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Background
l Unstructured data are increasingly represented 

as high-dimensional vectors for emerging AI 
applications
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Motivation
l Example: RAG for Time-relevant QA
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Problem Statement
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l Vector Dataset � =  �1, �2, …��  (�� ∈ ℝ�)
l Each vector is associated with two timestamps, 

��. � and ��. �, representing the start and end of its 
valid period
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Problem Statement
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l Timestamp Approximate Nearest Neighbor 
Search �����(�, �, ��,  �)
l Find a subset of � valid vectors that are 

approximately closest to �
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Problem Statement
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l Example
l The ground truth for �����(�,  �, ��, 3) is  �4, �2, �6 
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Distance �
�1 2.5
�2 1.9
�3 2.1
�4 1.1
�5 3.2
�6 2.6
�7 3.7



Existing Work
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l Differences from Range-Filtering ANNS [1,2,3,4]

[1] SeRF: Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. SIGMOD 2024.
[2] Approximate Nearest Neighbor Search with Window Filters. ICML 2024.
[3] iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering Nearest Neighbor Search. 
SIGMOD 2025.
[4] UNIFY: Unified Index for Range Filtered Approximate Nearest Neighbors Search. VLDB 2025.
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Preliminaries: Graph Index
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l Graph-based indexes are widely adopted for 
efficient ANNS [1,2] 

l Index construction: proximity graph with vectors 
as points

l Search: greedy routing in the graph
[1] A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest 
Neighbor Search. PVLDB 2021.
[2] Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art. SIGMOD 2025.



Preliminaries: Graph Index
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l Hierarchical Navigable Small-World graph 
(HNSW) [1]

l Maintains up to � neighbors for each point
l Achieve high accuracy by visiting �(log�) points
l Complexity

o Search: �(�log� )
o Space: �(��)

[1] Efficient and robust approximate nearest neighbor search using hierarchical navigable small world 
graphs. TPAMI 2018.
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Naïve Graph-based TANNS
l Build graph index for vectors valid at each 

timestamp, resulting in � graph

l Given query with timestamp ��，search in ��� 
with greedy routing
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……
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Build with all 
vectors valid 

at � = 1

l Incur a large space overhead of �(��2) 



Timestamp Graph
l Temporal Locality: valid vector sets at nearby 

timestamps largely overlap
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Valid data sets 
are similar 

�� ��+Δ

Graph indexes for
valid data are similar

� � + Δ



Timestamp Graph
l Construction: aggregate the all per-timestamp 

graph indexes into a single graph ��
l For each point, record its neighbor list when the 

neighbor list change
l At timestamp �, build �� on the basis of ��−1 and 

merge the information of �� into ��
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Timestamp Neighbors of �
�1 �1, �2, �3, �4, �5

�2 �1, �2, �3, �4, �6

�3 �1, �3, �4, �6, �7

…… ……

�

At timestamp between �1 and �2, 
neighbors for � are  �1, �2, �3, �4, �6 
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Timestamp Graph
l Search: timestamp-aware greedy routing
l Decide neighbor list of a point based on the query 

timestamp
l When searching with timestamp �, all points visited 

are valid at �
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Compressed Timestamp Graph
l Observation: a point can appear in neighbor 

lists for multiple timestamps
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Timestamp Neighbors of �
�1 �1, �2, �3, �4, �5

�2 �1, �2, �3, �4, �6

�3 �1, �3, �4, �6, �7

�4 �3, �4, �6, �7, �8

…… ……

l Solution: compress the neighbor list of each 
point into tree structure to reduce redundancy



Compressed Timestamp Graph
l Design historic neighbor tree to store the 

neighbor list for points
l Store each neighbor for only one time
l Support efficient reconstruction of neighbor list for 

each timestamp
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Compressed Timestamp Graph
l Design historic neighbor tree to store the 

neighbor list for points
l For example: reconstruct neighbor list of � at �2
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Complexity Analysis
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Search Update Space

Original HNSW �(�log� ) �(�log� ) �(��)

Naïve Graph-based TANNS �(�log� )  �(��log� ) �(��2)

Timestamp Graph �(log2 �) �(log2 �) �(�2�)

Compressed Timestamp Graph �(log2 �) �(log2 �) �(��)

�: vector number in the dataset
�: neighbor number in the graph index

Same as the 
Original HNSW index
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Experiment: Setup
l Datasets
l Standard high-dimensional vector datasets [1] with 

randomly generated start & end timestamps
o SIFT (128 dimensions, euclidean distance) 
o GIST (960 dimensions, euclidean distance)
o DEEP (96 dimensions, euclidean distance)
o GloVe (200 dimensions, cosine distance)

l Real-world vector datasets with timestamps
o TemporalWiki [2]: Wikipedia entities with time period, 

embedded with Longformer and DeBERTa
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[1] ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. IS 2020.
[2] TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models. 
EMNLP 2022.



Experiment: Setup
l Compared Method
l Pre-Filter
l Post-Filter (with HNSW)
l SeRF[1]: method for range-filtering ANNS
l ACORN[2]: predicate-agnostic method for filtered ANNS
l Timestamp Graph: our method
l Compressed Timestamp Graph: our method

l Metrics for Search Performance
l Recall rate: |�∩�∗|

�
 (�: returned result, �∗: ground truth)

l QPS: number of queries executed per second
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[1] SeRF: Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. SIGMOD 2024.
[2] ACORN: Performant and Predicate-Agnostic Search Over Vector Embeddings and Structured Data. 
SIGMOD 2024.



Experiment: Result
l Search Performance
l Accuracy: Over 99% recall rate for all datasets
l Efficiency: 4.4× to 138.1× improvement in QPS 

compared to baselines at 95% recall
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Experiment: Result
l Search Performance
l Varying Data Pattern: data pattern (i.e., selectivity) 

has small impact on our method
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ours
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Experiment: Result
l Index Construction
l Update Efficiency: ranges from 0.8× and 1.5× of 

the original HNSW update throughput
l Memory: compressed timestamp graph reduces 

memory cost by up to 51.4%
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Conclusion
l We investigate TANNS, a new query in vector databases 

for emerging AI applications.

l We propose the timestamp graph to manage valid 
vectors across timestamps by a single index.

l We design the historic neighbor tree to compress the 
timestamp graph and achieve the same space complexity 
as HNSW index without timestamp information.

l Our solution yields a recall rate of over 99% on all 
datasets, while improving the query efficiency by 4.4× to 
138.1× over the baselines.
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