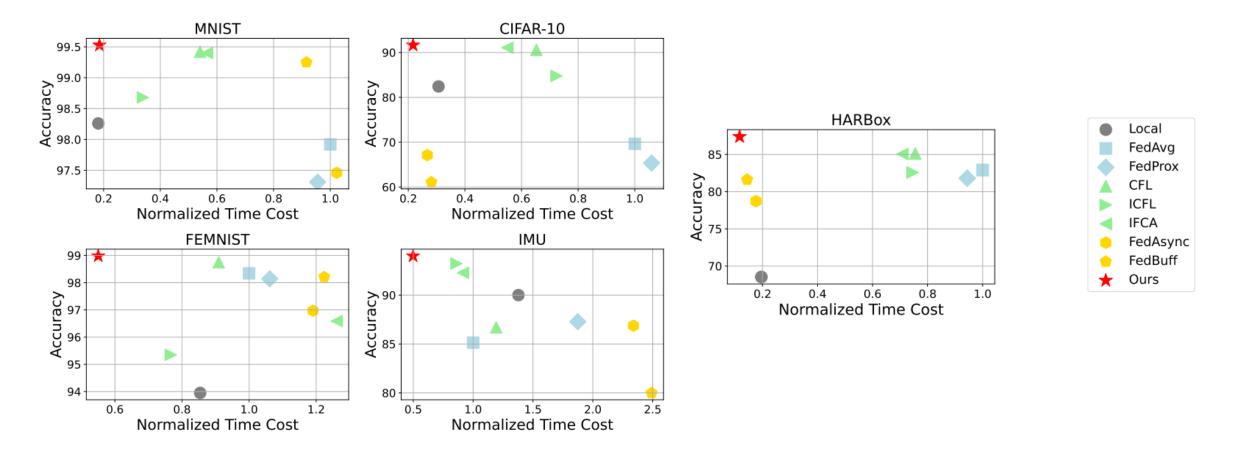
- Time to Convergence
- Time to Given Accuracy
- Accuracy

• Time-to-Accuracy

Туре	Method	MNIST		CIFAR-10		FEMNIST		IMU		HARBox	
		Acc	Time	Acc	Time	Acc	Time	Acc	Time	Acc	Time
N/A	Standalone	98.26	4.9	82.6	35.2	93.95	/	90.00	41.9	69.48	/
Sync	FedAvg	97.92	80.24	69.49	/	98.34	85.01	85.71	89.08	82.90	251.42
	FedProx	97.31	104.68	65.83	/	98.14	114.34	87.57	96.05	81.80	390.96
	CFL	99.42	30.63	90.50	209.55	98.75	75.14	86.29	94.93	85.06	170.99
		99.40(3)	11.21	89.10(3)	209.62	97.77(2)	145.34	94.28(2)	80.73	83.73(2)	334.34
	IFCA(k)	99.50(4)	12.8	90.88(4)	77.88	96.59(5)	237.46	92.67(3)	73.28	85.06(4)	226.53
		99.48(5)	5.61	91.14(5)	80.39	95.37(8)	279.85	91.81(4)	148.6	87.09(6)	220.98
	ICFL	98.68	12.18	84.19	36.49	95.35	121.65	93.23	30.45	82.58	126.43
Async	FedAsync	97.46	109.53	67.66	/	96.97	183.57	86.86	64.9	78.72	158.97
	FedBuff	99.25	53.31	61.11	/	98.21	82.63	80.00	282.9	81.62	55.7
	CFL-Async	99.23	9.54	89.97	145.8	98.68	36.67	87.71	69.3	82.43	59.8
		99.28(3)	9.53	83.41(3)	195.30	98.39(2)	81.07	89.61(2)	143.1	77.58(2)	252.60
	IFCA-Async(k)	98.88(4)	8.83	88.99(4)	80.70	97.78(5)	118.27	85.62(3)	143.1	78.13(4)	215.20
	•	99.32(5)	8.57	87.98(5)	83.20	97.62(8)	126.77	89.14(4)	87.77	76.81(6)	236.30
	ICFL-Async	98.82	5	83.30	25.3	94.66	/	91.52	81.83	79.65	92.00
Ours	CASA	99.52	2.80	91.45	23.4	98.97	36.2	95.33	37.47	87.38	54.8
	CASA+	99.34	4.80	90.64	20.3	98.53	35.03	94.57	22.71	87.21	53.6

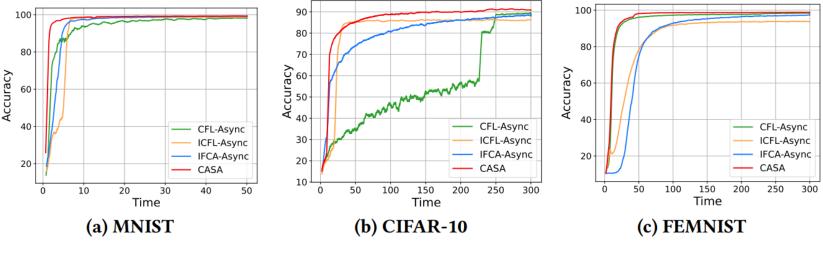
CASA outperform existing Sync & Async CFL algorithms under both Accuracy and Time-to-Accuracy

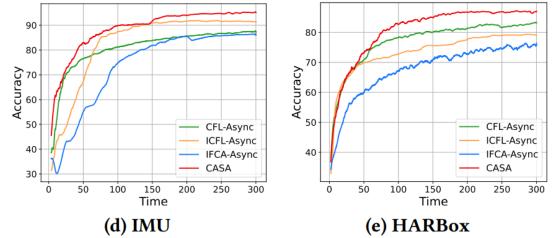
• Convergence Time & Accuracy



CASA outperform existing baselines under both Accuracy and Convergence Time

• Time & Accuracy of async baselines



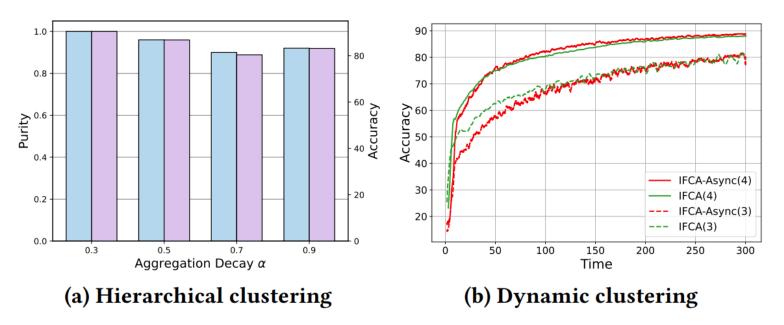


CASA outperform async version of existing baselines

Experiments

Impact on asynchrony on clustering

- For Hierarchical clustering (as CFL), aggregation decay influences the accuracy
- For Dynamic clustering (as IFCA), asynchrony will not bring convergence boost

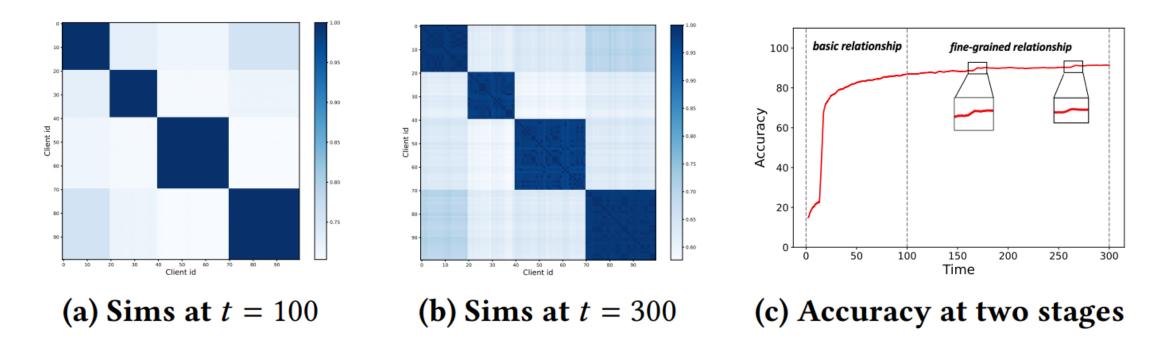


Asynchrony exerts impact on both hierarchical and dynamic clustering!

Experiments

Effectiveness of clustering

- We visualize the similarity matrix of clients
- We observe accuracy boost with the clustering in CASA



CASA can gradually captures more detailed relationships and boost accuracy

Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Conclusions

- We explore the asynchronous clustered federated learning, showing that the compound impact of asynchrony and clustering
- We propose CASA, a new framework that solves the compound impact simultaneously
- Extensive experiments on various datasets validate the performances on *accuracy and efficiency*

if you have problems, feel free to email <u>boyliu@buaa.edu.cn</u> or talk with me at Poster 90, 27th August

THANKSOU