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⚫ What is Federated Learning (FL) ?

A distributed learning paradigm using datasets across

data owners (eg. hospitals) without accessing raw data [1,2]

Federated Learning 4

Data owners may be reluctant to share high-quality 

datasets unless the their data value are fairly measured  

[1] Federated Machine Learning: Concept and Applications. ACM TIST 2019 

[2] Advances and open problems in federated learning. Found. Trends Mach. Learn. 2021.

𝚫𝛚 = 𝓐(𝚫𝛚𝟏 +⋯+𝚫𝛚𝒏)

…

𝚫𝛚𝟏
𝚫𝛚𝒏

Major Features:

① Keeping the private data local

② Only sharing the parameters

③ Data quality are heterogenous



⚫ Why Shapley value (SV) ?

The SV is a classical concept for measuring contributions in a 
cooperation, which holds several essential fairness properties 

Shapley Value for Data Valuation 5

The Shapley Value has been widely considered as the 
standard metric in both DB and AI community [3,4]

[3] The Shapley value in database management. SIGMOD Rec. 2023

[4] The Shapley value in machine learning. IJCAI 2022.

𝝓𝒊 =
𝟏

𝒏
σ𝑺∈𝑵\{𝒊}

𝑼 𝑺∪ 𝒊 −𝑼 𝑺
|𝑺|
𝒏−𝟏

Assign contribution for players

𝓟𝟏 𝓟𝟐 𝓟𝟑 𝓟𝟒

Example

By assessing all 𝟐𝒏 combinations of players

The Essential Fairness Properties of SV

(i) Null Player: Player 𝒫𝑖 without impact on utility has 

zero contribution in the cooperation, i.e., 𝜙𝑖 = 0

(ii) Symmetric Fairness: If two players 𝒫𝑖, 𝒫𝑗 can be 

alternatives for each other in the game, they will be 
assigned with the same contribution, i.e., 𝜙𝑖 = 𝜙𝑗

(iii) Group Rationality: The sum of contributions of 

all players in the game is exactly equal to the utility 
with all players, i.e., σ𝑖∈N𝜙𝑖 = 𝑈(𝑁)



⚫ Challenges of SV-based Data valuation solution

If we calculate the SV-based data valuation directly in FL, the 
computational cost can be prohibited due to following reasons:

Shapley Value meets Federated Learning 6

Objective: how to effectively approximate the SV-based 
data valuation for the FL scenario ?

View FL client as player
and loss/accuracy as utility

It is necessary to train 𝟐𝒏 FL models 

under all possible combinations of FL clients

Data Valuation for Federated Learning

𝝓𝒊 =
𝟏

𝒏
σ𝓓𝑺∈𝑵\{𝒊}

𝑼 𝓓𝑺∪ 𝒊 −𝑼 𝓓𝑺
|𝑺|
𝒏−𝟏

Computation Complexity:

𝓞(𝟐𝒏 ⋅ 𝝉)

Existing approximation algorithms

Approx. idea 1: Sampling

Approx. idea 2: Gradient-Reconstruction

avoid extra

model training
t

Δ𝜔1
𝑡

… … …

Δ𝜔2
𝑡
Δ𝜔3

𝑡

Reconstructed 
FL Models

choose limited

combinations

෡𝑴 𝟏,𝟐 , ෡𝑴 𝟏,𝟑 ,
෡𝑴 𝟐,𝟑 , ෡𝑴 𝟏 ,
෡𝑴 𝟐 , ෡𝑴 𝟑 , ෡𝑴∅



⚫ Limitation of existing solutions:

Shapley Value meets Federated Learning 7

Can we design more effective approximation algorithms ?

Computation Complexity:

𝓞(𝟐𝒏 ⋅ 𝝉)

Existing approximation algorithms

Approx. idea 1: Sampling

Approx. idea 2: Gradient-Reconstruction

choose limited

combinations

avoid extra

model training
t

Δ𝜔1
𝑡

… … …

Δ𝜔2
𝑡
Δ𝜔3

𝑡

෡𝑴 𝟏,𝟐 , ෡𝑴 𝟏,𝟑 ,
෡𝑴 𝟐,𝟑 , ෡𝑴 𝟏 ,
෡𝑴 𝟐 , ෡𝑴 𝟑 , ෡𝑴∅

Reconstructed 
FL Models

ACM TIST24, FLPI 20, Big Data19, etc

SIGMOD24, ICDE 22, AISTATS, ICML 19, etc Ignoring utilizing intrinsic properties of

utility function in federated learning.

Limitation 2:

e.g., majority game federated learning

0

1

0

1

Ignoring selecting the  suitable 

computation scheme of  Shapley Value.

Limitation 1:

Marginal Contribution Based

or

Complementary Contribution Based
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Problem Statement

⚫ Data Valuation for FL

Given n FL clients with datasets 𝒟𝑁 = {𝒟1, … , 𝒟𝑛}, and a FL
algorithm 𝒜, the federation trains model 𝑀𝑆(𝒜) under a subset
of clients 𝑆 ⊆ 𝑁, and evaluates it utility 𝑈(𝑀𝑆) on test dataset 𝒯.

Then, data valuation problem is to qualify contribution of dataset
𝒟𝑖 as 𝝓(𝓐,𝓓𝑵, 𝓣,𝓓𝒊) (𝜙𝑖 for short) with following properties:

9

𝓓𝟏 𝓓𝟐 𝓓𝒏

…

𝑈(𝑀{1,2}, 𝒯)
evaluate

e.g.,  𝑆 = {1,2}

𝑀{1,2}

Shapley Value based data valuation naturally inherits its 

fairness properties and ensures above desirable properties

Three desirable propertiesExample

① Null-Player

•∀𝑆 ⊆ 𝑁,𝑈 𝑀𝑆 = 𝑈 𝑀𝑆∪ 𝑗 ⇒ 𝜙𝑗 = 0

② Symmetric-Fairness

•∀𝑆 ⊆ 𝑁\{𝑖, 𝑗}, 𝑈 𝑀𝑆∪ 𝑖 = 𝑈(𝑀𝑆∪ 𝑗 ) ⇒ 𝜙𝑖 = 𝜙𝑗

③ Linear-Additivity

•𝒯1 ∩ 𝒯2 = ∅ ⇒ ∀𝑖 ∈ 𝑁, 𝜙𝑖 𝒯1 ∪ 𝒯2 = 𝜙𝑖 𝒯1 + 𝜙𝑖 𝒯1



Problem Statement

⚫ The SV-based Data Valuation Schemes

There are two commonly used equivalent Shapley value expression
and each provides a computation scheme for the data valuation.

10

As both the MC-SV and CC-SV based scheme requires O(2n) FL 
models, efficient and accurate approximation algorithm is expected

1. Marginal Contribution SV 

based Computation Scheme (MC-SV)

2. Complementary Contribution SV 

based Computation Scheme (CC-SV) [5]

𝝓 𝓐,𝓓𝑵, 𝓣,𝓓𝒊 = ෍

𝑺⊆𝑵\{𝒊}

𝑼 𝑴𝑺∪ 𝒊 −𝑼(𝑴𝑺)

𝒏 ⋅ |𝑺|
𝒏−𝟏

𝝓 𝓐,𝓓𝑵, 𝓣,𝓓𝒊 = ෍

𝑺⊆𝑵\{𝒊}

𝑼 𝑴𝑺∪ 𝒊 −𝑼(𝑴𝑵\(𝑺∪{𝒊}))

𝒏 ⋅ |𝑺|
𝒏−𝟏

Example with 3 FL clients

Take 𝜙1 as an example

1) For |𝑆| = 0, compute 𝑈 1 − 𝑈 ∅ = 0.40
2) For |𝑆| = 1, compute 𝑈 1,2 − 𝑈 2 = 0.10, 𝑈 1,3 − 𝑈 3 = 0.30
3) For 𝑆 = 2, compute 𝑈 1,2,3 − 𝑈 2,3 = 0.06
Then, based on MC-SV, 𝜙1 = 0.4 ÷ 1 + 0.1 + 0.3 ÷ 2 + 0.06 ÷ 1 ÷ 3 = 0.22

[5] Efficient Sampling Approaches to Shapley Value Approximation. SIGMOD 2023.
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⚫ Overview:

① We propose a unified stratified sampling framework to support both
the MC-SV and CC-SV and then find MC-SV is more appropriate for the
proposed approximating framework through theoretical analysis.

Our solution 12

∅
utility:0.10

𝑚0 = 1

utility:0.88 utility:0.85 utility:0.80 utility:0.75

𝑚1 = 3𝓓𝟐 𝓓𝟑 𝓓𝟒

𝓓𝟐, 𝓓𝟒 𝓓𝟑, 𝓓𝟒

utility:0.90 utility:0.92 utility:0.88 utility:0.88utility:0.85 utility:0.82

𝑚2 = 3𝓓𝟏, 𝓓𝟑 𝓓𝟐, 𝓓𝟑

utility:0.92 utility:0.90 utility:0.88 utility:0.85

𝑚3 = 2

utility:0.95

𝑚4 = 1𝓓𝟏, 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟐 𝓓𝟏, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑 𝓓𝟏, 𝓓𝟐, 𝓓𝟒 𝓓𝟐, 𝓓𝟑, 𝓓𝟒𝓓𝟏, 𝓓𝟑, 𝓓𝟒

Naturally Stratified

𝓓𝟏



⚫ Overview:

① We propose a unified stratified sampling framework to support both
the MC-SV and CC-SV and then find MC-SV is more appropriate for the
proposed approximating framework through theoretical analysis.

Our solution 13

∅
utility:0.10

𝑚0 = 1

utility:0.88 utility:0.85 utility:0.80 utility:0.75

𝑚1 = 3𝓓𝟏 𝓓𝟐 𝓓𝟑 𝓓𝟒

𝓓𝟐, 𝓓𝟒 𝓓𝟑, 𝓓𝟒

utility:0.90 utility:0.92 utility:0.88 utility:0.88utility:0.85 utility:0.82

𝑚2 = 3𝓓𝟏, 𝓓𝟑 𝓓𝟐, 𝓓𝟑

utility:0.92 utility:0.90 utility:0.88 utility:0.85

𝑚3 = 2

utility:0.95

𝑚4 = 1

𝓓𝟏, 𝓓𝟐 𝓓𝟏, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑 𝓓𝟏, 𝓓𝟐, 𝓓𝟒 𝓓𝟐, 𝓓𝟑, 𝓓𝟒𝓓𝟏, 𝓓𝟑, 𝓓𝟒

② We observe a key insight for MC-SV, i.e., only limited dataset
combinations highly affect the final data values under loss/acc utility.

with high impacts



⚫ Unified Stratified Sampling Framework

Our solution： Framework 14

Step 1:

Choose FL client

Combinations

Step 2:

Train and Evaluate

the FL Models

Step 3:

Compute Data Value

of FL Clients



⚫ Unified Stratified Sampling Framework

Our solution： Framework 15

Step 1:

Choose FL client

Combinations

Step 2:

Train and Evaluate

the FL Models

Step 3:

Compute Data Value

of FL Clients

All dataset combinations

𝓓𝟐, 𝓓𝟒 𝓓𝟑, 𝓓𝟒𝓓𝟏, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟒 𝓓𝟏, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟑 𝓓𝟐, 𝓓𝟑𝓓𝟏, 𝓓𝟐

Set Sampling 

Round 𝜸 = 𝟏𝟎

∅

𝓓𝟒𝓓𝟏 𝓓𝟐 𝓓𝟑

∅



⚫ Unified Stratified Sampling Framework

Our solution： Framework 16

Step 1:

Choose FL client

Combinations

Step 2:

Train and Evaluate

the FL Models

Step 3:

Compute Data Value

of FL Clients

All dataset combinations

∅

𝓓𝟐, 𝓓𝟒 𝓓𝟑, 𝓓𝟒𝓓𝟏, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟒 𝓓𝟏, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟑 𝓓𝟐, 𝓓𝟑𝓓𝟏, 𝓓𝟐

∅

Set Sampling 

Round 𝜸 = 𝟏𝟎

𝑚0 = 1

𝓓𝟒 𝑚1 = 3𝓓𝟏 𝓓𝟐 𝓓𝟑



⚫ Unified Stratified Sampling Framework

Our solution： Framework 17

Step 1:

Choose FL client

Combinations

Step 2:

Train and Evaluate

the FL Models

Step 3:

Compute Data Value

of FL Clients

All dataset combinations

𝓓𝟒

𝓓𝟑, 𝓓𝟒𝓓𝟏, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟒 𝓓𝟏, 𝓓𝟑, 𝓓𝟒

𝑚0 = 1

𝑚1 = 3

𝑚2 = 3

𝑚3 = 2

𝑚4 = 1

෍

𝒊=𝟎

𝒏−𝟏

𝒎𝒊 = 𝜸

∅

𝓓𝟏 𝓓𝟐 𝓓𝟑

𝓓𝟏, 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟑𝓓𝟏, 𝓓𝟐

Set Sampling 

Round 𝜸 = 𝟏𝟎

𝓓𝟐, 𝓓𝟒𝓓𝟐, 𝓓𝟑



⚫ Unified Stratified Sampling Framework

Our solution： Framework 18

Step 1:

Choose FL client

Combinations

Step 2:

Train and Evaluate

the FL Models

Step 3:

Compute Data Value

of FL Clients

All dataset combinations

𝑚0 = 1

𝑚1 = 3

𝑚2 = 3

𝑚3 = 2

𝑚4 = 1

∅

𝓓𝟏 𝓓𝟐 𝓓𝟑

𝓓𝟏, 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟑𝓓𝟏, 𝓓𝟐

Train and  evaluate FL models 𝑀𝑆 with chosen combinations: 𝑆 ∈ {∅, 𝒟1 , 𝒟2 , 𝒟3 ,
𝒟1, 𝒟2 , 𝒟1, 𝒟3 , 𝒟2, 𝒟3 , 𝒟1, 𝒟2, 𝒟3 , 𝒟2, 𝒟3, 𝒟4 , 𝒟1, 𝒟2, 𝒟3, 𝒟4 , }

𝓓𝟒

𝓓𝟑, 𝓓𝟒𝓓𝟏, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟒 𝓓𝟏, 𝓓𝟑, 𝓓𝟒

𝓓𝟐, 𝓓𝟑 𝓓𝟐, 𝓓𝟒



⚫ Unified Stratified Sampling Framework

Our solution： Framework 19

Step 1:

Choose FL client

Combinations

Step 2:

Train and Evaluate

the FL Models

Step 3:

Compute Data Value

of FL Clients

All dataset combinations

𝑚0 = 1

Train and  evaluate FL models 𝑀𝑆 with chosen combinations: 𝑆 ∈ {∅, 𝒟1 , 𝒟2 , 𝒟3 ,
𝒟1, 𝒟2 , 𝒟1, 𝒟3 , 𝒟2, 𝒟3 , 𝒟1, 𝒟2, 𝒟3 , 𝒟2, 𝒟3, 𝒟4 , 𝒟1, 𝒟2, 𝒟3, 𝒟4 , }

utility:0.10

utility:0.88 utility:0.85 utility:0.80

utility:0.90 utility:0.92

utility:0.92 utility:0.85

utility:0.95

utility:0.85

All dataset combinations

𝑚0 = 1

𝑚1 = 3

𝑚2 = 3

𝑚3 = 2

𝑚4 = 1

∅

𝓓𝟏 𝓓𝟐 𝓓𝟑

𝓓𝟏, 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟑𝓓𝟏, 𝓓𝟐

𝓓𝟒

𝓓𝟑, 𝓓𝟒𝓓𝟏, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟒 𝓓𝟏, 𝓓𝟑, 𝓓𝟒

𝓓𝟐, 𝓓𝟑 𝓓𝟐, 𝓓𝟒



⚫ Unified Stratified Sampling Framework

Our solution： Framework 20

Step 1:

Choose FL client

Combinations

Step 2:

Train and Evaluate

the FL Models

Step 3:

Compute Data Value

of FL Clients

All dataset combinations

𝑚0 = 1

෢𝜙𝑖 ←
1

𝑛
෍

𝑘=1

𝑛
σ𝑆, ҧ𝑆∈𝑺𝑼 𝑴𝑺 − 𝑼 𝑴ഥ𝑺

𝑚𝑖,𝑘

utility:0.10

utility:0.88 utility:0.85 utility:0.80

utility:0.90 utility:0.92

utility:0.92 utility:0.85

utility:0.95

utility:0.85

All dataset combinations

𝑚0 = 1

𝑚1 = 3

𝑚2 = 3

𝑚3 = 2

𝑚4 = 1

∅

𝓓𝟏 𝓓𝟐 𝓓𝟑

𝓓𝟏, 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟑 𝓓𝟐, 𝓓𝟑, 𝓓𝟒

𝓓𝟏, 𝓓𝟑𝓓𝟏, 𝓓𝟐

𝓓𝟒

𝓓𝟑, 𝓓𝟒𝓓𝟏, 𝓓𝟒

𝓓𝟏, 𝓓𝟐, 𝓓𝟒 𝓓𝟏, 𝓓𝟑, 𝓓𝟒

𝓓𝟐, 𝓓𝟑 𝓓𝟐, 𝓓𝟒

Unify the MC-SV and CC-SV by setting ҧ𝑆 𝑡𝑜 𝑏𝑒 𝑆\{𝑖} or 𝑁\S



Our solution： Framework 21

෢𝜙𝑖 ←
1

𝑛
෍

𝑘=1

𝑛
σ𝑆, ҧ𝑆∈𝑺𝑼 𝑴𝑺 − 𝑼 𝑴ഥ𝑺

𝑚𝑖,𝑘
Unify the MC-SV and CC-SV by setting ҧ𝑆 𝑡𝑜 𝑏𝑒 𝑆\{𝑖} or 𝑁\S

Takeaway： MC-SV is more appropriate for proposed framework

⚫ Analysis of the stratified sampling framework

𝔼 ෠𝜙𝑖
𝑀𝐶 = 𝔼 ෠𝜙𝑖

𝐶𝐶 = ෍

𝑆⊆𝑁\{𝑖}

𝑈 𝑀𝑆 −𝑈(𝑴ത𝑺)

𝑛 ⋅ |𝑺|
𝒏−𝟏

= 𝜙𝑖
Theorem 1. The SS framework can provide 

unbiased estimation of SV in expectation for 
both the MC-SV and CC-SV based scheme

Expectation Analysis

𝕍 ෠𝜙𝑖
𝑀𝐶 −𝕍 ෠𝜙𝑖

𝐶𝐶 ≥෍

𝑘=1

𝑛

෍

𝑆

1

𝑛2 ⋅ 𝑚𝑖,𝑘
2 𝐷𝑆

2𝜎2 > 0

Variance Analysis

Theorem 2. For any sampling strategy using CC-SV 
based scheme, using MC-SV based scheme can 

yield lower estimation variance

Experimental results on FEMNIST show that MC-SV variance is clearly lower than CC-SV.



⚫ Key Observations on MC-SV based Scheme

Our solution： Optimization 22

Observation 1： As size of data 
combination |𝑆| increases, marginal 

contribution decreases noticeably.

Marginal Accuracy

Model Accuracy

Data Size (i.e., |S|)

𝜙𝑖 =
1

𝑛
෍

𝑆∈(𝑁\ 𝑖 )

𝑈 𝑀𝑆∪ 𝑖 − 𝑈(𝑀𝑆)

𝑛−1
|𝑆|

𝑆 >K with minor impacts
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Observation 2： Different datasets 
combinations 𝑆 have varying impacts on 

the final computed data value.

Observation 1： As size of data 
combination |𝑆| increases, marginal 

contribution decreases noticeably.

Marginal Accuracy
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Data Size (i.e., |S|)

𝑓 S = 1/ 𝑛−1
|𝑆|

𝜙𝑖 =
1

𝑛
෍

𝑆∈(𝑁\ 𝑖 )

𝑈 𝑀𝑆∪ 𝑖 − 𝑈(𝑀𝑆)

𝑛−1
|𝑆|

𝑆 ≈ 𝒏/𝟐 with minor impacts
𝑆 >K with minor impacts

|S|



⚫ Key Observations on MC-SV based Scheme
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Key Insights: Only combinations with small |S| have high impacts

Observation 2： Different datasets 
combinations 𝑆 have varying impacts on 

the final computed data value.

Observation 1： As size of data 
combination |𝑆| increases, marginal 

contribution decreases noticeably.

Marginal Accuracy

Model Accuracy

Data Size (i.e., |S|)

𝑓 S = 1/ 𝑛−1
|𝑆|

𝜙𝑖 =
1

𝑛
෍

𝑆∈(𝑁\ 𝑖 )

𝑈 𝑀𝑆∪ 𝑖 − 𝑈(𝑀𝑆)

𝑛−1
|𝑆|

𝑆 ≈ 𝒏/𝟐 with minor impacts
𝑆 >K with minor impacts

|S|



⚫ Empirical study of the above insights
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∅

𝓓𝟒𝓓𝟏 𝓓𝟐 𝓓𝟑

∅

𝓓𝟐, 𝓓𝟒 𝓓𝟑, 𝓓𝟒𝓓𝟏, 𝓓𝟒
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𝓓𝟏, 𝓓𝟑 𝓓𝟐, 𝓓𝟑𝓓𝟏, 𝓓𝟐

Main Idea:

Taking the first K stratums for 

data valuation in FL.  

Observation: The approximation error decrease

quickly when K increases, (K≥2, Error≤1.5%)

Experimental Setups:

• FEMNIST dataset
• FedAvg algorithm
• 10 FL clients



⚫ Importance-Pruned Stratified Sampling (IPSS)

Our solution 26

We train and assess FL models with 𝛾=10  dataset combinations.

∅

utility:0.75

utility:0.90 utility:0.88 utility:0.82

𝓓𝟏, 𝓓𝟑 𝓓𝟏, 𝓓𝟒
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utility:0.92 utility:0.90 utility:0.88 utility:0.85

utility:0.95
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Lower Importance

𝓓𝟐, 𝓓𝟒 𝓓𝟑, 𝓓𝟒𝓓𝟏, 𝓓𝟐 𝓓𝟐, 𝓓𝟑

pruned dataset combinations with low impacts 

Part-1: 𝑘∗ ← max{𝑘|σ𝑗=0
𝑘 𝑛

𝑗
≤ 𝛾}

The first  𝑘∗ stratums will be selected

utility:0.80utility:0.85utility:0.88

Part-2: dataset combinations 𝒫 in 𝑘∗ + 1 stratum

(1) 𝒫 ≤ 𝛾 − 𝑘∗ (2)∀𝑆 ∈ 𝒫, 𝑆 = 𝑘∗ + 1

(3) ∀𝑖, 𝑗 ∈ 𝑁, 𝐶𝑖 = 𝐶𝑗, where 𝐶𝑘 = σ𝑆∈𝒫 𝕀[𝑘 ∈ 𝑆]

𝓓𝟑𝓓𝟐𝓓𝟏

Part-1

Part-2

෢𝜙𝑖 =
1

𝑛
෍

𝑆⊆(𝑁\{𝑖}),|𝑆|<𝑘∗

𝑈 𝑀𝑆∪ 𝑖 −𝑈(𝑀𝑆)

𝑛−1
|𝑆|

+
1

𝑛
෍

𝑆⊆(𝑁\{𝑖}),(𝑆∪{𝑖})∈𝒫

𝑈 𝑀𝑆∪ 𝑖 −𝑈(𝑀𝑆)

𝑛−1
|𝑆|
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We train and assess FL models with 𝛾=10  dataset combinations.
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Approximation error: 𝓞(
𝑛−𝑘∗

𝑘∗𝑛𝑡
)
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𝑗
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𝑘 𝑛
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The first  𝑘∗ stratums will be selected

Part-2: dataset combinations 𝒫 in 𝑘∗ + 1 stratum

(1) 𝒫 ≤ 𝛾 − 𝑘∗ (2)∀𝑆 ∈ 𝒫, 𝑆 = 𝑘∗ + 1

(3) ∀𝑖, 𝑗 ∈ 𝑁, 𝐶𝑖 = 𝐶𝑗, where 𝐶𝑘 = σ𝑆∈𝒫 𝕀[𝑘 ∈ 𝑆]

෢𝜙𝑖 =
1

𝑛
෍

𝑆⊆(𝑁\{𝑖}),|𝑆|<𝑘∗

𝑈 𝑀𝑆∪ 𝑖 −𝑈(𝑀𝑆)

𝑛−1
|𝑆|

+
1

𝑛
෍
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⚫ Synthetic Dataset:

o MNIST with 60,000+ training samples and 10,000+ testing samples

o Five experimental setups following [7,8]

▪1. FL clients with same data size and same distribution

▪2. FL clients with same data size and different distribution

▪3. FL clients with different data size and same distribution

▪4. FL clients with same data size, same distribution, and noise on label

▪5. FL clients with same data size, same distribution, and noise on feature

⚫ Real-world Datasets:

o FEMNIST (image data) with 805,000+ training samples from 3500+ users

o ADULT (tabular data) with 48,800+ training samples and 14 features

⚫ Learning Models:

o Multi-Layer Perceptron (MLP)

o Convolutional neural network (CNN)

o XGBoost (XGB)

⚫ Implementation:

o TensorFlow 2.4 and TensorFlow Federated 0.18

o multi-processing simulation using the gRPC protocol

Experiments 29

[7] Profit Allocation for Federated Learning. IEEE Bigdata 2019.

[8] GTG-Shapley: Efficient and accurate participant contribution evaluation in federated learning. ACM TIST 2022.



⚫ Evaluation Metrics:

o Running Time.

o Approximation Error: 𝑙2 ෠𝜙, 𝜙 =
෡𝜙−𝜙

2

𝜙 2
= σ𝑖=1

𝑛 ෠𝜙𝑖 − 𝜙𝑖
2
/ σ𝑖=1

𝑛 𝜙𝑖
2

⚫ Nine Compared Algorithms:

o Perm-Shapley [definition]: it directly calculates data value of clients in FL
according to the definition of the permutation based Shapley value.

o MC-Shapley [definition]: it directly calculates the data value through the MC-SV
based computation scheme.

o DIG-FL [ICDE’22]: it efficiently approximates the data value in FL, which only
needs to evaluate O(n) numbers of dataset combinations under certain assumptions.

o Extended-TMC [ICML’19]: it is an extension of widely-adopted data valuation
scheme for general machine learning based on Truncated Monte Carlo algorithm.

o Extended-GTB [AISTATS’19]: it is also an extension of a representative data
valuation scheme, which use the group testing-based estimation techniques.

o OR [BigData’19]: it takes gradients within the FL process with all clients the same as
gradients under other combinations to avoids extra training of FL models.

o 𝜆-MR [FLPI’20]: it takes the MC-SV-based scheme and estimates data value in each
training round of FL and aggregate them as the final results.

o CC-Shapley [SIGMOD’23]: it is one of the state-of-the-art sampling methods to
approximate the SV which estimates data value using the CC-SV-based schemes.

o GTG-Shapley [TIST’22]: it also approximates the data value using gradients and
Monte Carlo sampling approach to reduce number of reconstructed FL models.
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⚫ Results on Synthetic datasets

Experiments 31

• IPSS achieves the much lower approximation error with similar time cost

• The results is consistent over various data size, distribution and noise

• IPSS shows similar performance on both MLP and CNN models

Set same total sampling round 𝜸

with much lower error
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⚫ Results on FEMNIST

IPSS has lowest error

IPSS is fastest when 𝑛 ≥ 6



⚫ Results on ADULT

Experiments 33

⚫ Results on FEMNIST

IPSS has lowest error

IPSS is fastest when 𝑛 ≥ 6

not applicable

IPSS achieves the best 

accuracy and efficiency

when FL client number ≥ 3
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1) Impacts of varying the sampling rounds

IPSS has lower error using smaller sampling rounds 
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1) Impacts of varying the sampling rounds

IPSS has lower error using smaller sampling rounds 

2) Pareto curves for time-error trade-off

IPSS achieves Pareto optimal for efficiency and accuracy



Experiments: In-depth analysis 36

1) Impacts of varying the sampling rounds

IPSS has lower error using smaller sampling rounds 

2) Pareto curves for time-error trade-off

IPSS achieves Pareto optimal for efficiency and accuracy

3) Scalability test for more FL clients (up to 100 FL clients)

IPSS still performs

better for a larger

number of clients
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⚫ We propose a unified stratified sampling-based approximation 

framework that seamlessly integrates both the MC-SV-based and 

CC-SV-based computation schemes.

⚫ We identify a crucial phenomenon, where only limited dataset 

combinations highly impact final data value results in FL.

⚫ We propose a practical approximation algorithm, IPSS, which 

significantly improves the efficiency with high accuracy.

⚫ We conduct extensive evaluations on real and synthetic datasets 

to validate that the proposed IPSS algorithm outperforms nine 

representative baselines in efficiency and effectiveness.
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THANK YOU

Q & A

39

if you have further problems, feel free to email 

weishuyue@buaa.edu.cn

source codes are available at 

https://github.com/t0ush1/Shapley-Data-Valuation

mailto:weishuyue@buaa.edu.cn
mailto:weishuyue@buaa.edu.cn
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