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Background

e Unstructured data are increasingly represented
as high-dimensional vectors for emerging Al
applications
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Motivation

e Example: RAG for Time-relevant QA

Question: What was the highest
closing value of the NASDAQ-100
index before October 20247

Search with Data Store
time constraint
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Problem Statement

e Vector Dataset = 4, -, .. ( )

Each vector is associated with two timestamps,
and . , representing the start and end of its
valid period

1

Assume transaction time:
end timestamp ;. is unknown
when ; is newly added

>
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Problem Statement

e Timestamp Approximate Nearest Neighbor
Search C.., )

e Find a subset of valid vectors that are
approximately closest to
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Problem Statement

e Example
o The ground truth for (., ,3is 4 2 6
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Existing Work

¢ Differences from Range-Filtering ANNS [1.2.3.4]

Range-Filtering ANNS Timestamp ANNS
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[1] SeRF: Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. SIGMOD 2024.
[2] Approximate Nearest Neighbor Search with Window Filters. ICML 2024.

[3] iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering Nearest Neighbor Search.
SIGMOD 2025.

[4] UNIFY: Unified Index for Range Filtered Approximate Nearest Neighbors Search. VLDB 2025.
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Preliminaries: Graph Index

e Graph-based indexes are widely adopted for
efficient ANNS [1.2]

e Index construction: proximity graph with vectors
as points

e Search: greedy routing in the graph

[1] A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest
Neighbor Search. PVLDB 2021.
[2] Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art. SIGMOD 2025.
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Preliminaries: Graph Index

e Hierarchical Navigable Small-World graph
(HNSW) 1]
e Maintains up to neighbors for each point
o Achieve high accuracy by visiting (log ) points

o Complexity
o Search: ( log )
o Space: ( )

[1] Efficient and robust approximate nearest neighbor search using hierarchical navigable small world
graphs. TPAMI 2018.
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Naive Graph-based TANNS

e Build graph index for vectors valid at each
timestamp, resulting in  graph

Build with all Q/G\g

vectors valid
at =1

1 2

e Given query with timestamp , search in
with greedy routing

e Incur a large space overhead of (  ?)
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Timestamp Graph

e Temporal Locality: valid vector sets at nearby
timestamps largely overlap

Valid data sets
are similar

+ A

Graph indexes for
@%i valid data are similar %

+A
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Timestamp Graph

e Construction: aggregate the all per-timestamp
graph indexes into a single graph
For each point, record its neighbor list when the
neighbor list change

At timestamp , build  on the basis of _; and
merge the information of  into

Historic Neighbor List

Timestamp Neighbors of

1 1, 20 3 4 5

2 1 20 3 4 6

3 3 4 6 7
| Attimestamp between ; and »,

neighbors for are 41, 5, 3, 4, 6



Timestamp Graph

e Search: timestamp-aware greedy routing
e Decide neighbor list of a point based on the query
timestamp
e When searching with timestamp , all points visited
are valid at

16
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f Compressed Timestamp Graph

e Observation: a point can appear in neighbor
lists for multiple timestamps

Timestamp Neighbors of v | w | w
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e Solution: compress the neighbor list of each
point into tree structure to reduce redundancy
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Compressed Timestamp Graph

e Design historic neighbor tree to store the
neighbor list for points
e Store each neighbor for only one time

o Support efficient reconstruction of neighbor list for
each timestamp

Historic Neighbor Tree of O>
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Compressed Timestamp Graph

e Design historic neighbor tree to store the
neighbor list for points

o For example: reconstruct neighbor list of at »

2 5 E 8 9 12 15 17
[ 2] | [ 4l i [4 5] |[5 sl [7. 71| [s &l [ 10, 10l
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y Complexity Analysis

Search Update Space

Original HNSW (log )| ( log ) C )

Naive Graph-based TANNS (log )| C log J ( 3

Timestamp Graph (log? ) (log? ) ( %)

Compressed Timestamp Graph (log? ) (log? ) ( )
Same as the B

: vector number in the dataset

. neighbor number in the graph index

Original HNSW index
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Experiment: Setup

e Datasets

Standard high-dimensional vector datasets [l with
randomly generated start & end timestamps

SIFT (128 dimensions, euclidean distance)
GIST (960 dimensions, euclidean distance)
DEEP (96 dimensions, euclidean distance)
GloVe (200 dimensions, cosine distance)

Real-world vector datasets with timestamps

TemporalWiki [2: Wikipedia entities with time period,
embedded with Longformer and DeBERTa

[1] ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. IS 2020.
[2] TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models.
EMNLP 2022.
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Experiment: Setup

e Compared Method
Pre-Filter
Post-Filter (with HNSW)
SeRF!'l: method for range-filtering ANNS
ACORN!I2!: predicate-agnostic method for filtered ANNS
Timestamp Graph: our method
Compressed Timestamp Graph: our method

e Metrics for Search Performance

Recall rate: -2 ( : returned result, :ground truth)

QPS: number of queries executed per second

[1] SeRF: Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. SIGMOD 2024.
[2] ACORN: Performant and Predicate-Agnostic Search Over Vector Embeddings and Structured Data.

SIGMOD 2024.
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Experiment: Result

e Search Performance

e Accuracy: Over 99% recall rate for all datasets
o Efficiency: 4.4 X to 138.1 X improvement in QPS

compared to baselines at 95% recall
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Experiment: Result

e Search Performance

o Varying Data Pattern: data pattern (i.e., selectivity)
has small impact on our method

—————————————————————————————
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Result

e Index Construction

Experiment

5% of

ranges from 0.8 X and 1.

o Update Efficiency

the original HNSW update throughput

tamp graph reduces

Imes

compressed t
memory cost by up to 51.4%

e Memory

E=X] Compressed Timestamp Graph  E-X] Post-Filtering (HNSW)

Timestamp Graph

51.4%
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Conclusion

o We investigate TANNS, a new query in vector databases
for emerging Al applications.

o We propose the timestamp graph to manage valid
vectors across timestamps by a single index.

o We design the historic neighbor tree to compress the
timestamp graph and achieve the same space complexity
as HNSW index without timestamp information.

e Our solution yields a recall rate of over 99% on all
datasets, while improving the query efficiency by 4.4 X to
138.1 X over the baselines.
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