Timestamp Approximate Nearest Neighbor Search over High-Dimensional Vector Data

Yuxiang Wang¹, Ziyuan He¹, Yongxin Tong¹, Zimu Zhou², Yiman Zhong¹

¹ Beihang University ² City University of Hong Kong

Outline

- Background and Motivation
- Problem Statement
- Method
- Experiments
- Conclusions

Background

 Unstructured data are increasingly represented as high-dimensional vectors for emerging AI applications

Motivation

• Example: RAG for Time-relevant QA

Question: What was the highest closing value of the NASDAQ-100 index before **October 2024**?

Outline

- Background and Motivation
- Problem Statement
- Method
- Experiment
- Conclusion

Problem Statement

- Vector Dataset $D = \{u_1, u_2, ..., u_N\} (u_i \in \mathbb{R}^d)$
 - Each vector is associated with two timestamps, *u_i*. *s* and *u_i*. *e*, representing the start and end of its valid period

Problem Statement

- Timestamp Approximate Nearest Neighbor Search TANNS(D, q, ts, k)
 - Find a subset of k valid vectors that are approximately closest to q

Problem Statement

Example

• The ground truth for TANNS(D, q, ts, 3) is $\{u_4, u_2, u_6\}$

Existing Work

• Differences from Range-Filtering ANNS^[1,2,3,4]

[1] SeRF: Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. SIGMOD 2024. [2] Approximate Nearest Neighbor Search with Window Filters. ICML 2024.

[3] iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering Nearest Neighbor Search. SIGMOD 2025.

[4] UNIFY: Unified Index for Range Filtered Approximate Nearest Neighbors Search. VLDB 2025.

Preliminaries: Graph Index

- Graph-based indexes are widely adopted for efficient ANNS^[1,2]
- Index construction: proximity graph with vectors as points

• Search: greedy routing in the graph

[1] A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest Neighbor Search. PVLDB 2021.

[2] Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art. SIGMOD 2025.

Preliminaries: Graph Index

- Hierarchical Navigable Small-World graph (HNSW)^[1]
 - Maintains up to *M* neighbors for each point
 - Achieve high accuracy by visiting O(log N) points
 - Complexity
 - Search: $O(M \log N)$
 - Space: O(MN)

[1] Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. TPAMI 2018.

Outline

- Background and Motivation
- Problem Statement
- Method

- Experiments
- Conclusions

Naïve Graph-based TANNS

 Build graph index for vectors valid at each timestamp, resulting in T graph

- Given query with timestamp ts, search in G_{ts} with greedy routing
- Incur a large space overhead of $O(MN^2)$

Timestamp Graph

 Temporal Locality: valid vector sets at nearby timestamps largely overlap

Timestamp Graph

- Construction: aggregate the all per-timestamp graph indexes into a single graph *TG*
 - For each point, record its neighbor list when the neighbor list change
 - At timestamp t, build G_t on the basis of G_{t-1} and merge the information of G_t into TG

Historic Neighbor List

Timestamp	Neighbors of v		
t_1	u_1, u_2, u_3, u_4, u_5		
<i>t</i> ₂	u_1, u_2, u_3, u_4, u_6		
t ₃	u_3, u_4, u_6, u_7		
At times	stamp between t_1 and		

Timestamp Graph

- Search: timestamp-aware greedy routing
 - Decide neighbor list of a point based on the query timestamp
 - When searching with timestamp t, all points visited are valid at t

Compressed Timestamp Graph

 Observation: a point can appear in neighbor lists for multiple timestamps

Timestamp	Neighbors of v	$\begin{bmatrix} 3 & u_3 & u_4 & u_{11} \end{bmatrix}$
t_1	u_1, u_2, u_3, u_4, u_5	$\begin{array}{c c} (t_6) & t_1, t_7 \end{array} & t_1, t_7 \end{array}$
t ₂	u_1, u_2, u_3, u_4, u_6	$1 u_1 u_7 $ $5 u_{16}$
t ₃	u_1, u_3, u_4, u_6, u_7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
t_4	u_3, u_4, u_6, u_7, u_8	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		$\begin{bmatrix} t_1, t_2 \end{bmatrix} \begin{bmatrix} t_1, t_1 \end{bmatrix} \begin{bmatrix} t_4, t_5 \end{bmatrix} \begin{bmatrix} t_5, t_5 \end{bmatrix} \begin{bmatrix} t_7, t_7 \end{bmatrix} \begin{bmatrix} t_8, t_8 \end{bmatrix} \begin{bmatrix} t_{10}, t_{10} \end{bmatrix}$

• Solution: compress the neighbor list of each point into tree structure to reduce redundancy

Compressed Timestamp Graph

- Design historic neighbor tree to store the neighbor list for points
 - Store each neighbor for only one time
 - Support efficient reconstruction of neighbor list for each timestamp

Compressed Timestamp Graph

- Design historic neighbor tree to store the neighbor list for points
 - For example: reconstruct neighbor list of o at t_2

Complexity Analysis

	Search	Update	Space
Original HNSW	$O(M\log N)$	$O(M\log N)$	O(MN)
Naïve Graph-based TANNS	$O(M\log N)$	O(MNlogN)	$O(MN^2)$
Timestamp Graph	$O(\log^2 N)$	$O(\log^2 N)$	$O(M^2N)$
Compressed Timestamp Graph	$O(\log^2 N)$	$O(\log^2 N)$	O(MN)
N: vector number in the dataset		Same as the Original HNSW index	

M: neighbor number in the graph index

20

Outline

- Background and Motivation
- Problem Statement
- Method
- Experiment
- Conclusion

Experiment: Setup

Datasets

- Standard high-dimensional vector datasets^[1] with randomly generated start & end timestamps
 - SIFT (128 dimensions, euclidean distance)
 - GIST (960 dimensions, euclidean distance)
 - DEEP (96 dimensions, euclidean distance)
 - GloVe (200 dimensions, cosine distance)
- Real-world vector datasets with timestamps
 - TemporalWiki^[2]: Wikipedia entities with time period, embedded with Longformer and DeBERTa

[1] ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. IS 2020.
[2] TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models.
EMNLP 2022.

Experiment: Setup

- Compared Method
 - Pre-Filter
 - Post-Filter (with HNSW)
 - SeRF^[1]: method for range-filtering ANNS
 - ACORN^[2]: predicate-agnostic method for filtered ANNS
 - Timestamp Graph: our method
 - Compressed Timestamp Graph: our method
- Metrics for Search Performance
 - Recall rate: $\frac{|r \cap r^*|}{k}$ (r: returned result, r^* : ground truth)
 - QPS: number of queries executed per second

[1] SeRF: Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. SIGMOD 2024.
 [2] ACORN: Performant and Predicate-Agnostic Search Over Vector Embeddings and Structured Data.
 SIGMOD 2024.

Experiment: Result

- Search Performance
 - Accuracy: Over 99% recall rate for all datasets
 - Efficiency: 4.4 × to 138.1 × improvement in QPS compared to baselines at 95% recall

Experiment: Result

Search Performance

 Varying Data Pattern: data pattern (i.e., selectivity) has small impact on our method

Experiment: Result

- Index Construction
 - Update Efficiency: ranges from 0.8 × and 1.5 × of the original HNSW update throughput
 - Memory: compressed timestamp graph reduces memory cost by up to 51.4%

Outline

- Background and Motivation
- Problem Statement
- Method
- Experiment
- Conclusion

Conclusion

- We investigate TANNS, a new query in vector databases for emerging AI applications.
- We propose the timestamp graph to manage valid vectors across timestamps by a single index.
- We design the historic neighbor tree to compress the timestamp graph and achieve the same space complexity as HNSW index without timestamp information.
- Our solution yields a recall rate of over 99% on all datasets, while improving the query efficiency by 4.4 × to 138.1 × over the baselines.

Q & A

