
Timestamp Approximate Nearest Neighbor
Search over High-Dimensional Vector Data

Yuxiang Wang 1, Ziyuan He 1, Yongxin Tong 1,
Zimu Zhou 2, Yiman Zhong 1

1 Beihang University
2 City University of Hong Kong

Outline

l Background and Motivation

l Problem Statement

l Method

l Experiments

l Conclusions

2

Background
l Unstructured data are increasingly represented

as high-dimensional vectors for emerging AI
applications

3

Text Embedded Vectors

Deep Learning
Model

Retrieval Augmented
Generation (RAG)

Nearest Neighbor
Search

Image Embedded Vectors

Deep Learning
Model

Image Search

Nearest Neighbor
Search

Motivation
l Example: RAG for Time-relevant QA

4

Question: What was the highest
closing value of the NASDAQ-100
index before October 2024?

Large Language Model

Answer

Relevant
Document

Data StoreSearch with
time constraint

TimeValidity Period

Previous report Latest report

Outline

l Background and Motivation

l Problem Statement

l Method

l Experiment

l Conclusion

5

Problem Statement
6

l Vector Dataset � = �1, �2, …�� (�� ∈ ℝ�)
l Each vector is associated with two timestamps,

��. � and ��. �, representing the start and end of its
valid period

�2

Time

�1

�3
�4

�1. � �1. �

�5

�7

�6
Assume transaction time:

end timestamp �1. � is unknown
when �1 is newly added

Problem Statement
7

l Timestamp Approximate Nearest Neighbor
Search �����(�, �, ��, �)
l Find a subset of � valid vectors that are

approximately closest to �

�2

Time

�1

�3
�4

�5

�7

�6

�

��

Problem Statement
8

l Example
l The ground truth for �����(�, �, ��, 3) is �4, �2, �6

�2

Time

�1

�3
�4

�5

�7

�6

�

��

Distance �
�1 2.5
�2 1.9
�3 2.1
�4 1.1
�5 3.2
�6 2.6
�7 3.7

Existing Work
9

l Differences from Range-Filtering ANNS [1,2,3,4]

[1] SeRF: Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. SIGMOD 2024.
[2] Approximate Nearest Neighbor Search with Window Filters. ICML 2024.
[3] iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering Nearest Neighbor Search.
SIGMOD 2025.
[4] UNIFY: Unified Index for Range Filtered Approximate Nearest Neighbors Search. VLDB 2025.

�1

Attribute

�2

�3
�4

�

�5

�

Range-Filtering ANNS

�6
�7

Timestamp ANNS

�2

Time

�1

�3
�4

�5

�7

�6

�
� �

Preliminaries: Graph Index
10

l Graph-based indexes are widely adopted for
efficient ANNS [1,2]

l Index construction: proximity graph with vectors
as points

l Search: greedy routing in the graph
[1] A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest
Neighbor Search. PVLDB 2021.
[2] Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art. SIGMOD 2025.

Preliminaries: Graph Index
11

l Hierarchical Navigable Small-World graph
(HNSW) [1]

l Maintains up to � neighbors for each point
l Achieve high accuracy by visiting �(log�) points
l Complexity

o Search: �(�log�)
o Space: �(��)

[1] Efficient and robust approximate nearest neighbor search using hierarchical navigable small world
graphs. TPAMI 2018.

Outline

l Background and Motivation

l Problem Statement

l Method

l Experiments

l Conclusions

12

Naïve Graph-based TANNS
l Build graph index for vectors valid at each

timestamp, resulting in � graph

l Given query with timestamp ��，search in ���
with greedy routing

13

……

�1 �2 ��

Build with all
vectors valid

at � = 1

l Incur a large space overhead of �(��2)

Timestamp Graph
l Temporal Locality: valid vector sets at nearby

timestamps largely overlap

14

Valid data sets
are similar

�� ��+Δ

Graph indexes for
valid data are similar

� � + Δ

Timestamp Graph
l Construction: aggregate the all per-timestamp

graph indexes into a single graph ��
l For each point, record its neighbor list when the

neighbor list change
l At timestamp �, build �� on the basis of ��−1 and

merge the information of �� into ��

15

Timestamp Neighbors of �
�1 �1, �2, �3, �4, �5

�2 �1, �2, �3, �4, �6

�3 �1, �3, �4, �6, �7

…… ……

�

At timestamp between �1 and �2,
neighbors for � are �1, �2, �3, �4, �6

Historic Neighbor List

Timestamp Graph
l Search: timestamp-aware greedy routing
l Decide neighbor list of a point based on the query

timestamp
l When searching with timestamp �, all points visited

are valid at �

16

Compressed Timestamp Graph
l Observation: a point can appear in neighbor

lists for multiple timestamps

17

Timestamp Neighbors of �
�1 �1, �2, �3, �4, �5

�2 �1, �2, �3, �4, �6

�3 �1, �3, �4, �6, �7

�4 �3, �4, �6, �7, �8

…… ……

l Solution: compress the neighbor list of each
point into tree structure to reduce redundancy

Compressed Timestamp Graph
l Design historic neighbor tree to store the

neighbor list for points
l Store each neighbor for only one time
l Support efficient reconstruction of neighbor list for

each timestamp

18

� ��� �2
[�1, �2]

�5
[�1, �1]

�8
[�4, �5]

�9
[�5, �5]

�15
[�8, �8]

�12
[�7, �7]

�17
[�10, �10]

�1
[�1, �3]

 �7
[�3, �5]

�16
[�9, �9]

�3
[�1, �7]

�4
[�1, �7]

�11
[�6, �6]

�
(�6)Historic Neighbor Tree of o

�
(�3)

�
(�9)

�10
[�6, …]

�13
[�8, …]

�14
[�8, …]

�18
[�11, …]

Current Neighbor List of � �6
[�2, …]

Compressed Timestamp Graph
l Design historic neighbor tree to store the

neighbor list for points
l For example: reconstruct neighbor list of � at �2

19

� ��� �5
[�1, �1]

�8
[�4, �5]

�9
[�5, �5]

�15
[�8, �8]

�12
[�7, �7]

�17
[�10, �10]

 �7
[�3, �5]

�16
[�9, �9]

�11
[�6, �6]

�10
[�6, …]

�13
[�8, …]

�14
[�8, …]

�18
[�11, …]

�
(�6)

Current Neighbor List of �

�
(�3)

�
(�9)

�6
[�2, …]

�2
[�1, �2]

�1
[�1, �3]

�3
[�1, �7]

�4
[�1, �7]

Historic Neighbor Tree of o

Complexity Analysis
20

Search Update Space

Original HNSW �(�log�) �(�log�) �(��)

Naïve Graph-based TANNS �(�log�) �(��log�) �(��2)

Timestamp Graph �(log2 �) �(log2 �) �(�2�)

Compressed Timestamp Graph �(log2 �) �(log2 �) �(��)

�: vector number in the dataset
�: neighbor number in the graph index

Same as the
Original HNSW index

Outline

l Background and Motivation

l Problem Statement

l Method

l Experiment

l Conclusion

21

Experiment: Setup
l Datasets
l Standard high-dimensional vector datasets [1] with

randomly generated start & end timestamps
o SIFT (128 dimensions, euclidean distance)
o GIST (960 dimensions, euclidean distance)
o DEEP (96 dimensions, euclidean distance)
o GloVe (200 dimensions, cosine distance)

l Real-world vector datasets with timestamps
o TemporalWiki [2]: Wikipedia entities with time period,

embedded with Longformer and DeBERTa

22

[1] ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. IS 2020.
[2] TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models.
EMNLP 2022.

Experiment: Setup
l Compared Method
l Pre-Filter
l Post-Filter (with HNSW)
l SeRF[1]: method for range-filtering ANNS
l ACORN[2]: predicate-agnostic method for filtered ANNS
l Timestamp Graph: our method
l Compressed Timestamp Graph: our method

l Metrics for Search Performance
l Recall rate: |�∩�∗|

�
 (�: returned result, �∗: ground truth)

l QPS: number of queries executed per second

23

[1] SeRF: Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. SIGMOD 2024.
[2] ACORN: Performant and Predicate-Agnostic Search Over Vector Embeddings and Structured Data.
SIGMOD 2024.

Experiment: Result
l Search Performance
l Accuracy: Over 99% recall rate for all datasets
l Efficiency: 4.4× to 138.1× improvement in QPS

compared to baselines at 95% recall

24

ours

16.5× 46.2×

GIST Glove

Experiment: Result
l Search Performance
l Varying Data Pattern: data pattern (i.e., selectivity)

has small impact on our method

25

ours

Short (Low Selectivity)Long (High Selectivity)

33.4×21.6×

Experiment: Result
l Index Construction
l Update Efficiency: ranges from 0.8× and 1.5× of

the original HNSW update throughput
l Memory: compressed timestamp graph reduces

memory cost by up to 51.4%

26

51.4%

17.2%

Outline

l Background and Motivation

l Problem Statement

l Method

l Experiment

l Conclusion

27

Conclusion
l We investigate TANNS, a new query in vector databases

for emerging AI applications.

l We propose the timestamp graph to manage valid
vectors across timestamps by a single index.

l We design the historic neighbor tree to compress the
timestamp graph and achieve the same space complexity
as HNSW index without timestamp information.

l Our solution yields a recall rate of over 99% on all
datasets, while improving the query efficiency by 4.4× to
138.1× over the baselines.

28

29

Thank
You

Q & A

