

FedVS: Towards Federated Vector Similarity Search with Filters

Zeheng Fan, Yuxiang Zeng, Zhuanglin Zheng, Binhan Yang, Yongxin Tong
Beihang University

- Background
- Problem Statement
- Methodology

- Experiment
- Conclusion

Background: vector data

- Vector data: a hybrid data type that integrates both high-dimensional embeddings and structured attributes
 - high-dimensional embeddings: captures the intrinsic features of entity with deep models like BERT [1]
 - **structured attributes**: provide additional context or metadata associated with the entity

Background: vector similarity search

- Vector similarity search is composed of (q, k, P):
 - their attributes must match the attribrite filter P.
 - they are the � nearest neighbors (kNNs) to the query vector within the set of filtered data objects

Query vector: [0, 0, 0, ...], k:3Attribute filter: "Drug == ALTO-100"

Background: federated vector similarity search

- Search over single-sourced dataset
 - Both industry and academia have developed efficient solutions
 - □ However, these solutions only focus on single-sourced vector data
- Search on federated dataset

□ Searching on **Multi-sourced** autonomous vector

datasets without exposing data privacy

Data providers collerabrately provide a

vector retrieval service over their union dataset

Background: federated vector similarity search

- Search on federated dataset
 - Example:

- Other application scenarios : wide application scenarios for data sharing
 - □ joint financial risk assessment [2], cross-platform recommendation system [3]

^{[2] 2024.} Applying Vector Databases in Finance for Risk and Fraud Analysis. https://zilliz.com/learn/applying-vector-databases-in-finance-for-risk-and fraud-analysis. [3] Zehua Sun, Yonghui Xu, Yong Liu, Wei He, Lanju Kong, Fangzhao Wu, Yali Jiang, and Lizhen Cui. 2025. A Survey on Federated Recommendation Systems. IEEE Trans. Neural Networks Learn. Syst. 36, I (2025), 6–20.

Background: motivation

- Motivation and core challenge
 - Existing methods for federated kNN search [4, 5, 6] can potentially be extended to solve this problem.
 - Limitations of efficient methods:
 - Rely on computationally expensive methods like encryption or secure multiparty computation [4, 5]
 - Only effective to low-dimensional (2D) locations or sequence data and hard to support attribute filters [6]

Core challenge: strike a balance between effectiveness and efficiency

while ensuring privacy preservation

172.

- Background
- Problem Statement
- Methodology

- Experiment
- Conclusion

Problem Statement: basic concepts

- Vector Data: two main components:
 - Embedding is denoted by a point $v.e = (e_1, e_2, ..., e_d) \in \mathbb{R}^d$
 - □ Attributes are represented by a set of � structured attributes $v.a = (a_1, a_2, ..., a_d)$
- Attribute Filter: P

- $lue{}$ represented by a conjunctive boolean predicate $P=p_1 \wedge p_2 ... \wedge p_h$
- \square p_i is a binary comparison in the form $v.a_i \odot const_i, \odot \in \{ \leq , \geq , > , < , = \}$

А	toy	
ex	amp	le:

ID	Embedding	Drug
6	[0.2, 0, 0.1,]	ALTO-100

Query vector: [0, 0, 0, ...], **k**: 3 **Attribute filter**: "Drug == ALTO-100"

Problem Statement

Federated Dataset

consists of data providers, each holding a vector dataset D_i with the same data schema. All the data providers collaboratively provide vector query over $D = D_1 \cup D_2 \dots \cup D_m$ while ensuring security

Problem Statement

Federated Vector Similarity Search with Filters

- \square given Federated dataset F, query (q, k, P), Res meets the following two constraints:
 - Filter constraint: $\forall v \in Res, P(v) = true$
 - \square **kNN** constraint: D^- denotes the set of vectors satisfying the filter constraint.

Security constraints: query user only learns results, data providers cannot access

or defer others' private data.

Problem Statement: a toy example

- Application scenario for collaborative pharmaceutical development
 - □ Query vector: [0, 0, 0, 0] k: 3 Attribute filter: Drug == ALTO-100

D	Embedding	Drug	
6	[0.2, 0, 0.1,]	ALTO-100	
7	[0.1, 0, 0.1,]	5-MAPB	
8	[0.2, 0.3, 0.3,]	ALTO-100	

Medical institution #2

	Researcher	
Results		
	Biological sample d	а
	Embedding model	?

ID	Embedding	Drug
3	[0.1, 0.1, 0.1,]	ALTO-100
4	[0, 0.1, 0.1,]	ALTO-100
5	[0.2, 0.1, 0.2,]	ALTO-100

noeth service	42	١

ID	Embedding	Drug
1	[0.1, 0.2, 0,]	5-MAPB
2	[0, 0, 0.1,]	ALTO-100

Query vector: [0, 0, 0, ...], k:3

Attribute filter: "Drug == ALTO-100"

- Background
- Problem Statement

Methodology

- Experiment
- Conclusion

Methodology: a brief introduction to TEE

- Trusted Execution Environment (TEE)
 - □ A hardware-assisted technique for privacy preserving
 - TEE offers a secure and isolated area within the CPU and memory, where private data can be processed with strong confidentiality guarantees

□ TEE encrypts and authenticates private data, ensuring only the same enclave can

decrypt it.

FedVS: two-phase framework based on TEE

FedVS: two-phase framework based on TEE

- Phase I: derive a threshold for upper bound of the Kth nearest distance
 - Data Provider: Local search and discretize candidates into \sqrt{k} intervals
 - Central Server (TEE): calculate threshold with binary search based on intervals

- FedVS: two-phase framework based on TEE
 - Phase I: derive a threshold for upper bound of the Kth nearest distance
 - lacktriangle Data Provider: Local search and discretize candidates into \sqrt{k} intervals
 - Central Server (TEE): calculate threshold with binary search based on intervals

- Phase II: select top-k from refined candidates
 - Data Provider: eliminate candidates with distance larger than threshold
 - Central Server (TEE): top-k selection with an (oblivious) priority queue

- Optimization I: reducing communication cost
 - Simplified representation for intervals: We only care the right endpoint!
 - □ Replacing binary search with min-heap based search: Bound number of candidates to

- Optimization II: pruning via contribution estimation
 - Motivation: We don't need to select k candidates from each provider
 - Eliminate local redundant candidates with two primary factors:
 - Distance to query vector
 - Selectivity of attribute filter

K/sel th nearest distance

- Optimization II: pruning via contribution estimation
 - We estimate contribution through a proposed Cluster-based Learned Index (CLI)
 - It takes two steps to build our CLI

- Optimization II: pruning via contribution estimation
 - Each provider builds CLI offline
 - Each provider estimates distance of the K/sel th nearest neighbor to q among nearby clusters as own contribution online

Reserved

D' = dist(q,o) + dist(o,v)

Include 6 vectors in #1, 3 vectors in #2

Estimate kth Nearest Distance

- Optimization II: pruning via contribution estimation
 - \square Each provider calculates distance γ_i^* , then submits it to TEE
 - TEE calculates a pruned k for each data provider through:

$$k_i = \frac{k * \min \gamma_i^*}{\gamma_i^*}$$

- The above formula indicates that providers with smaller γ_i^* are likely to contribute more significantly in the final answer
- lacktriangle Moreover, the provider with the minimum γ_i^* remains with lacktriangle initial candidates to retain high recall

- Background
- Problem Statement
- Methodology

- Experiment
- Conclusion

Experiment: setup

- Dataset
 - WIT, YT-Audio, TY-Rgb, Deep
 - with at most 2048 dimensionality, 10e7 cardinary and two structured attributes over

both NON-IID and IID vector data

	Deployment
--	------------

Dataset	Caru.	DIIII.	Embedding	Attribute	rartition
WIT	5×10^4	2048	Image	Image Size	IID
YT-Audio	10^{6}	128	Audio	Category	Dirichlet
YT-Rgb	10^{6}	1024	Video	Category	Dirichlet
DEEP	10^{7}	96	Image	Synthetic	Quantity

- We deploy our experimental study on six cloud servers over industrial vector databases Milvus [7]
- □ The main hardware includes Intel Xeon(R) Platinum 8361HC CPUs and 32GB of RAM, with one server equipped with Intel's SGX SDK

Experiment: setup

- Compared Algorithms (with extensions for attribute filter and highdimensional vectors)
 - HuFu [4]: federated search over 2D vectors with Secure summation and secure comparison
 - Mr [5]: federated search over 2D vectors with multiple rounds of contribution estimation and secure summation.
 - □ DANN* [6]: federated vector search with TEE and Differential Privacy
 - □ (HuFu, Mr, DANN*)-Post: conduct local search with a "post-filter" strategy

Experiment: overall query performance

- Default exp parameters:
 - \square Query parameter k is 128, #(data providers) \diamondsuit is 5.
- Overall performance:
 - Our solution(FedVS) achieves best query
 Efficiency (at most 27.25× lower search time

 - and 15.32× lower communication cost)
 - Our solution(FedVS) consistently achieves
 - the highest recall (up to 32.03% higher than
 - HuFu, Mr and DANN*)

Experiment: impact of query parameters

- Vary query parameter k from 32~256:
 - \square FedVS still achieves best performance among all values of k, with up to 25.18× faster

Experiment: impact of query parameters

- Vary #(data providers) m from 2~20:
 - □ FedVS always maintains more stable communication / time overhead and answer recall

Experiment: ablation study

- Ablation study on optimization #1:
 - FedVS effectively reduces both the search time and communication overhead by 7.32% and 22.33% while maintaining accuracy.

1200

Search Time (ms) 0501 0501

- □ Ablation study on optimization #2:
 - Optimization #2 can reduce the initial candidate size at each provider by up to 15.19%–68.56% with less than 2 seconds and IMB space to build our CLI

Dataset	YT-Audio	YT-Rgb	DEEP
Clustering Time	28s	150s	6778s
Index Build Time	31ms	18ms	1789ms
Index Space Cost	17KB	51KB	346KB

Cost (KB)

YT-Rgb

- Background
- Problem Statement
- Methodology

- Experiment
- Conclusion

Conclusion

- Our work introduces a new problem called federated vector similarity search with filters
- We propose a two-phase framework FedVS based on TEE and devise two optimizations via indexing and pruning.
- Overall, FedVS accelerates search time by up to 27.25× and reduces communication overhead by up to 15.32× while keeping high recall
- Our source code and real data are now available at https://doi.org/10.5281/zenodo.15504203 and welcome to

contact me by email: fanzh@buaa.edu.cn

Thank you for listening

