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Federated Learning ;

o What is Federated Learning (FL) ?
A distributed learning paradigm using datasets across
data owners (eg. hospitals) without accessing raw data [1,2]

~

,
e " b= a@er+-+a0y | Major Features:

@ Keeping the private data local
@ Only sharing the parameters

3 Data quality are heterogenous

Data owners may be reluctant to share high-quality

datasets unless the their data value are fairly measured

[1] Federated Machine Learning: Concept and Applications. ACM TIST 2019
[2] Advances and open problems in federated learning. Found. Trends Mach. Learn. 2021.



Shapley Value for Data Valuation ;

o Why Shapley value (SV) ?

The SV is a classical concept for measuring contributions in a
cooperation, which holds several essential fairness properties

1 u(su{ih)-u(s)
b; = ;ZSEN\{i} (l|5| )

n—-1 The Essential Fairness Properties of SV

\é‘mig n contribution for players (i) Null Player: Player P; without impact on utility has
o 'e) 0O zero contribution in the cooperation, i.e., ¢; =0
5 20 080 000 O 2 2 O (i) Symmetric Fairness: If two players P;, P; can be
RABD/ NB D BB D RH @ alternatives for each other in the game, they will be
P S P S e aned with th tribution. i.e.. & = b,
ARG A% A S AS £& assigned with the same contribution, i.e., ¢; = ¢;

(iii) Group Rationality: The sum of contributions of
all players in the game is exactly equal to the utility
with all players, i.e., Y,;ex 9i = U(N)

By assessing all 2" combinations of players

The Shapley Value has been widely considered as the

standard metric in both DB and Al community [3,4]

[3] The Shapley value in database management. SIGMOD Rec. 2023
[4] The Shapley value in machine learning. IJCAI 2022.



Shapley Value meets Federated Learning -

o Challenges of SV-based Data valuation solution

If we calculate the SV-based data valuation directly in FL, the
computational cost can be prohibited due to following reasons:

Data Valuation for Federated Learning Existing approximation algorithms

Computation Complexity:

O Aw = AAwq + -+ Awy)
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View FL client as player
and loss/accuracy as utility
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Approx. idea 2: Gradient-Reconstrilction

Reconstructed
FL Models

i Amit) Aw(zo Awgt)

() 4 o0
n-1 i M1,2), M43,

. . e Miz3), M), avoid extra
It is necessary to train 2" FL models : M. M3, Mo model training

Objective: how to effectively approximate the SV-based

data valuation for the FL scenario ?




Shapley Value meets Federated Learning

o Limitation of existing solutions:

Existing approximation algorithms Limitation 1:

Computation Complexity:

n
0("-1)
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Approx. tdea 1: Samplmg
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SIGMOD24, ICDE 22, AISTATS, IC]\ﬂ\)\‘] 9, etc

Approx. idea 2: Gradient-Reconstruction
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fhoe e = My3), My, avoid extra
H M, M, M g9
; 256y e model training
E Reconstructed
H Aa)() Aw() Aw() FL Models

ACM TIST24, FLPI 20, Big Datal9, etc

Ignoring selecting the suitable
computatwn scheme of Shapley Value.
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Marg/nal Contribution Based Complementary Contribution Based ,"

Limitation 2:

Ignoring utilizing intrinsic properties of

utlltty functton in fedemted learnmg

Can we design more effective approximation algorithms ?
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Problem Statement :

e Data Valuation for FL

Given n FL clients with datasets Dy = {D4,...,D,,}, and a FL
algorithm A, the federation trains model M¢(A) under a subset
of clients S € N, and evaluates it utility U(Ms) on test dataset 7.

Then, data valuation problem is to qualify contribution of dataset
D; as ¢(A,Dy,T,D;) (¢; for short) with following properties:

Three desirable properties

M{LZ}%} %U Mi1217) | D Null-Player

VS C N,U(Ms) = U(Mgy;3) = ¢j = 0

@ Symmetric-Fairness

*VS € N\{i,j}, U(Msu(n) = UMsui) = ¢ = ¢

® Linear-Additivity

*iNT, =0 =>Vi€eEN,¢;(TLUT) = ¢i(T) + ¢:(77)

Shapley Value based data valuation naturally inherits its

fairness properties and ensures above desirable properties



Problem Statement 10

e The SV-based Data Valuation Schemes

There are two commonly used equivalent Shapley value expression
and each provides a computation scheme for the data valuation.

2R Marginal Contribution SV N O 2. Complementary Contribution SV N
based Computation Scheme (MC-SV) based Computation Scheme (CC-SV) [5]

UMsyy) — UM U(Msup) — UMusugp)
$(A Dy, T, D)) = (Msuin) - (Ms) ¢(A,Dy,T,D;) = z L \(SUip)
n-(,2) SCN\(i} n- (.0

\_ e VAN Y,

Example with 3 FL clients

s 0 () @ 3 (L2 (L3 (23 (123
U(Ms) 010 050 070 060 080 090 090 096 Take ¢, as an example

1) For|S| =0, compute U({1}) — U(@) = 0.40
2) For|S| = 1, compute U({1,2}) — U({2}) = 0.10,U({1,3}) — U({3}) = 0.30

3) ForlS| =2, compute U({1,2,3}) —U({2,3}) = 0.06
Then, based on MC-SV, ¢p; = (0.4 +1+ (0.1 +0.3) + 2+ 0.06 +1) +3 =0.22

As both the MC-SV and CC-SV based scheme requires O(2") FL

models, efficient and accurate approximation algorithm is expected
[5] Efficient Sampling Approaches to Shapley Value Approximation. SIGMOD 2023.
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Our solution 2

e Overview:

D We propose a unified stratified sampling framework to support both
the MC-SV and CC-SV and then find MC-SV is more appropriate for the
proposed approximating framework through theoretical analysis.

Naturally Stratified
‘ D1,D3,D3,Dy F ———————————————— ————r*my =1
utility:0.95
D1,D2,D3| | D1,D2,Ds | D1,D3,Dy | D3D3,Dy——T———>m3=2
utility:0.92 utility:0.90 utility:0.88 utility:0.85
D,D; | Dy,D3  D1,Dy | | DDz | DDy D3 Dy “my=3

utility:0.90 utility:0.92 utility:0.88 utility:0.85 utility:0.88 utility:0.82

Dy | | D, | D3 | Dy ———>my =3

utility:0.88 utility:0.85 utility:0.80 utility:0.75

------------------

utility:0.10




Our solution 3

e Overview:

D We propose a unified stratified sampling framework to support both
the MC-SV and CC-SV and then find MC-SV is more appropriate for the
proposed approximating framework through theoretical analysis.

@ We observe a key insight for MC-SV, i.e., only limited dataset
combinations highly affect the final data values under loss/acc utility.

——————————————————————————————————————————

utility:0.90  utility:0.92 utility:0.88 utility:0.85 utility:0.88 utility:0.82 |

B R P R R =

utility:0.88 utility:0.85 utility:0.80 utility:0.75

with high impacts [ !




Our solution: Framework

o Unified Stratified Sampling Framework

Step 1: \1 ( Step 2: Step 3:
Choose FL client »Train and Evaluate Compute Data Valu
Combinations J L the FL Models of FL Clients
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Our solution: Framework i
o Unified Stratified Sampling Framework

Step 1: W ( Step 2: Step 3:
Choose FL client »Train and Evaluate Compute Data Value
Combinations J L the FL Models of FL Clients

Set Sampling
Round y = 10

All dataset combinations \ D1,D3,D3,Dy \

D1,D3,DP3 | D1,D2Dy| Dy,D3,Ds| Dy D3,Dy

D1,D; | | D1,D3 D1,Ds| D2Ds D2, Dy| | D3Dy




Our solution: Framework X
o Unified Stratified Sampling Framework

Step 1: W ( Step 2: Step 3:
Choose FL client »Train and Evaluate Compute Data Value
Combinations J L the FL Models of FL Clients

Set Sampling
Round y = 10

All dataset combinations \ D1,D3,D3,Dy \

D1,D3,DP3 | D1,D2Dy| Dy,D3,Ds| Dy D3,Dy

D1,D; | | D1,D3 D1,Ds| D2Ds D2, Dy| | D3Dy




Our solution: Framework z
o Unified Stratified Sampling Framework

Step 1: W ( Step 2: Step 3:
Choose FL client »Train and Evaluate Compute Data Value
Combinations J L the FL Models of FL Clients

{ Set Sampling ’i
m;
i=0

Round y = 10
All dataset combinations \ D1,D3,D3,D,4 \ ————————————————— +my, =1
D1,D3,D3| D1,D2, Dy | D1,D3,Dy |Dy,D3Dy—————~ *mz = 2
D1D2| | D1,D3| D1Dy [DyD3 | | DyDy | | D3Dy ~ my=3




Our solution: Framework 1
o Unified Stratified Sampling Framework

Step 1: W ( Step 2: Step 3:
Choose FL client »Train and Evaluate Compute Data Value
Combinations J the FL Models of FL Clients

Train and evaluate FL models Mg with chosen combinations: S € {@,{D;},{D,},{D3},
{Dlr DZ}) {Dl) DB}I {DZI DB}) {Dli DZ; DB}) {DZI DS; Dll-}; {Dll DZ; D3; Dll-}; }

All dataset combinations \ D1,D;,D3,D,4 \ ————————————————— +my =1

Dy,D;3,D3 Dy, D3, Dy ——— >mg =2

DD, |Dy,Ds | T my =3




Our solution: Framework 1
o Unified Stratified Sampling Framework

Step 1: W ( Step 2: Step 3:
Choose FL client »Train and Evaluate Compute Data Value
Combinations J the FL Models of FL Clients

Train and evaluate FL models Mg with chosen combinations: S € {@,{D;},{D,},{D3},
{Dlr DZ}) {Dl) DB}I {DZI DB}) {Dli DZ; DB}) {DZI DS; Dll-}; {Dll DZ; D3; Dll-}; }

All dataset combinations \ D1,D;,D3,D,4 \ ————————————————— +my =1

‘DLDZ'DB ‘ ‘Dz,Dg,DLl_ F _____ *my = 2
utility:0.92 utility:0.85
Dy,D; D1,D; T 7m,=3
utility:0.90 utility:0.92 utility:0.85

1311)2 ———————— »>m; =3

utility:0.88 utility:0.85 utility:0.80

wtility:0.10 | @ | __ amg =1




Our solution: Framework 20
o Unified Stratified Sampling Framework

Step 1: W ( Step 2: Step 3:
Choose FL client »Train and Evaluate Compute Data Value
Combinations J L the FL Models of FL Clients

- -

"N

1
¢i<—£

i Sg ses UM) — U(M)
k=1

m;k

All dataset combinations \ D1,D;,D3,D,4 \ ————————————————— +my =1

‘DLDZ'DB ‘ ‘Dz,Dg,DLl_ F _____ *my = 2
utility:0.92 utility:0.85
Dy,D; D1,D; T 7m,=3
utility:0.90 utility:0.92 utility:0.85

1311)2 ———————— »>m; =3

utility:0.88 utility:0.85 utility:0.80

wtility:0.10 | @ | __ amg =1




Our solution: Framework 2
o Analysis of the stratified sampling framework

________
-~ =~

1
¢i‘—;

n

ses UMs) — U(Ms N S

2 Lsses UMs) — UMs) Unify the MC-SV and CC-SV by setting S to be S\{i} or N\S
m; g

k=1 ’

__________________________________________________________________________________________

Expectation Analysis

Theorem 1. The SS framework can provide ~MC ~cc U(Mg) — U(My)
unbiased estimation of SV in expectation for IE[d)i ] = E[(pi ] - n- ( 5] = P
both the MC-SV and CC-SV based scheme SEN\{I} n-1

1
________________________________________________________________________________________________________________________________________________________________________________

Variance Analysis

ETheorem 2. For any sampling strategy using CC-SV n )
based scheme, using MC-SV based scheme can V[ A£WC] _ W[(l;lcc] > z Z IDgl20% > 0
k=1"S

. . . . 2 .m?
yield lower estimation variance ne - miy
o CCSS e MCSS o CCSS  » MCSS
02 "o . [IN] 0.2 o . 2 02 ..L'
» 02 . l 0.1 l 3 i’ s . .- I %
£ 4 o i Y E0l . 0.1 0.1 o
£u| _ AR A‘a\ 5 v 5
00, - * " 200 = 0.0 ‘; \ 0o = =’ T - 0.0 i
0 4 & 0 32 6 ] 312 1024 L 4 8 ] 32 6 1] 512 1024
Sampling rounds (¥)  Sampling rounds (y) Sampling rounds () Sampling rounds ()  Sampling rounds () Sampling rounds (y)

{a) Client #3~#10 using MLP model (b) Client #3~#10 using CNN model

Experimental results on FEMNIST show that MC-SV variance is clearly lower than CC-SV.

Takeaway: MC-SV is more appropriate for proposed framework



Our solution: Optimization

o Key Observations on MC-SV based Scheme

1 U(Msygy) — U(Ms)
Pi=7 (n—l)
Se(N\Li}) ./ S|

/
/
/

: . ®
Observation 1: As size of data
combination |S| increases, marginal
contribution decreases noticeably.

Model Accuracy

[ Marginal Accuracy }

|S| >K with minor impacts

Data Size (i.e., |S])



Our solution: Optimization 2
o Key Observations on MC-SV based Scheme

5 =1 U(Msyiy) — U(Ms)
L n ,’/ (n—l)
Se(N\Li}) ./ NV
Observation 1: As size of data Observation 2\? Different datasets

combination |S| increases, marginal combinations S have varying impacts on
contribution decreases noticeably. the final computed data value.

Model Accuracy

[ Marginal Accuracy }

fash =1/ (5))

0.8

0.7

0.6 S| >K with minor impacts
(—l—l ———————— P |S| = n/2 with minor impacts

-~

\\
——
—_——

Data Size (e, [S) = o mmmm e ==




Our solution: Optimization 24
o Key Observations on MC-SV based Scheme

5 =1 U(Msyiy) — U(Ms)
L n ,’/ (n—l)
Se(N\{i}) NV
Observation 1: As size of data Observation 2\? Different datasets

combination |S| increases, marginal combinations S have varying impacts on
contribution decreases noticeably. the final computed data value.

Model Accuracy

[ Marginal Accuracy }

fash =1/ (5))

0.8

0.7

05 |S| >K with minor impacts ) ..
e ————— _ _ P |S| = n/2 with minor impacts

-~

=~ —
—~—
—_—

Data Size (e, [S) = = b mmm—— e ———— =T

Key Insights: Only combinations with small |S| have high impacts



Our solution: Optimization 2
o Empirical study of the above insights

Main Idea:
Taking the first K stratums for
_____________________ data valuation in FL.

~

Experimental Setups:

[
<
o~

= 2 FEMNIST dataset

£ 1.5%) 10'2 FedAvg algorithm

= | Py .

= —— Error (by Lo-Norm) | £ 10 FL clients

'."é 1.0%| —e&— Running Time ' ;1)

= =

2 0.5%| 10" E Observation: The approximation error decrease
{E& - quickly when K increases, (K=2, Error<1.5%)

0.0%]



Our solution 2
o Importance-Pruned Stratified Sampling (IPSS)

Lower Importance

pruned dataset combinations with low impacts

part1< | D1.D2 | | D1,D3 | | Dy,Dy | | D2, D3 Dy,Dy | D3, Dy
utility:0.90 utility:0.88 utility:0.82

D, | D, | | Dy |

Part-2 utility:0.88  utility:0.85 utility:0.80 utility:0.75

We train and assess FL models with y=10 dataset combinations.

Sampling and Evaluation MC-SV based data valuation

Part-1: k* — max{k| £¥_ ( ) <7} ) U(Moyra) — UM
The first k* stratums will be selected |: ¢ = n Z (n 1)

. o SS(N\{i}),|S|<k* S|
Part-2: dataset combinations P in k* + 1 stratum s

‘ * 1 U(Msy) — U(Ms)
()Pl <y—k* 2)VS€P,|S| =k*+1 t (n—l)
(B)Vij EN, ;=G where G = Egepllk €] SSNIDEUHEr 5

Higher Importance




Our solution 2
o Importance-Pruned Stratified Sampling (IPSS)

Lower Importance

pruned dataset combinations with low impacts

Time Complexity: O(t - y)

y:total sampling round, T: time to train and evaluate an FL model

n—k*)

k*nt

k™ :max{k| Z;LO (’}) <y}, n: number of all FL clients, t: training samples of an FL client

Sampling and Evaluation MC-SV based data valuation
Part-1: k* « max{k| Zj:O (]) <y} __ } U(MSU{L'}) — U(My)
The first k™ stratums will be selected — i = n (n—l)
L . SE(N\{i}),ISI<k* N
Part-2: dataset combinations P in k* + 1 stratum 1 U( Me ) — UM
suli} (Ms)
(DIPl<y—k*2)VSEP,IS| =k*+1 T3 (n—l)
(3)Vi,j EN, C; = Cj, where Cy = Ysep [k € S] SS(N\{i}),(Su{iDeP S|

Approximation error: O
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Experiments 29

Synthetic Dataset:
MNIST with 60,000+ training samples and 10,000+ testing samples

Five experimental setups following [7,8]

1. FL clients with same data size and same distribution

2. FL clients with same data size and different distribution

3. FL clients with different data size and same distribution

4. FL clients with same data size, same distribution, and noise on label
5. FL clients with same data size, same distribution, and noise on feature

Real-world Datasets:
FEMNIST (image data) with 805,000+ training samples from 3500+ users
ADULT (tabular data) with 48,800+ training samples and 14 features
Learning Models:

Multi-Layer Perceptron (MLP)

Convolutional neural network (CNN)

XGBoost (XGB)
Implementation:

TensorFlow 2.4 and TensorFlow Federated 0.18
multi-processing simulation using the gRPC protocol

[7] Profit Allocation for Federated Learning. |IEEE Bigdata 2019.
[8] GTG-Shapley: Efficient and accurate participant contribution evaluation in federated learning. ACM TIST 2022.



Experiments 59

Evaluation Metrics:

Running Time.

L - lle-¢ll, _ 2
Approximation Error: lz(<]b,¢)= TR PR 1(‘151 ¢i) / ?=1¢i2

Nine Compared Algorithms:

Perm-Shapley [definition]: it directly calculates data value of clients in FL
according to the definition of the permutation based Shapley value.

MC-Shapley [definition]: it directly calculates the data value through the MC-SV
based computation scheme.

DIG-FL [ICDE’22]: it efficiently approximates the data value in FL, which only
needs to evaluate O(n) numbers of dataset combinations under certain assumptions.

Extended-TMC [ICML’19]: it is an extension of widely-adopted data valuation
scheme for general machine learning based on Truncated Monte Carlo algorithm.

Extended-GTB [AISTATS’19]: it is also an extension of a representative data
valuation scheme, which use the group testing-based estimation techniques.

OR [BigData’19]: it takes gradients within the FL process with all clients the same as
gradients under other combinations to avoids extra training of FL models.

A-MR [FLPI’20]: it takes the MC-SV-based scheme and estimates data value in each
training round of FL and aggregate them as the final results.

CC-Shapley [SIGMOD’23]: it is one of the state-of-the-art sampling methods to
approximate the SV which estimates data value using the CC-SV-based schemes.

GTG-Shapley [TIST’22]: it also approximates the data value using gradients and
Monte Carlo sampling approach to reduce number of reconstructed FL models.



Experiments
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e Results on Synthetic datasets

| Perm-Shapley [E=0 MC-Shapley DIG-FL it
10° [ 10? M
@ 10° G0
o 107 107
£ £
10 = 108
£ 2o
(=4 . [
é 10 ;::g 104
10° } - 103
10?

B i 102 | I | i
Clients #10 in MLP Clients #10 in CNN Clients #10 in MLP Clients #10 in CNN

with much lower error

Relative Error (Lz-norm)
-
(=]
&
2

Relative Error (L

.4
2

Clients #10 in MLP Clients #10 in CNN

(b) same-size-diff.-distr.

Clients #10 in CNN

Clients #10 in MLP

(a) same-size-same-distr.

Extended-GTB

B CC-Shapley
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&
o 107
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2

c
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S

ZCIiénts #10 in MLP Clients #10 in CNN
o

10!
10°

1071
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10°
w108
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E
108
o
£10°
[~

510

R

Relative Error (L2-norm)
S

=

(d)

Set same total sampling round y ’
BN Extended-TMC BB GTG-Shapley B8 OR  EEE A-MR EE PSS

10°
—~10%
)
107
= 108
10°

c
< 10°
3

B

Clients #10 in MLP Clients #10 in CNN Clients #10 in MLP Clients #10 in CNN

i [

Clients #10 in MLP Clients #10 in CNN

(e) same-size-noisy-feature

Relative Error (L;-norm)
=

Clients #10 in MLP Clien #10 in CNN

same-size-noisy-label

» IPSS achieves the much lower approximation error with similar time cost

o The results is consistent over various data size, distribution and noise

o IPSS shows similar performance on both MLP and CNN models



Experiments

Results on FEMNIST

()
n| Metrics |Perm-Shap. MC-Shap. DIG-FL Ext-TMC Ext-GTB CC-Shap. GTG-Shap. OR A-MR IPSS
| Time(s) [ 3729 842 584 568 807 1021 47 12 29 258 ‘ IPSS has lowest error
Error(l3) - - 5.01 0.79 0.59 0.35 090 246 088 0.06
.\ILP6 Time(s) | 9.1x108 6496 1077 843 1120 2020 161 89 228 329
Error(l2) - - 070  0.96 0.90 1.93 089  3.13 0.87 0.49
10| Time(s) 6.8x10° 95985 1695 306l 4129 5988 1086 1414 3764 568
Error(l2) - - 0.77 0.82 0.85 1.16 085 3.09 0.83 0.02
3| Time(s) | 1629 372 230 231 352 413 26 7 022 142
" |Error(l2) - - 05.14  0.81 0.60 0.02 0.87 046 0.73 0.01 ‘ IPSS iS fastest when n > 6 ’
CNN ¢ | Time(s) 3.6x10° 2783 407 352 484 667 108 47 154 211
Error(l2) - - 78.25 091 0.70 0.40 076 035 073 0.02
10| Time(s) 2.8x10° 40134 655 1220 1612 2553 680 641 2504 257
Error(l2) - - 08.42  0.83 0.87 2.60 075 076 071 0.02
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Experiments

Results on FEMNIST
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()
n| Metrics |Perm-Shap. MC-Shap. DIG-FL Ext-TMC Ext-GTB CC-Shap. GTG-Shap. OR A-MR IPSS
| Time(s) [ 3729 842 584 568 807 1021 47 12 29 258 ‘ IPSS has lowest error
Error(l3) - - 5.01 0.79 0.59 0.35 090 246 088 0.06
MLP ¢ | Time(s) 9.1x105 6496 1077 843 1120 2020 161 89 228 329
Error(l2) - - 070  0.96 0.90 1.93 089  3.13 0.87 0.49
10| Time(s) 6.8x10° 95985 1695 306l 4129 5988 1086 1414 3764 568
Error(l2) - - 077 082 0.85 1.16 085 3.09 0.83 0.02
3| Time(s) | 1629 372 230 231 352 413 26 7 022 142
" |Error(l2) - - 05.14  0.81 0.60 0.02 0.87 046 0.73 0.01 ‘ IPSS iS fastest when n > 6 ’
CNN| (| Time(s) | 3.6x10° 2783 407 352 484 667 108 47 154 211
Error(l2) - - 78.25 091 0.70 0.40 076 035 073 0.02
10| Time(s) 2.8x10° 40134 655 1220 1612 2553 680 641 2504 257
Error(l2) - - 08.42  0.83 0.87 2.60 075 076 071 0.02
e Results on ADULT
n | Metrics |Perm-Shap. MC-Shap. DIG-FL Ext-TMC Ext-GTB CC-Shap. GTG-Shap. OR A\-MR IP§S
3| Time(s) | 720 164 04 95 138 199 59 13 48 &9 :
" |Brror(la)| - - .02 146 189  0.09 530 1.00 2.93 0.05 IPSS achieves the best
MLP| |Time (s)| 3.3x105 2820 252 220 306 530 271 74 347 146 .
o Error(l2) - - 1.12 2.30 2.02 0.18 365  1.00 321 0.3 accuracy and effiaency
o[ Tmes) [ 21x109 28983 4sa 732 ns2 1850 148 1127 5575 206\ when FL client number > 3
Error(l2) - - 1.23 2.19 1.97 0.09 395 099 3.83 0.08
5| Time(s) | 29.2 6.5 4. . \ ., 18
" Brror(la)| - - 0.@( not applicable | 0.4
XGB ¢ | Time(s) | 13308 96 19 14 22 . \ Vo 3
Error(l2) - - 0.98 2.16 1.77 0.13 ‘ ‘ 0.07
10| Time(s) | 1.7x10% 2256 50 81 111 151 \ Vo 5
Error(l2) - - 0.98 1.41 1.59 0.13 ‘ 0.12




Experiments: In-depth analysis

1) Impacts of varying the sampling rounds
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Conclusion .

We propose a unified stratified sampling-based approximation
framework that seamlessly integrates both the MC-SV-based and

CC-SV-based computation schemes.

We identify a crucial phenomenon, where only limited dataset

combinations highly impact final data value results in FL.

We propose a practical approximation algorithm, IPSS, which
significantly improves the efficiency with high accuracy.

We conduct extensive evaluations on real and synthetic datasets
to validate that the proposed IPSS algorithm outperforms nine

representative baselines in efficiency and effectiveness.



Q&A
THANK YOU

if you have further problems, feel free to email
weishuyue@buaa.edu.cn

source codes are available at
https://github.com/tOush1/Shapley-Data-Valuation
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